1
|
Guirandy N, Simon O, Geffroy B, Daffe G, Daramy F, Houdelet C, Gonzalez P, Pierron F. Gamma irradiation-induced offspring masculinization is associated with epigenetic changes in female zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115790. [PMID: 38086259 DOI: 10.1016/j.ecoenv.2023.115790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024]
Abstract
Sex ratio variation is a key topic in ecology, because of its direct effects on population dynamics and thus, on animal conservation strategies. Among factors affecting sex ratio, types of sex determination systems have a central role, since some species could have a sex determined by genetic factors, environmental factors or a mix of those two. Yet, most studies on the factors affecting sex determination have focused on temperature or endocrine-disrupting chemicals (EDCs), and much less is known regarding other factors. Exposure to gamma irradiation was found to trigger offspring masculinization in zebrafish. Here we aimed at deciphering the potential mechanisms involved, by focusing on stress (i.e. cortisol) and epigenetic regulation of key genes involved in sex differentiation in fish. Cortisol levels in exposed and control (F0) zebrafish females' gonads were similar. However, irradiation increased the DNA methylation level of foxl2a and cyp19a1a in females of the F0 and F1 generation, respectively, while no effects were detected in testis. Overall, our results suggest that parental exposure could alter offspring sex ratio, at least in part by inducing methylation changes in ovaries.
Collapse
Affiliation(s)
- Noëmie Guirandy
- IRSN/PSE-ENV/SRTE/LECO, Centre de Cadarache-B.P. 3 - Bat 183, 13115 St Paul Lez Durance, France.
| | - Olivier Simon
- IRSN/PSE-ENV/SRTE/LECO, Centre de Cadarache-B.P. 3 - Bat 183, 13115 St Paul Lez Durance, France
| | - Benjamin Geffroy
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Guillemine Daffe
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Flore Daramy
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Camille Houdelet
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Patrice Gonzalez
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Fabien Pierron
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| |
Collapse
|
2
|
Nzioka A, Madeira MJ, Kokokiris L, Ortiz-Zarrogoitia M, Diaz de Cerio O, Cancio I. Lack of genetic structure in euryhaline Chelon labrosus from the estuaries under anthropic pressure in the Southern Bay of Biscay to the coastal waters of the Mediterranean Sea. MARINE ENVIRONMENTAL RESEARCH 2023; 189:106058. [PMID: 37379782 DOI: 10.1016/j.marenvres.2023.106058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/06/2023] [Accepted: 06/11/2023] [Indexed: 06/30/2023]
Abstract
Over the last decade, xenoestrogenic effects have been reported in populations of thicklip grey mullet Chelon labrosus from contaminated estuaries in the Bay of Biscay, resulting in intersex condition. To understand the level of gene flow in individuals of different Basque estuaries microsatellite markers were used to evaluate the population structure and connectivity of C. labrosus from estuaries of the Basque coast. 46 microsatellites were tested and 10 validated for the analysis of 204 individuals collected from 5 selected Basque estuaries and 2 outgroups in the Bay of Cadiz and Thermaic Gulf. The polymorphic microsatellites revealed 74 total alleles, 2-19 alleles per locus. The mean observed heterozygosity (0.49 ± 0.02) was lower than the expected one (0.53 ± 0.01). There was no evidence of genetic differentiation (FST = 0.0098, P = 0.0000) among individuals or sites. Bayesian clustering analysis revealed a single population in all sampled locations. The results of this study indicate widespread genetic homogeneity and panmixia of C. labrosus across the current sampling areas spanning the Atlantic and Mediterranean basins. The hypothesis of panmixia could therefore be well supported so individuals inhabiting estuaries with high prevalence of intersex condition should be considered as members of the same single genetic group as those inhabiting adjacent estuaries without incidence of xenoestrogenicity.
