1
|
Wang J, Wu X, Zhao J, Ren H, Zhao Y. Developing Liver Microphysiological Systems for Biomedical Applications. Adv Healthc Mater 2024; 13:e2302217. [PMID: 37983733 DOI: 10.1002/adhm.202302217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Microphysiological systems (MPSs), also known as organ chips, are micro-units that integrate cells with diverse physical and biochemical environmental cues. In the field of liver MPSs, cellular components have advanced from simple planar cell cultures to more sophisticated 3D formations such as spheroids and organoids. Additionally, progress in microfluidic devices, bioprinting, engineering of matrix materials, and interdisciplinary technologies have significant promise for producing MPSs with biomimetic structures and functions. This review provides a comprehensive summary of biomimetic liver MPSs including their clinical applications and future developmental potential. First, the key components of liver MPSs, including the principal cell types and engineered structures utilized for cell cultivation, are briefly introduced. Subsequently, the biomedical applications of liver MPSs, including the creation of disease models, drug absorption, distribution, metabolism, excretion, and toxicity, are discussed. Finally, the challenges encountered by MPSs are summarized, and future research directions for their development are proposed.
Collapse
Affiliation(s)
- Jinglin Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Xiangyi Wu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Junqi Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Haozhen Ren
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Southeast University Shenzhen Research Institute, Shenzhen, 518071, China
| |
Collapse
|
2
|
Sun T, Xiang Y, Turner F, Bao X. Integrated Experimental and Mathematical Exploration of Modular Tissue Cultures for Developmental Engineering. Int J Mol Sci 2024; 25:2987. [PMID: 38474234 DOI: 10.3390/ijms25052987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/06/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Developmental engineering (DE) involves culturing various cells on modular scaffolds (MSs), yielding modular tissues (MTs) assembled into three-dimensional (3D) tissues, mimicking developmental biology. This study employs an integrated approach, merging experimental and mathematical methods to investigate the biological processes in MT cultivation and assembly. Human dermal fibroblasts (HDFs) were cultured on tissue culture plastics, poly(lactic acid) (PLA) discs with regular open structures, or spherical poly(methyl methacrylate) (PMMA) MSs, respectively. Notably, HDFs exhibited flattened spindle shapes when adhered to solid surfaces, and complex 3D structures when migrating into the structured voids of PLA discs or interstitial spaces between aggregated PMMA MSs, showcasing coordinated colonization of porous scaffolds. Empirical investigations led to power law models simulating density-dependent cell growth on solid surfaces or voids. Concurrently, a modified diffusion model was applied to simulate oxygen diffusion within tissues cultured on solid surfaces or porous structures. These mathematical models were subsequently combined to explore the influences of initial cell seeding density, culture duration, and oxygen diffusion on MT cultivation and assembly. The findings underscored the intricate interplay of factors influencing MT design for tissue assembly. The integrated approach provides insights into mechanistic aspects, informing bioprocess design for manufacturing MTs and 3D tissues in DE.
Collapse
Affiliation(s)
- Tao Sun
- Department of Chemical Engineering, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
| | - Yu Xiang
- Department of Materials, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
| | - Freya Turner
- Department of Chemical Engineering, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
| | - Xujin Bao
- Department of Materials, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
| |
Collapse
|
3
|
da Silva RGL, Blasimme A. Organ chip research in Europe: players, initiatives, and policies. Front Bioeng Biotechnol 2023; 11:1237561. [PMID: 37731764 PMCID: PMC10507620 DOI: 10.3389/fbioe.2023.1237561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/17/2023] [Indexed: 09/22/2023] Open
Abstract
Background: Organ chips are microfabricated devices containing living engineered organ substructures in a controlled microenvironment. Research on organ chips has increased considerably over the past two decades. Aim: This paper offers an overview of the emerging knowledge ecosystem of organ chip research in Europe. Method: This study is based on queries and analyses undertaken through the bibliometric software Dimensions.ai. Results: Organ chip research has been rapidly growing in Europe in recent years, supported by robust academic science consortia, public-private initiatives, dedicated funding, and science policy instruments. Our data shows that previous investment in basic and fundamental research in centers of excellence in bioengineering science and technology are relevant to future investment in organ chips. Moreover, organ chip research in Europe is characterized by collaborative infrastructures to promote convergence of scientific, technical, and clinical capabilities. Conclusion: According to our study, the knowledge ecosystem of organ chip research in Europe has been growing sustainably. This growth is due to relevant institutional diversity, public-private initiatives, and ongoing research collaborations supported by robust funding schemes.
