1
|
Hsueh YM, Chen MC, Lin YC, Wu CY, Shiue HS, Hsu SL, Chen HH, Huang YL. Associations among global long interspersed nuclear element-1 DNA methylation, metal exposure, and chronic kidney disease. Arch Toxicol 2024; 98:3127-3135. [PMID: 38753188 DOI: 10.1007/s00204-024-03780-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/30/2024] [Indexed: 08/15/2024]
Abstract
Long interspersed nuclear element-1 (LINE-1) methylation serves as an indicator of global DNA methylation. This study explored the correlation between LINE-1 methylation and chronic kidney disease (CKD). We also evaluated whether LINE-1 methylation could modify the association between CKD and metal exposure. A total of 213 patients with clinically defined CKD, without hemodialysis and 416 age and sex matched controls were recruited. Levels of LINE-1 methylation, total urinary arsenic, blood lead, blood cadmium, and plasma selenium were assessed. The results reveal a positive association between LINE-1 methylation and CKD, with an odds ratio (OR) of 5.30 (95% confidence interval: 2.81 to 9.99). Total urinary arsenic and blood cadmium concentrations were positively related with LINE-1 methylation. This study was the first to observe that low plasma selenium, high blood cadmium, and high blood lead levels significantly and additively interact with increased LINE-1 methylation to increase the OR of CKD. Additionally, high LINE-1 methylation interacted multiplicatively with low plasma selenium to increase the OR of CKD (p < 0.001). This study highlighted the significant association between LINE-1 hypermethylation and CKD. Furthermore, the results demonstrate that LINE-1 methylation can interact with high blood cadmium or low plasma selenium to affect CKD risk.
Collapse
Affiliation(s)
- Yu-Mei Hsueh
- Department of Family Medicine, Wanfang Hospital, Taipei Medical University, Taipei City, Taiwan
- Department of Public Health, School of Medicine, College of Medicine, Zhonghe District, Taipei Medical University, No.301, Yuantong Road, New Taipei City, Taiwan
| | - Mei-Chieh Chen
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Ying-Chin Lin
- Department of Family Medicine, Wanfang Hospital, Taipei Medical University, Taipei City, Taiwan
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
- Department of Geriatric Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Chih-Yin Wu
- Department of Family Medicine, Wanfang Hospital, Taipei Medical University, Taipei City, Taiwan
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Horng-Sheng Shiue
- Department of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Sheng-Lun Hsu
- Department of Family Medicine, Wanfang Hospital, Taipei Medical University, Taipei City, Taiwan
| | - Hsi-Hsien Chen
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei City, Taiwan
| | - Ya-Li Huang
- Department of Public Health, School of Medicine, College of Medicine, Zhonghe District, Taipei Medical University, No.301, Yuantong Road, New Taipei City, Taiwan.
| |
Collapse
|
2
|
Koh ES, Chung S. Recent Update on Acute Kidney Injury-to-Chronic Kidney Disease Transition. Yonsei Med J 2024; 65:247-256. [PMID: 38653563 PMCID: PMC11045347 DOI: 10.3349/ymj.2023.0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/27/2023] [Accepted: 01/23/2024] [Indexed: 04/25/2024] Open
Abstract
Acute kidney injury (AKI) is characterized by an abrupt decline of excretory kidney function. The incidence of AKI has increased in the past decades. Patients diagnosed with AKI often undergo diverse clinical trajectories, such as early or late recovery, relapses, and even a potential transition from AKI to chronic kidney disease (CKD). Although recent clinical studies have demonstrated a strong association between AKI and progression of CKD, our understanding of the complex relationship between AKI and CKD is still evolving. No cohort study has succeeded in painting a comprehensive picture of these multi-faceted pathways. To address this lack of understanding, the idea of acute kidney disease (AKD) has recently been proposed. This presents a new perspective to pinpoint a period of heightened vulnerability following AKI, during which a patient could witness a substantial decline in glomerular filtration rate, ultimately leading to CKD transition. Although AKI is included in a range of kidney conditions collectively known as AKD, spanning from mild and self-limiting to severe and persistent, AKD can also occur without a rapid onset usually seen in AKI, such as when kidney dysfunction slowly evolves. In the present review, we summarize the most recent findings about AKD, explore the current state of biomarker discovery related to AKD, discuss the latest insights into pathophysiological underpinnings of AKI to CKD transition, and reflect on therapeutic challenges and opportunities that lie ahead.
