1
|
Ramos-Martínez E, Almeida-Aguirre EKP, Ramos-Martínez I, Torres-García VM, Pérez-Torres A, Roldán-Roldán G, Valencia-Ortega J, Moreno-Eutimio MA, Pastelin-Palacios R, Cerbón M. Neuroprotection mediated by prolactin against streptozotocin injury in brain rat areas. Brain Res 2024; 1842:149104. [PMID: 38945469 DOI: 10.1016/j.brainres.2024.149104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Prolactin has been recognized as neuroprotective hormone against various types of neuronal damage. This study was aimed to determine if prolactin protects against streptozotocin injury. A series of experiments were performed to determine neuronal survival by counting total neurons in medial hippocampus cortex and cerebellum. Astrogliosis was determined by immunofluorescence assays using GFAP, and behavioral improvement by prolactin after neuronal damage was determined by open-field and light-dark box tests. Results demonstrated that prolactin induced significant neuronal survival in both the hippocampus and cortex, but not in the cerebellum. No increase in astrogliosis was identified, but a significant reduction in anxiety levels was observed. Overall data indicate that prolactin may protect against a complex form of cell damage including oxidant stress and metabolic disruption by streptozotocin. Prolactin may be helpful strategy in the treatment of neuronal damage in neurological diseases.
Collapse
Affiliation(s)
- Edgar Ramos-Martínez
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Coyoacán 04510, Mexico; Escuela de Ciencias, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68150, Mexico
| | | | - Iván Ramos-Martínez
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia,Universidad Nacional Autónoma de México, Coyoacán 04510, Mexico
| | - Víctor Manuel Torres-García
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Armando Pérez-Torres
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Gabriel Roldán-Roldán
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jorge Valencia-Ortega
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Coyoacán 04510, Mexico
| | - Mario Adán Moreno-Eutimio
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Coyoacán 04510, Mexico
| | - Rodolfo Pastelin-Palacios
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Coyoacán 04510, Mexico.
| | - Marco Cerbón
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Coyoacán 04510, Mexico.
| |
Collapse
|
2
|
Escamilla S, Salas-Lucia F. Thyroid Hormone and Alzheimer Disease: Bridging Epidemiology to Mechanism. Endocrinology 2024; 165:bqae124. [PMID: 39276028 DOI: 10.1210/endocr/bqae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/12/2024] [Accepted: 09/12/2024] [Indexed: 09/16/2024]
Abstract
The identification of critical factors that can worsen the mechanisms contributing to the pathophysiology of Alzheimer disease is of paramount importance. Thyroid hormones (TH) fit this criterion. Epidemiological studies have identified an association between altered circulating TH levels and Alzheimer disease. The study of human and animal models indicates that TH can affect all the main cellular, molecular, and genetic mechanisms known as hallmarks of Alzheimer disease. This is true not only for the excessive production in the brain of protein aggregates leading to amyloid plaques and neurofibrillary tangles but also for the clearance of these molecules from the brain parenchyma via the blood-brain barrier and for the escalated process of neuroinflammation-and even for the effects of carrying Alzheimer-associated genetic variants. Suboptimal TH levels result in a greater accumulation of protein aggregates in the brain. The direct TH regulation of critical genes involved in amyloid beta production and clearance is remarkable, affecting the expression of multiple genes, including APP (related to amyloid beta production), APOE, LRP1, TREM2, AQP4, and ABCB1 (related to amyloid beta clearance). TH also affects microglia by increasing their migration and function and directly regulating the immunosuppressor gene CD73, impacting the immune response of these cells. Studies aiming to understand the mechanisms that could explain how changes in TH levels can contribute to the brain alterations seen in patients with Alzheimer disease are ongoing. These studies have potential implications for the management of patients with Alzheimer disease and ultimately can contribute to devising new interventions for these conditions.
Collapse
Affiliation(s)
- Sergio Escamilla
- Instituto de Neurociencias, CSIC-Universidad Miguel Hernández, Alicante 03550, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Alicante 03550, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante 03010, Spain
| | | |
Collapse
|
3
|
Donovan M, Spatz DL. Effects of a Person's Lactation History on Later-Life Development of Alzheimer's Disease: An Integrative Review. Breastfeed Med 2024; 19:399-408. [PMID: 38568117 DOI: 10.1089/bfm.2023.0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Objective: The purpose of this integrative review is to assess the existing evidence regarding the effects of a person's lactation history on later-life development of Alzheimer's disease. Methods: The authors searched the electronic databases PubMed, Cumulative Index to Nursing and Allied Health Literature, Scopus, and Excerpta Medica dataBASE, and performed backward reference searches using search terms such as, "Alzheimer's disease, dementia," and "breastfeeding, lactation." Authors selected relevant records through the application of inclusion and exclusion criteria and reading the titles, abstracts, or records in full. Results: In total, 400 articles were identified, and 10 articles meeting inclusion criteria were analyzed. Authors extracted data following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and scored levels of evidence according to Melnyk and Fineout-Overholt. Data were organized according to themes of breastfeeding duration, ever having breastfed, and indirect effects of breastfeeding. Conclusions: Breastfeeding may have neuroprotective effects for the lactating person and reduce the risk of later-life development of Alzheimer's disease. However, future research is necessary to determine the generalizability of this association.