Collapse
|
4
|
Keuper-Navis M, Walles M, Poller B, Myszczyszyn A, van der Made TK, Donkers J, Eslami Amirabadi H, Wilmer MJ, Aan S, Spee B, Masereeuw R, van de Steeg E. The application of organ-on-chip models for the prediction of human pharmacokinetic profiles during drug development. Pharmacol Res 2023; 195:106853. [PMID: 37473876 DOI: 10.1016/j.phrs.2023.106853] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
Organ-on-chip (OoC) technology has led to in vitro models with many new possibilities compared to conventional in vitro and in vivo models. In this review, the potential of OoC models to improve the prediction of human oral bioavailability and intrinsic clearance is discussed, with a focus on the functionality of the models and the application in current drug development practice. Multi-OoC models demonstrating the application for pharmacokinetic (PK) studies are summarized and existing challenges are identified. Physiological parameters for a minimal viable platform of a multi-OoC model to study PK are provided, together with PK specific read-outs and recommendations for relevant reference compounds to validate the model. Finally, the translation to in vivo PK profiles is discussed, which will be required to routinely apply OoC models during drug development.
Collapse
Affiliation(s)
- Marit Keuper-Navis
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, the Netherlands; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, the Netherlands
| | - Markus Walles
- Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Birk Poller
- Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Adam Myszczyszyn
- Faculty of Veterinary Medicine & Regenerative Medicine Center Utrecht (RMCU), Utrecht University, Utrecht, the Netherlands
| | - Thomas K van der Made
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, the Netherlands
| | - Joanne Donkers
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, the Netherlands
| | | | | | - Saskia Aan
- Stichting Proefdiervrij, Den Haag, the Netherlands
| | - Bart Spee
- Faculty of Veterinary Medicine & Regenerative Medicine Center Utrecht (RMCU), Utrecht University, Utrecht, the Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, the Netherlands
| | - Evita van de Steeg
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, the Netherlands.
| |
Collapse
|
5
|
Nanosafety: An Evolving Concept to Bring the Safest Possible Nanomaterials to Society and Environment. NANOMATERIALS 2022; 12:nano12111810. [PMID: 35683670 PMCID: PMC9181910 DOI: 10.3390/nano12111810] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022]
Abstract
The use of nanomaterials has been increasing in recent times, and they are widely used in industries such as cosmetics, drugs, food, water treatment, and agriculture. The rapid development of new nanomaterials demands a set of approaches to evaluate the potential toxicity and risks related to them. In this regard, nanosafety has been using and adapting already existing methods (toxicological approach), but the unique characteristics of nanomaterials demand new approaches (nanotoxicology) to fully understand the potential toxicity, immunotoxicity, and (epi)genotoxicity. In addition, new technologies, such as organs-on-chips and sophisticated sensors, are under development and/or adaptation. All the information generated is used to develop new in silico approaches trying to predict the potential effects of newly developed materials. The overall evaluation of nanomaterials from their production to their final disposal chain is completed using the life cycle assessment (LCA), which is becoming an important element of nanosafety considering sustainability and environmental impact. In this review, we give an overview of all these elements of nanosafety.
Collapse
|
6
|
Gilbert RJ, Sheng G, Viebahn C, Liebau S, Marra KG, De Bartolo L. Inaugural Young Investigator Issue for Cells Tissues Organs. Cells Tissues Organs 2021; 211:638-640. [PMID: 34348277 DOI: 10.1159/000518410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 01/07/2023] Open
Affiliation(s)
- Ryan J Gilbert
- Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Guojun Sheng
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Christoph Viebahn
- Institute of Anatomy and Embryology, University Medical Center Gottingen, Gottingen, Germany
| | - Stefan Liebau
- Institute of Neuroanatomy and Developmental Biology, University of Tübingen, Tübingen, Germany
| | - Kacey G Marra
- Departments of Plastic Surgery and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Loredana De Bartolo
- Institute of Membrane Technology, National Research Council of Italy, Rome, Italy
| |
Collapse
|