Collapse
Affiliation(s)
- Eun Sil Koh
- Division of Nephrology, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sungjin Chung
- Division of Nephrology, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
3
|
Zhang L, Chen F, Dong J, Wang R, Bi G, Xu D, Zhang Y, Deng Y, Lin W, Yang Z, Cao W. HDAC3 aberration-incurred GPX4 suppression drives renal ferroptosis and AKI-CKD progression. Redox Biol 2023; 68:102939. [PMID: 37890360 PMCID: PMC10638610 DOI: 10.1016/j.redox.2023.102939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Acute kidney injury (AKI) progression to chronic kidney disease (CKD) represents a unique renal disease setting characterized by early renal cellular injury and regulated cell death, and later renal fibrosis, of which the critical role and nature of ferroptosis are only partially understood. Here, we report that renal tubular epithelial ferroptosis caused by HDAC3 (histone deacetylase 3) aberration and the resultant GPX4 suppression drives AKI-CKD progression. In mouse models of AKI-CKD transition induced by nephrotoxic aristolochic acid (AA) and folic acid (FA), renal tubular epithelial ferroptosis occurred early that coincided with preferential HDAC3 elevation and marked suppression of a core anti-ferroptosis enzyme GPX4 (glutathione peroxidase 4). Intriguingly, genetic Hdac3 knockout or administration of a HDAC3-selective inhibitor RGFP966 effectively mitigated the GPX4 suppression, ferroptosis and the fibrosis-associated renal functional loss. In cultured tubular epithelial cells, HDAC3 over-expression or inhibition inversely affected GPX4 abundances. Further analysis revealed that Gpx4 promoter contains a typical binding motif of transcription factor KLF5 (Kruppel-like factor 5). HDAC3 and KLF5 inducibly associated and bound to Gpx4 promoter upon AA treatment, leading to local histone hypoacetylation and GPX4 transactivation inhibition, which was blocked by RGFP966 and a KLF5 inhibitor ML264, respectively, suggesting that KLF5 co-regulated the HDAC3-incurred Gpx4 transcription inhibition. More importantly, in AKI-CKD mice receiving a GPX4 inactivator RSL3, the anti-ferroptosis and renoprotective effects of RGFP966 were largely abrogated, indicating that GPX4 is an essential downstream mediator of the HDAC3 aberration and renal ferroptosis during AKI-CKD transition. Together, our study identified a critical epigenetic pathway of ferroptosis during AKI-CKD transition and suggested that the strategies preserving GPX4 by HDAC3 inhibition are potentially effective to reduce renal ferroptosis and slow AKI-CKD progression.
Collapse
Affiliation(s)
- Lijun Zhang
- Yancheng Medical Research Center of Nanjing University Medical School, Department of Central Laboratory, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, China; Nanjing University Medical School, Jiangsu Key Lab of Molecular Medicine, Nanjing, China
| | - Fang Chen
- Yancheng Medical Research Center of Nanjing University Medical School, Department of Central Laboratory, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, China
| | - Jian Dong
- Nanjing University Medical School, Jiangsu Key Lab of Molecular Medicine, Nanjing, China
| | - Rong Wang
- Yangzhou Precision Research Institute of Kidney Disease, Department of Nephrology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Guangyu Bi
- Yangzhou Precision Research Institute of Kidney Disease, Department of Nephrology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Daoliang Xu
- Yangzhou Precision Research Institute of Kidney Disease, Department of Nephrology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Yingwei Zhang
- Department of Respirology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yijun Deng
- Yancheng Medical Research Center of Nanjing University Medical School, Department of Central Laboratory, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, China
| | - Wenjun Lin
- Department of Nephrology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhongzhou Yang
- Nanjing University Medical School, Jiangsu Key Lab of Molecular Medicine, Nanjing, China.