Collapse
Affiliation(s)
- Anthony Nzioka
- CBET Research Group, Dept. Zoology & Animal Cell Biology, Faculty of Science & Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza Hiribidea s/n, 48620, Plentzia, Basque Country, Spain
| | - María José Madeira
- SystBioGen Research Group, Dept. Zoology & Animal Cell Biology, Faculty of Science & Technology and Lucio Lascaray Research Centre, University of the Basque Country, Calle Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Lambros Kokokiris
- Department of Nutritional Sciences & Dietetics, International Hellenic University, P.O. 141 Sindos, 57400, Thessaloniki, Greece
| | - Maren Ortiz-Zarrogoitia
- CBET Research Group, Dept. Zoology & Animal Cell Biology, Faculty of Science & Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza Hiribidea s/n, 48620, Plentzia, Basque Country, Spain
| | - Oihane Diaz de Cerio
- CBET Research Group, Dept. Zoology & Animal Cell Biology, Faculty of Science & Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza Hiribidea s/n, 48620, Plentzia, Basque Country, Spain
| | - Ibon Cancio
- CBET Research Group, Dept. Zoology & Animal Cell Biology, Faculty of Science & Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza Hiribidea s/n, 48620, Plentzia, Basque Country, Spain.
| |
Collapse
|
3
|
Wang HY, Liu X, Chen JY, Huang Y, Lu Y, Tan F, Liu Q, Yang M, Li S, Zhang X, Qin Y, Ma W, Yang Y, Meng L, Liu K, Wang Q, Fan G, Nóbrega RH, Liu S, Piferrer F, Shao C. Single-cell-resolution transcriptome map revealed novel genes involved in testicular germ cell progression and somatic cells specification in Chinese tongue sole with sex reversal. SCIENCE CHINA LIFE SCIENCES 2022; 66:1151-1169. [PMID: 36437386 DOI: 10.1007/s11427-021-2236-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022]
Abstract
Female-to-male sex reversals (pseudomales) are common in lower vertebrates and have been found in natural populations, which is a concern under rapid changes in environmental conditions. Pseudomales can exhibit altered spermatogenesis. However, the regulatory mechanisms underlying pseudomale spermatogenesis remain unclear. Here, we characterized spermatogenesis in Chinese tongue sole (Cynoglossus semilaevis), a species with genetic and environmental sex determination, based on a high-resolution single-cell RNA-seq atlas of cells derived from the testes of genotypic males and pseudomales. We identified five germ cell types and six somatic cell types and obtained a single-cell atlas of dynamic changes in gene expression during spermatogenesis in Chinese tongue sole, including alterations in pseudomales. We detected decreased levels of Ca2+ signaling pathway-related genes in spermatogonia, insufficient meiotic initiation in spermatocytes, and a malfunction of somatic niche cells in pseudomales. However, a cluster of CaSR genes and MAPK signaling factors were upregulated in undifferentiated spermatogonia of pseudomales. Additionally, we revealed that Z chromosome-specific genes, such as piwil2, dhx37, and ehmt1, were important for spermatogenesis. These results improve our understanding of reproduction after female-to-male sex-reversal and provide new insights into the adaptability of reproductive strategies in lower vertebrates.
Collapse
|
4
|
Valdivieso A, Wilson CA, Amores A, da Silva Rodrigues M, Nóbrega RH, Ribas L, Postlethwait JH, Piferrer F. Environmentally-induced sex reversal in fish with chromosomal vs. polygenic sex determination. ENVIRONMENTAL RESEARCH 2022; 213:113549. [PMID: 35618011 PMCID: PMC9620983 DOI: 10.1016/j.envres.2022.113549] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Sex ratio depends on sex determination mechanisms and is a key demographic parameter determining population viability and resilience to natural and anthropogenic stressors. There is increasing evidence that the environment can alter sex ratio even in genetically sex-determined species (GSD), as elevated temperature can cause female-to-male sex reversal (neomales). Alarmingly, neomales are being discovered in natural populations of several fish, amphibian and reptile species worldwide. Understanding the basis of neomale development is important for conservation biology. Among GSD species, it is unknown whether those with chromosomal sex determination (CSD), the most common system, will better resist the influence of high temperature than those with polygenic sex determination (PSD). Here, we compared the effects of elevated temperature in two wild zebrafish strains, Nadia (NA) and Ekkwill (EKW), which have CSD with a ZZ/ZW system, against the AB laboratory strain, which has PSD. First, we uncovered novel sex genotypes and the results showed that, at control temperature, the masculinization rate roughly doubled with the addition of each Z chromosome, while some ZW and WW fish of the wild strains became neomales. Surprisingly, we found that at elevated temperatures WW fish were just as likely as ZW fish to become neomales and that all strains were equally susceptible to masculinization. These results demonstrate that the Z chromosome is not essential for male development and that the dose of W buffers masculinization at the control temperature but not at elevated temperature. Furthermore, at the elevated temperature the testes of neomales, but not of normal males, contained more spermatozoa than at the control temperature. Our results show in an unprecedented way that, in a global warming scenario, CSD species may not necessarily be better protected against the masculinizing effect of elevated temperature than PSD species, and reveal genotype-by-temperature interactions in male sex determination and spermatogenesis.
