1
|
Stradiotto E, Allegrini D, Fossati G, Raimondi R, Sorrentino T, Tripepi D, Barone G, Inforzato A, Romano MR. Genetic Aspects of Age-Related Macular Degeneration and Their Therapeutic Potential. Int J Mol Sci 2022; 23:13280. [PMID: 36362067 PMCID: PMC9653831 DOI: 10.3390/ijms232113280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/05/2022] [Accepted: 10/28/2022] [Indexed: 08/27/2023] Open
Abstract
Age-related macular degeneration (AMD) is a complex and multifactorial disease, resulting from the interaction of environmental and genetic factors. The continuous discovery of associations between genetic polymorphisms and AMD gives reason for the pivotal role attributed to the genetic component to its development. In that light, genetic tests and polygenic scores have been created to predict the risk of development and response to therapy. Still, none of them have yet been validated. Furthermore, there is no evidence from a clinical trial that the determination of the individual genetic structure can improve treatment outcomes. In this comprehensive review, we summarize the polymorphisms of the main pathogenetic ways involved in AMD development to identify which of them constitutes a potential therapeutic target. As complement overactivation plays a major role, the modulation of targeted complement proteins seems to be a promising therapeutic approach. Herein, we summarize the complement-modulating molecules now undergoing clinical trials, enlightening those in an advanced phase of trial. Gene therapy is a potential innovative one-time treatment, and its relevance is quickly evolving in the field of retinal diseases. We describe the state of the art of gene therapies now undergoing clinical trials both in the field of complement-suppressors and that of anti-VEGF.
Collapse
Affiliation(s)
- Elisa Stradiotto
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, 24128 Bergamo, Italy
| | - Davide Allegrini
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, 24128 Bergamo, Italy
| | - Giovanni Fossati
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, 24128 Bergamo, Italy
| | - Raffaele Raimondi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, 24128 Bergamo, Italy
| | - Tania Sorrentino
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, 24128 Bergamo, Italy
| | - Domenico Tripepi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, 24128 Bergamo, Italy
| | - Gianmaria Barone
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, 24128 Bergamo, Italy
| | - Antonio Inforzato
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano-Milan, Italy
| | - Mario R. Romano
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, 24128 Bergamo, Italy
| |
Collapse
|
2
|
Luo S, Xu H, Gong X, Shen J, Chen X, Wu Z. The complement C3a‑C3aR and C5a‑C5aR pathways promote viability and inflammation of human retinal pigment epithelium cells by targeting NF‑κB signaling. Exp Ther Med 2022; 24:493. [PMID: 35837068 PMCID: PMC9257899 DOI: 10.3892/etm.2022.11420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/08/2022] [Indexed: 11/05/2022] Open
Abstract
Retinal detachment (RD) and its special form of rhegmatogenous RD associated with choroidal detachment (RRDCD) feature similar pathological alterations, including enhanced retinal cell inflammation. Although the importance of the complement components C3a and C5a and their corresponding receptors in retinal maintenance has been demonstrated, the relevance of these molecules to the pathogenesis of RD or RRDCD remains to be investigated. The contents of C3a, C5a and inflammatory factors, such as TNF-α, IL-1β, IL-6 and prostaglandin (PG)E2, in related clinical samples were examined by ELISA. Subsequently, human retinal pigment epithelial (HRPE) cells were subjected to challenge with the C3a and C5a recombinant proteins with or without C3a and C5a antagonists and NF-κB inhibitor, and the cell viability and inflammatory cytokines were then determined by a Cell Counting Kit-8 assay and ELISA, respectively. In addition, reverse transcription-quantitative PCR and western blot analyses were utilized to examine the mRNA or/and protein levels of C3a and its receptor C3aR, as well as C5a and its receptor C5aR, and NF-κB. In addition, the correlation of C3a and C5a with the aforementioned inflammatory factors was analyzed. The inflammatory factor levels of C3a and C5a were considerably elevated in patients with RRDCD compared to those in the controls. Consistently, C3a and C5a treatment led to increased cell viability and aggravated inflammation in HRPE cells. Accordingly, C3a and C5a induced upregulation of their corresponding receptors C3aR and C5aR, which was in turn observed to be linked to the activation of the NF-κB signaling pathway. Furthermore, there was a positive correlation of the complements C3a and C5a with individual TNF-α, IL-1β, IL-6 and PGE2. Taken together, the C3a-C3aR and C5a-C5aR pathways were indicated to promote cell viability and inflammation of HRPE cells by targeting the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Shasha Luo
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| | - Huiyan Xu
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| | - Xuechun Gong
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| | - Jinyan Shen
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| | - Xuan Chen
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| | - Zhifeng Wu
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| |
Collapse
|