| | - Wangsen Cao
- Yancheng Medical Research Center of Nanjing University Medical School, Department of Central Laboratory, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, China; Nanjing University Medical School, Jiangsu Key Lab of Molecular Medicine, Nanjing, China; Yangzhou Precision Research Institute of Kidney Disease, Department of Nephrology, Northern Jiangsu People's Hospital, Yangzhou, China.
| |
Collapse
|
4
|
Kumar P, Brooks HL. Sex-specific epigenetic programming in renal fibrosis and inflammation. Am J Physiol Renal Physiol 2023; 325:F578-F594. [PMID: 37560775 DOI: 10.1152/ajprenal.00091.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
The growing prevalence of hypertension, heart disease, diabetes, and obesity along with an aging population is leading to a higher incidence of renal diseases in society. Chronic kidney disease (CKD) is characterized mainly by persistent inflammation, fibrosis, and gradual loss of renal function leading to renal failure. Sex is a known contributor to the differences in incidence and progression of CKD. Epigenetic programming is an essential regulator of renal physiology and is critically involved in the pathophysiology of renal injury and fibrosis. Epigenetic signaling integrates intrinsic and extrinsic signals onto the genome, and various environmental and hormonal stimuli, including sex hormones, which regulate gene expression and downstream cellular responses. The most extensively studied epigenetic alterations that play a critical role in renal damage include histone modifications and DNA methylation. Notably, these epigenetic alterations are reversible, making them candidates for potential therapeutic targets for the treatment of renal diseases. Here, we will summarize the current knowledge on sex differences in epigenetic modulation of renal fibrosis and inflammation and highlight some possible epigenetic therapeutic strategies for CKD treatment.
Collapse
Affiliation(s)
- Prerna Kumar
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Heddwen L Brooks
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| |
Collapse
|
5
|
Qu L, Jiao B. The Interplay between Immune and Metabolic Pathways in Kidney Disease. Cells 2023; 12:1584. [PMID: 37371054 PMCID: PMC10296595 DOI: 10.3390/cells12121584] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Kidney disease is a significant health problem worldwide, affecting an estimated 10% of the global population. Kidney disease encompasses a diverse group of disorders that vary in their underlying pathophysiology, clinical presentation, and outcomes. These disorders include acute kidney injury (AKI), chronic kidney disease (CKD), glomerulonephritis, nephrotic syndrome, polycystic kidney disease, diabetic kidney disease, and many others. Despite their distinct etiologies, these disorders share a common feature of immune system dysregulation and metabolic disturbances. The immune system and metabolic pathways are intimately connected and interact to modulate the pathogenesis of kidney diseases. The dysregulation of immune responses in kidney diseases includes a complex interplay between various immune cell types, including resident and infiltrating immune cells, cytokines, chemokines, and complement factors. These immune factors can trigger and perpetuate kidney inflammation, causing renal tissue injury and progressive fibrosis. In addition, metabolic pathways play critical roles in the pathogenesis of kidney diseases, including glucose and lipid metabolism, oxidative stress, mitochondrial dysfunction, and altered nutrient sensing. Dysregulation of these metabolic pathways contributes to the progression of kidney disease by inducing renal tubular injury, apoptosis, and fibrosis. Recent studies have provided insights into the intricate interplay between immune and metabolic pathways in kidney diseases, revealing novel therapeutic targets for the prevention and treatment of kidney diseases. Potential therapeutic strategies include modulating immune responses through targeting key immune factors or inhibiting pro-inflammatory signaling pathways, improving mitochondrial function, and targeting nutrient-sensing pathways, such as mTOR, AMPK, and SIRT1. This review highlights the importance of the interplay between immune and metabolic pathways in kidney diseases and the potential therapeutic implications of targeting these pathways.