Collapse
Affiliation(s)
- Alejandro Valdivieso
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | | | - Angel Amores
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Maira da Silva Rodrigues
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, São Paulo, Brazil
| | - Rafael Henrique Nóbrega
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, São Paulo, Brazil
| | - Laia Ribas
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | | | - Francesc Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain.
| |
Collapse
|
5
|
Smirnov AF, Leoke DY, Trukhina AV. Natural and Experimental Sex Reversal in Birds and Other Groups of Vertebrates, with the Exception of Mammals. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422060114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Nemesházi E, Bókony V. Asymmetrical sex reversal: Does the type of heterogamety predict propensity for sex reversal? Bioessays 2022; 44:e2200039. [PMID: 35543235 DOI: 10.1002/bies.202200039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/12/2022] [Accepted: 04/29/2022] [Indexed: 11/10/2022]
Abstract
Sex reversal, a mismatch between phenotypic and genetic sex, can be induced by chemical and thermal insults in ectotherms. Therefore, climate change and environmental pollution may increase sex-reversal frequency in wild populations, with wide-ranging implications for sex ratios, population dynamics, and the evolution of sex determination. We propose that reconsidering the half-century old theory "Witschi's rule" should facilitate understanding the differences between species in sex-reversal propensity and thereby predicting their vulnerability to anthropogenic environmental change. The idea is that sex reversal should be asymmetrical: more likely to occur in the homogametic sex, assuming that sex-reversed heterogametic individuals would produce new genotypes with reduced fitness. A review of the existing evidence shows that while sex reversal can be induced in both homogametic and heterogametic individuals, the latter seem to require stronger stimuli in several cases. We provide guidelines for future studies on sex reversal to facilitate data comparability and reliability.
Collapse
Affiliation(s)
- Edina Nemesházi
- Conservation Genetics Research Group, Department of Ecology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Veronika Bókony
- Conservation Genetics Research Group, Department of Ecology, University of Veterinary Medicine Budapest, Budapest, Hungary.,Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Budapest, Hungary
| |
Collapse
|
7
|
Nemesházi E, Sramkó G, Laczkó L, Balogh E, Szatmári L, Vili N, Ujhegyi N, Üveges B, Bókony V. Novel genetic sex markers reveal unexpected lack of, and similar susceptibility to, sex reversal in free-living common toads in both natural and anthropogenic habitats. Mol Ecol 2022; 31:2032-2043. [PMID: 35146823 PMCID: PMC9544883 DOI: 10.1111/mec.16388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/27/2022] [Accepted: 02/04/2022] [Indexed: 11/29/2022]
Abstract
Anthropogenic environmental changes are affecting biodiversity and microevolution worldwide. Ectothermic vertebrates are especially vulnerable, since environmental changes can disrupt their sexual development and cause sex reversal, a mismatch between genetic and phenotypic sex. This can potentially lead to sex-ratio distortion and population decline. Despite these implications, we have scarce empirical knowledge on the incidence of sex reversal in nature. Populations in anthropogenic environments may be exposed to sex-reversing stimuli more frequently, which may lead to higher sex-reversal rate, or alternatively, these populations may adapt to resist sex reversal. We developed PCR-based genetic sex markers for the common toad (Bufo bufo) to assess the prevalence of sex reversal in wild populations living in natural, agricultural and urban habitats, and the susceptibility of the same populations to two ubiquitous estrogenic pollutants in a common-garden experiment. We found negligible sex-reversal frequency in free-living adults despite the presence of various endocrine-disrupting pollutants in their breeding ponds. Individuals from different habitat types showed similar susceptibility to sex reversal in the laboratory: all genetic males developed female phenotype when exposed to 1 µg/L 17α-ethinylestradiol (EE2) during larval development, whereas no sex reversal occurred in response to 1 ng/L EE2 and a glyphosate-based herbicide with 3 µg/L or 3 mg/L glyphosate. The latter results do not support that populations in anthropogenic habitats would have either increased propensity for or higher tolerance to chemically induced sex reversal. Thus, the extremely low sex-reversal frequency in wild toads compared to other ectothermic vertebrates studied before might indicate idiosyncratic, potentially species-specific resistance to sex reversal.