Collapse
Affiliation(s)
- Lili Qu
- Division of Nephrology, Department of Medicine, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030-1405, USA
| | - Baihai Jiao
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030-1405, USA
| |
Collapse
|
6
|
Rayego-Mateos S, Basantes P, Morgado-Pascual JL, Brazal Prieto B, Suarez-Alvarez B, Ortiz A, Lopez-Larrea C, Ruiz-Ortega M. BET Protein Inhibitor JQ1 Modulates Mitochondrial Dysfunction and Oxidative Stress Induced by Chronic Kidney Disease. Antioxidants (Basel) 2023; 12:antiox12051130. [PMID: 37237996 DOI: 10.3390/antiox12051130] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Among the mechanisms involved in the progression of kidney disease, mitochondrial dysfunction has special relevance. Epigenetic drugs such as inhibitors of extra-terminal domain proteins (iBET) have shown beneficial effects in experimental kidney disease, mainly by inhibiting proliferative and inflammatory responses. The impact of iBET on mitochondrial damage was explored in in vitro studies in renal cells stimulated with TGF-β1 and in vivo in murine unilateral ureteral obstruction (UUO) model of progressive kidney damage. In vitro, JQ1 pretreatment prevented the TGF-β1-induced downregulation of components of the oxidative phosphorylation chain (OXPHOS), such as cytochrome C and CV-ATP5a in human proximal tubular cells. In addition, JQ1 also prevented the altered mitochondrial dynamics by avoiding the increase in the DRP-1 fission factor. In UUO model, renal gene expression levels of cytochrome C and CV-ATP5a as well as protein levels of cytochrome C were reduced These changes were prevented by JQ1 administration. In addition, JQ1 decreased protein levels of the DRP1 fission protein and increased the OPA-1 fusion protein, restoring mitochondrial dynamics. Mitochondria also participate in the maintenance of redox balance. JQ1 restored the gene expression of antioxidant proteins, such as Catalase and Heme oxygenase 1 in TGF-β1-stimulated human proximal tubular cells and in murine obstructed kidneys. Indeed, in tubular cells, JQ1 decreased ROS production induced by stimulation with TGF-β1, as evaluated by MitoSOXTM. iBETs, such as JQ1, improve mitochondrial dynamics, functionality, and oxidative stress in kidney disease.
Collapse
Affiliation(s)
- Sandra Rayego-Mateos
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- Ricors2040, 28029 Madrid, Spain
| | - Pamela Basantes
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- Ricors2040, 28029 Madrid, Spain
| | - José Luis Morgado-Pascual
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain
| | - Beatriz Brazal Prieto
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- Ricors2040, 28029 Madrid, Spain
| | - Beatriz Suarez-Alvarez
- Ricors2040, 28029 Madrid, Spain
- Translational Immunology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Alberto Ortiz
- Ricors2040, 28029 Madrid, Spain
- Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Carlos Lopez-Larrea
- Ricors2040, 28029 Madrid, Spain
- Translational Immunology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- Ricors2040, 28029 Madrid, Spain
| |
Collapse
|
7
|
Yang G, Tan L, Yao H, Xiong Z, Wu J, Huang X. Long-Term Effects of Severe Burns on the Kidneys: Research Advances and Potential Therapeutic Approaches. J Inflamm Res 2023; 16:1905-1921. [PMID: 37152866 PMCID: PMC10162109 DOI: 10.2147/jir.s404983] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/14/2023] [Indexed: 05/09/2023] Open
Abstract
Burns are a seriously underestimated form of trauma that not only damage the skin system but also cause various complications, such as acute kidney injury (AKI). Recent clinical studies have shown that the proportion of chronic kidney diseases (CKD) in burn patients after discharge is significantly higher than that in the general population, but the mechanism behind this is controversial. The traditional view is that CKD is associated with hypoperfusion, AKI, sepsis, and drugs administered in the early stages of burns. However, recent studies have shown that burns can cause long-term immune dysfunction, which is a high-risk factor for CKD. This suggests that burns affect the kidneys more than previously recognized. In other words, severe burns are not only an acute injury but also a chronic disease. Neglecting to study long-term kidney function in burn patients also results in a lack of preventive and therapeutic methods being developed. Furthermore, stem cells and their exosomes have shown excellent comprehensive therapeutic properties in the prevention and treatment of CKD, making them increasingly the focus of research attention. Their engineering strategy further improved the therapeutic performance. This review will focus on the research advances in burns on the development of CKD, illustrating the possible mechanism of burn-induced CKD and introducing potential biological treatment options and their engineering strategies.
Collapse
Affiliation(s)
- Guang Yang
- Division of Renal Medicine, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518000, People’s Republic of China
- Department of Life Sciences, Yuncheng University, Yuncheng, 044006, People’s Republic of China
| | - Lishan Tan
- Division of Renal Medicine, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518000, People’s Republic of China
| | - Hua Yao
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical College, Guilin, 541004, People’s Republic of China
| | - Zuying Xiong
- Division of Renal Medicine, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518000, People’s Republic of China
| | - Jun Wu
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Shenzhen Second People’s Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, People’s Republic of China
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Pediatrics & Gynecology, University of Verona Medical School, Verona, Venetia, 37134, Italy
| | - Xiaoyan Huang
- Division of Renal Medicine, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518000, People’s Republic of China
| |
Collapse
|
8
|
Wang P, Ouyang J, Jia Z, Zhang A, Yang Y. Roles of DNA damage in renal tubular epithelial cells injury. Front Physiol 2023; 14:1162546. [PMID: 37089416 PMCID: PMC10117683 DOI: 10.3389/fphys.2023.1162546] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/29/2023] [Indexed: 04/09/2023] Open
Abstract
The prevalence of renal diseases including acute kidney injury (AKI) and chronic kidney disease (CKD) is increasing worldwide. However, the pathogenesis of most renal diseases is still unclear and effective treatments are still lacking. DNA damage and the related DNA damage response (DDR) have been confirmed as common pathogenesis of acute kidney injury and chronic kidney disease. Reactive oxygen species (ROS) induced DNA damage is one of the most common types of DNA damage involved in the pathogenesis of acute kidney injury and chronic kidney disease. In recent years, several developments have been made in the field of DNA damage. Herein, we review the roles and developments of DNA damage and DNA damage response in renal tubular epithelial cell injury in acute kidney injury and chronic kidney disease. In this review, we conclude that focusing on DNA damage and DNA damage response may provide valuable diagnostic biomarkers and treatment strategies for renal diseases including acute kidney injury and chronic kidney disease.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Jing Ouyang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yunwen Yang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Grobe N, Scheiber J, Zhang H, Garbe C, Wang X. Omics and Artificial Intelligence in Kidney Diseases. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:47-52. [PMID: 36723282 DOI: 10.1053/j.akdh.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/28/2022] [Accepted: 11/16/2022] [Indexed: 01/20/2023]
Abstract
Omics applications in nephrology may have relevance in the future to improve clinical care of kidney disease patients. In a short term, patients will benefit from specific measurement and computational analyses around biomarkers identified at various omics-levels. In mid term and long term, these approaches will need to be integrated into a holistic representation of the kidney and all its influencing factors for individualized patient care. Research demonstrates robust data to justify the application of omics for better understanding, risk stratification, and individualized treatment of kidney disease patients. Despite these advances in the research setting, there is still a lack of evidence showing the combination of omics technologies with artificial intelligence and its application in clinical diagnostics and care of patients with kidney disease.