Collapse
Affiliation(s)
- Edina Nemesházi
- Conservation Genetics Research Group, Department of Ecology, University of Veterinary Medicine Budapest, István u. 2, 1078, Budapest, Hungary.,Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, 1022, Budapest, Hungary
| | - Gábor Sramkó
- MTA-DE Lendület Evolutionary Phylogenomics Research Group, Egyetem tér 1, 4032, Debrecen, Hungary
| | - Levente Laczkó
- MTA-DE Lendület Evolutionary Phylogenomics Research Group, Egyetem tér 1, 4032, Debrecen, Hungary
| | - Emese Balogh
- Conservation Genetics Research Group, Department of Ecology, University of Veterinary Medicine Budapest, István u. 2, 1078, Budapest, Hungary
| | - Lajos Szatmári
- MTA-DE Lendület Evolutionary Phylogenomics Research Group, Egyetem tér 1, 4032, Debrecen, Hungary
| | - Nóra Vili
- Conservation Genetics Research Group, Department of Ecology, University of Veterinary Medicine Budapest, István u. 2, 1078, Budapest, Hungary
| | - Nikolett Ujhegyi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, 1022, Budapest, Hungary
| | - Bálint Üveges
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, 1022, Budapest, Hungary.,Molecular Ecology and Evolution at Bangor, School of Natural Sciences, Bangor University, Bangor LL57 2UW, Wales, United Kingdom
| | - Veronika Bókony
- Conservation Genetics Research Group, Department of Ecology, University of Veterinary Medicine Budapest, István u. 2, 1078, Budapest, Hungary.,Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, 1022, Budapest, Hungary
| |
Collapse
|
8
|
Wang L, Sun F, Wan ZY, Yang Z, Tay YX, Lee M, Ye B, Wen Y, Meng Z, Fan B, Alfiko Y, Shen Y, Piferrer F, Meyer A, Schartl M, Yue GH. Transposon-induced epigenetic silencing in the X chromosome as a novel form of dmrt1 expression regulation during sex determination in the fighting fish. BMC Biol 2022; 20:5. [PMID: 34996452 PMCID: PMC8742447 DOI: 10.1186/s12915-021-01205-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 12/03/2021] [Indexed: 01/14/2023] Open
Abstract
Background Fishes are the one of the most diverse groups of animals with respect to their modes of sex determination, providing unique models for uncovering the evolutionary and molecular mechanisms underlying sex determination and reversal. Here, we have investigated how sex is determined in a species of both commercial and ecological importance, the Siamese fighting fish Betta splendens. Results We conducted association mapping on four commercial and two wild populations of B. splendens. In three of the four commercial populations, the master sex determining (MSD) locus was found to be located in a region of ~ 80 kb on LG2 which harbours five protein coding genes, including dmrt1, a gene involved in male sex determination in different animal taxa. In these fish, dmrt1 shows a male-biased gonadal expression from undifferentiated stages to adult organs and the knockout of this gene resulted in ovarian development in XY genotypes. Genome sequencing of XX and YY genotypes identified a transposon, drbx1, inserted into the fourth intron of the X-linked dmrt1 allele. Methylation assays revealed that epigenetic changes induced by drbx1 spread out to the promoter region of dmrt1. In addition, drbx1 being inserted between two closely linked cis-regulatory elements reduced their enhancer activities. Thus, epigenetic changes, induced by drbx1, contribute to the reduced expression of the X-linked dmrt1 allele, leading to female development. This represents a previously undescribed solution in animals relying on dmrt1 function for sex determination. Differentiation between the X and Y chromosomes is limited to a small region of ~ 200 kb surrounding the MSD gene. Recombination suppression spread slightly out of the SD locus. However, this mechanism was not found in the fourth commercial stock we studied, or in the two wild populations analysed, suggesting that it originated recently during domestication. Conclusions Taken together, our data provide novel insights into the role of epigenetic regulation of dmrt1 in sex determination and turnover of SD systems and suggest that fighting fish are a suitable model to study the initial stages of sex chromosome evolution. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01205-y.