Collapse
Affiliation(s)
| | | | | | - Christian Garbe
- Frankfurter Innovationszentrum Biotechnologie, Frankfurt am Main, Germany
| | | |
Collapse
|
10
|
Tanemoto F, Nangaku M, Mimura I. Epigenetic memory contributing to the pathogenesis of AKI-to-CKD transition. Front Mol Biosci 2022; 9:1003227. [PMID: 36213117 PMCID: PMC9532834 DOI: 10.3389/fmolb.2022.1003227] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022] Open
Abstract
Epigenetic memory, which refers to the ability of cells to retain and transmit epigenetic marks to their daughter cells, maintains unique gene expression patterns. Establishing programmed epigenetic memory at each stage of development is required for cell differentiation. Moreover, accumulating evidence shows that epigenetic memory acquired in response to environmental stimuli may be associated with diverse diseases. In the field of kidney diseases, the “memory” of acute kidney injury (AKI) leads to progression to chronic kidney disease (CKD); epidemiological studies show that patients who recover from AKI are at high risk of developing CKD. The underlying pathological processes include nephron loss, maladaptive epithelial repair, inflammation, and endothelial injury with vascular rarefaction. Further, epigenetic alterations may contribute as well to the pathophysiology of this AKI-to-CKD transition. Epigenetic changes induced by AKI, which can be recorded in cells, exert long-term effects as epigenetic memory. Considering the latest findings on the molecular basis of epigenetic memory and the pathophysiology of AKI-to-CKD transition, we propose here that epigenetic memory contributing to AKI-to-CKD transition can be classified according to the presence or absence of persistent changes in the associated regulation of gene expression, which we designate “driving” memory and “priming” memory, respectively. “Driving” memory, which persistently alters the regulation of gene expression, may contribute to disease progression by activating fibrogenic genes or inhibiting renoprotective genes. This process may be involved in generating the proinflammatory and profibrotic phenotypes of maladaptively repaired tubular cells after kidney injury. “Priming” memory is stored in seemingly successfully repaired tubular cells in the absence of detectable persistent phenotypic changes, which may enhance a subsequent transcriptional response to the second stimulus. This type of memory may contribute to AKI-to-CKD transition through the cumulative effects of enhanced expression of profibrotic genes required for wound repair after recurrent AKI. Further understanding of epigenetic memory will identify therapeutic targets of future epigenetic intervention to prevent AKI-to-CKD transition.
Collapse
|
11
|
Zhuang M, Scholz A, Walz G, Yakulov TA. Histone Deacetylases Cooperate with NF-κB to Support the Immediate Migratory Response after Zebrafish Pronephros Injury. Int J Mol Sci 2022; 23:ijms23179582. [PMID: 36076983 PMCID: PMC9455417 DOI: 10.3390/ijms23179582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Acute kidney injury (AKI) is commonly associated with severe human diseases, and often worsens the outcome in hospitalized patients. The mammalian kidney has the ability to recover spontaneously from AKI; however, little progress has been made in the development of supportive treatments. Increasing evidence suggest that histone deacetylases (HDAC) and NF-κB promote the pathogenesis of AKI, and inhibition of Hdac activity has a protective effect in murine models of AKI. However, the role of HDAC at the early stages of recovery is unknown. We used the zebrafish pronephros model to study the role of epigenetic modifiers in the immediate repair response after injury to the tubular epithelium. Using specific inhibitors, we found that the histone deacetylase Hdac2, Hdac6, and Hdac8 activities are required for the repair via collective cell migration. We found that hdac6, hdac8, and nfkbiaa expression levels were upregulated in the repairing epithelial cells shortly after injury. Depletion of hdac6, hdac8, or nfkbiaa with morpholino oligonucleotides impaired the repair process, whereas the combined depletion of all three genes synergistically suppressed the recovery process. Furthermore, time-lapse video microscopy revealed that the lamellipodia and filopodia formation in the flanking cells was strongly reduced in hdac6-depleted embryos. Our findings suggest that Hdac activity and NF-κB are synergistically required for the immediate repair response in the zebrafish pronephros model of AKI, and the timing of HDAC inhibition might be important in developing supportive protocols in the human disease.