Collapse
Affiliation(s)
- Le Wang
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, 117604, Singapore
| | - Fei Sun
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, 117604, Singapore
| | - Zi Yi Wan
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, 117604, Singapore
| | - Zituo Yang
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, 117604, Singapore
| | - Yi Xuan Tay
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, 117604, Singapore
| | - May Lee
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, 117604, Singapore
| | - Baoqing Ye
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, 117604, Singapore
| | - Yanfei Wen
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, 117604, Singapore
| | - Zining Meng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Bin Fan
- Department of Food and Environmental Engineering, Yangjiang Polytechnic, Yangjiang, 529500, China
| | - Yuzer Alfiko
- Biotech Lab, Wilmar International, Jakarta, Indonesia
| | - Yubang Shen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, 201306, China
| | - Francesc Piferrer
- Institute of Marine Sciences (ICM), Spanish National Research Council (CSIC), 08003, Barcelona, Spain.
| | - Axel Meyer
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany.
| | - Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Wuerzburg, 97074, Wuerzburg, Germany. .,The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA.
| | - Gen Hua Yue
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, 117604, Singapore. .,Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore. .,School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
9
|
Geffroy B, Besson M, Sánchez-Baizán N, Clota F, Goikoetxea A, Sadoul B, Ruelle F, Blanc MO, Parrinello H, Hermet S, Blondeau-Bidet E, Pratlong M, Piferrer F, Vandeputte M, Allal F. Unraveling the genotype by environment interaction in a thermosensitive fish with a polygenic sex determination system. Proc Natl Acad Sci U S A 2021; 118:e2112660118. [PMID: 34880131 PMCID: PMC8685686 DOI: 10.1073/pnas.2112660118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2021] [Indexed: 01/03/2023] Open
Abstract
In most animals, sex determination occurs at conception, when sex chromosomes are segregated following Mendelian laws. However, in multiple reptiles and fishes, this genetic sex can be overridden by external factors after fertilization or birth. In some species, the genetic sex may also be governed by multiple genes, further limiting our understanding of sex determination in such species. We used the European sea bass (Dicentrarchus labrax) as a model and combined genomic (using a single nucleotide polymorphism chip) and transcriptomic (RNA-Sequencing) approaches to thoroughly depict this polygenic sex determination system and its interaction with temperature. We estimated genetic sex tendency (eGST), defined as the estimated genetic liability to become a given sex under a liability threshold model for sex determination, which accurately predicts the future phenotypic sex. We found evidence that energetic pathways, concerning the regulation of lipids and glucose, are involved in sex determination and could explain why females tend to exhibit higher energy levels and improved growth compared to males. Besides, early exposure to high-temperature up-regulated sox3, followed by sox9a in individuals with intermediate eGST, but not in individuals showing highly female-biased eGST, providing the most parsimonious explanation for temperature-induced masculinization. This gonadal state was maintained likely by DNA methylation and the up-regulation of several genes involved in histone modifications, including jmjd1c Overall, we describe a sex determination system resulting from continuous genetic and environmental influences in an animal. Our results provide significant progress in our understanding of the mechanisms underlying temperature-induced masculinization in fish.
Collapse
Affiliation(s)
- Benjamin Geffroy
- MARBEC Université de Montpellier, CNRS, Ifremer, IRD, Palavas-les-Flots, France;
| | - Mathieu Besson
- SYSAAF, Station LPGP/INRAE, 35042 Rennes, France
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
| | - Núria Sánchez-Baizán
- Institut de Ciències del Mar, Spanish National Research Council, Barcelona, Spain
| | - Frederic Clota
- MARBEC Université de Montpellier, CNRS, Ifremer, IRD, Palavas-les-Flots, France
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
| | | | - Bastien Sadoul
- MARBEC Université de Montpellier, CNRS, Ifremer, IRD, Palavas-les-Flots, France
- ESE, Ecology and Ecosystem Health, Institut Agro, INRAE, Rennes, France
| | - François Ruelle
- Laboratoire Service d'Expérimentations Aquacoles, Ifremer, Palavas-les-Flots, France
| | - Marie-Odile Blanc
- Laboratoire Service d'Expérimentations Aquacoles, Ifremer, Palavas-les-Flots, France
| | - Hugues Parrinello
- MGX, BCM, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Sophie Hermet
- MARBEC Université de Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Eva Blondeau-Bidet
- MARBEC Université de Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Marine Pratlong
- MGX, BCM, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Francesc Piferrer
- Institut de Ciències del Mar, Spanish National Research Council, Barcelona, Spain
| | - Marc Vandeputte
- MARBEC Université de Montpellier, CNRS, Ifremer, IRD, Palavas-les-Flots, France
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
| | - François Allal
- MARBEC Université de Montpellier, CNRS, Ifremer, IRD, Palavas-les-Flots, France
| |
Collapse
|
10
|
Bókony V, Ujhegyi N, Mikó Z, Erös R, Hettyey A, Vili N, Gál Z, Hoffmann OI, Nemesházi E. Sex Reversal and Performance in Fitness-Related Traits During Early Life in Agile Frogs. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.745752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sex reversal is a mismatch between genetic sex (sex chromosomes) and phenotypic sex (reproductive organs and secondary sexual traits). It can be induced in various ectothermic vertebrates by environmental perturbations, such as extreme temperatures or chemical pollution, experienced during embryonic or larval development. Theoretical studies and recent empirical evidence suggest that sex reversal may be widespread in nature and may impact individual fitness and population dynamics. So far, however, little is known about the performance of sex-reversed individuals in fitness-related traits compared to conspecifics whose phenotypic sex is concordant with their genetic sex. Using a novel molecular marker set for diagnosing genetic sex in agile frogs (Rana dalmatina), we investigated fitness-related traits in larvae and juveniles that underwent spontaneous female-to-male sex reversal in the laboratory. We found only a few differences in early life growth, development, and larval behavior between sex-reversed and sex-concordant individuals, and altogether these differences did not clearly support either higher or lower fitness prospects for sex-reversed individuals. Putting these results together with earlier findings suggesting that sex reversal triggered by heat stress may be associated with low fitness in agile frogs, we propose the hypothesis that the fitness consequences of sex reversal may depend on its etiology.
Collapse
|
11
|
Piferrer F. Epigenetic mechanisms in sex determination and in the evolutionary transitions between sexual systems. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200110. [PMID: 34247505 PMCID: PMC8273503 DOI: 10.1098/rstb.2020.0110] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The hypothesis that epigenetic mechanisms of gene expression regulation have two main roles in vertebrate sex is presented. First, and within a given generation, by contributing to the acquisition and maintenance of (i) the male or female function once during the lifetime in individuals of gonochoristic species; and (ii) the male and female function in the same individual, either at the same time in simultaneous hermaphrodites, or first as one sex and then as the other in sequential hermaphrodites. Second, if environmental conditions change, epigenetic mechanisms may have also a role across generations, by providing the necessary phenotypic plasticity to facilitate the transition: (i) from one sexual system to another, or (ii) from one sex-determining mechanism to another. Furthermore, if the environmental change lasts enough time, epimutations could facilitate assimilation into genetic changes that stabilize the new sexual system or sex-determining mechanism. Examples supporting these assertions are presented, caveats or difficulties and knowledge gaps identified, and possible ways to test this hypothesis suggested. This article is part of the theme issue ‘Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)’.
Collapse
Affiliation(s)
- Francesc Piferrer
- Institut de Ciències del Mar (ICM), Spanish National Research Council (CSIC), Passeig Marítim, 37-49, 08003 Barcelona, Spain
| |
Collapse
|