Collapse
Affiliation(s)
- Mingyue Zhuang
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Alexander Scholz
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Gerd Walz
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
- Signaling Research Centres BIOSS and CIBSS, University of Freiburg, Albertstrasse 19, 79104 Freiburg, Germany
| | - Toma Antonov Yakulov
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
- Correspondence:
| |
Collapse
|
12
|
Hill C, Avila-Palencia I, Maxwell AP, Hunter RF, McKnight AJ. Harnessing the Full Potential of Multi-Omic Analyses to Advance the Study and Treatment of Chronic Kidney Disease. FRONTIERS IN NEPHROLOGY 2022; 2:923068. [PMID: 37674991 PMCID: PMC10479694 DOI: 10.3389/fneph.2022.923068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/30/2022] [Indexed: 09/08/2023]
Abstract
Chronic kidney disease (CKD) was the 12th leading cause of death globally in 2017 with the prevalence of CKD estimated at ~9%. Early detection and intervention for CKD may improve patient outcomes, but standard testing approaches even in developed countries do not facilitate identification of patients at high risk of developing CKD, nor those progressing to end-stage kidney disease (ESKD). Recent advances in CKD research are moving towards a more personalised approach for CKD. Heritability for CKD ranges from 30% to 75%, yet identified genetic risk factors account for only a small proportion of the inherited contribution to CKD. More in depth analysis of genomic sequencing data in large cohorts is revealing new genetic risk factors for common diagnoses of CKD and providing novel diagnoses for rare forms of CKD. Multi-omic approaches are now being harnessed to improve our understanding of CKD and explain some of the so-called 'missing heritability'. The most common omic analyses employed for CKD are genomics, epigenomics, transcriptomics, metabolomics, proteomics and phenomics. While each of these omics have been reviewed individually, considering integrated multi-omic analysis offers considerable scope to improve our understanding and treatment of CKD. This narrative review summarises current understanding of multi-omic research alongside recent experimental and analytical approaches, discusses current challenges and future perspectives, and offers new insights for CKD.
Collapse
Affiliation(s)
| | | | | | | | - Amy Jayne McKnight
- Centre for Public Health, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
13
|
Tanemoto F, Mimura I. Therapies Targeting Epigenetic Alterations in Acute Kidney Injury-to-Chronic Kidney Disease Transition. Pharmaceuticals (Basel) 2022; 15:ph15020123. [PMID: 35215236 PMCID: PMC8877070 DOI: 10.3390/ph15020123] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 12/04/2022] Open
Abstract
Acute kidney injury (AKI) was previously thought to be a merely transient event; however, recent epidemiological evidence supports the existence of a causal relationship between AKI episodes and subsequent progression to chronic kidney disease (CKD). Although the pathophysiology of this AKI-to-CKD transition is not fully understood, it is mediated by the interplay among multiple components of the kidney including tubular epithelial cells, endothelial cells, pericytes, inflammatory cells, and myofibroblasts. Epigenetic alterations including histone modification, DNA methylation, non-coding RNAs, and chromatin conformational changes, are also expected to be largely involved in the pathophysiology as a “memory” of the initial injury that can persist and predispose to chronic progression of fibrosis. Each epigenetic modification has a great potential as a therapeutic target of AKI-to-CKD transition; timely and target-specific epigenetic interventions to the various temporal stages of AKI-to-CKD transition will be the key to future therapeutic applications in clinical practice. This review elaborates on the latest knowledge of each mechanism and the currently available therapeutic agents that target epigenetic modification in the context of AKI-to-CKD transition. Further studies will elucidate more detailed mechanisms and novel therapeutic targets of AKI-to-CKD transition.
Collapse
|