Collapse
Affiliation(s)
- Moira Donovan
- University of Pennsylvania School of Nursing, Philadelphia, Pennsylvania, USA
| | - Diane L Spatz
- Children's Hospital of Pennsylvania, University of Pennsylvania School of Nursing, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
De la Torre K, Cerbón MA, Molina-Salinas G, Suárez-Santiago JE, Morin JP, Roldán-Roldán G, Picazo O. Synergistic neuroprotective action of prolactin and 17β-estradiol on kainic acid-induced hippocampal injury and long-term memory deficit in ovariectomized rats. Hormones (Athens) 2024; 23:321-329. [PMID: 38625627 DOI: 10.1007/s42000-024-00551-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/19/2024] [Indexed: 04/17/2024]
Abstract
PURPOSE The neuroprotective actions of the ovarian hormone 17β-estradiol (E2) against different brain lesions have been constantly confirmed in a variety of models including kainic acid (KA) lesions. Similarly, the pituitary hormone prolactin (PRL), traditionally associated with lactogenesis, has recently been linked to a large diversity of functions, including neurogenesis, neuroprotection, and cognitive processes. While the mechanisms of actions of E2 as regards its neuroprotective and behavioral effects have been extensively explored, the molecular mechanisms of PRL related to these roles remain under investigation. The current study aimed to investigate whether the simultaneous administration of PRL and a low dose of E2 prevents the KA-induced cognitive deficit and if this action is associated with changes in hippocampal neuronal density. METHODS Ovariectomized (OVX) rats were treated with saline, PRL, and/or E2 in the presence or absence of KA. Neuroprotection was assessed by Nissl staining and neuron counting. Memory was evaluated with the novel object recognition test (NOR). RESULTS On their own, both PRL and E2 prevented short- and long-term memory deficits in lesioned animals and exerted neuroprotection against KA-induced excitotoxicity in the hippocampus. Interestingly, the combined hormonal treatment was superior to either of the treatments administered alone as regards improving both memory and neuronal survival. CONCLUSION Taken together, these results point to a synergic effect of E2 and PRL in the hippocampus to produce their behavioral, proliferative, and neuroprotective effects.
Collapse
Affiliation(s)
- Karen De la Torre
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Sto. Tomás, 11340. Ciudad de México, Ciudad de México, México
| | - Marco Antonio Cerbón
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Gladys Molina-Salinas
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - José Eduardo Suárez-Santiago
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Sto. Tomás, 11340. Ciudad de México, Ciudad de México, México
- Facultad de Medicina Humana, Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Chiapas, Mexico
| | - Jean-Pascal Morin
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Gabriel Roldán-Roldán
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México.
| | - Ofir Picazo
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Sto. Tomás, 11340. Ciudad de México, Ciudad de México, México.
| |
Collapse
|
5
|
Vassal M, Martins F, Monteiro B, Tambaro S, Martinez-Murillo R, Rebelo S. Emerging Pro-neurogenic Therapeutic Strategies for Neurodegenerative Diseases: A Review of Pre-clinical and Clinical Research. Mol Neurobiol 2024:10.1007/s12035-024-04246-w. [PMID: 38816676 DOI: 10.1007/s12035-024-04246-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
The neuroscience community has largely accepted the notion that functional neurons can be generated from neural stem cells in the adult brain, especially in two brain regions: the subventricular zone of the lateral ventricles and the subgranular zone in the dentate gyrus of the hippocampus. However, impaired neurogenesis has been observed in some neurodegenerative diseases, particularly in Alzheimer's, Parkinson's, and Huntington's diseases, and also in Lewy Body dementia. Therefore, restoration of neurogenic function in neurodegenerative diseases emerges as a potential therapeutic strategy to counteract, or at least delay, disease progression. Considering this, the present study summarizes the different neuronal niches, provides a collection of the therapeutic potential of different pro-neurogenic strategies in pre-clinical and clinical research, providing details about their possible modes of action, to guide future research and clinical practice.
Collapse
Affiliation(s)
- Mariana Vassal
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Filipa Martins
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Bruno Monteiro
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Ricardo Martinez-Murillo
- Neurovascular Research Group, Department of Translational Neurobiology, Cajal Institute (CSIC), Madrid, Spain
| | - Sandra Rebelo
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
6
|
Hoang NMH, Nguyen HD, Jo W, Kim MS. Role of prolactin in the protective effect of amisulpride against 1,2-Diacetylbenzene's neurotoxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104418. [PMID: 38493881 DOI: 10.1016/j.etap.2024.104418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Exposure to organic solvents is associated with various health problems, including neurodegenerative diseases. Among these solvents, 1,2-diethylbenzene is notable for its ability to produce a toxic metabolite, 1,2-Diacetylbenzene (DAB), which can cause memory impairment. Prolactin (PRL) is theorized to protect the central nervous system. Certain antipsychotic drugs, known for increasing PRL secretion, have shown to improve cognitive performance in psychotic Alzheimer's patients. Among these, amisulpride stands out for its high efficacy, limited side effects, and high selectivity for dopamine D2 receptors. In our study, we explored the potential of amisulpride to inhibit DAB-induced neurotoxicity via PRL activation. Our results show that amisulpride enhances the PRL/JAK/STAT, PI3K/AKT, and BDNF/ERK/CREB pathways, playing critical roles in PRL's neuroprotection pathways and memory formation. Additionally, amisulpride inhibited DAB-triggered NLRP3 inflammasome activation and apoptosis. Collectively, these findings suggest that amisulpride may be a promising therapeutic intervention for DAB-induced neurotoxicity, partly through activating the PRL pathway.
Collapse
Affiliation(s)
- Ngoc Minh-Hong Hoang
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Jeonnam 57922, Republic of Korea
| | - Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Jeonnam 57922, Republic of Korea
| | - Wonhee Jo
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Jeonnam 57922, Republic of Korea
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Jeonnam 57922, Republic of Korea.
| |
Collapse
|
7
|
Al-Kuraishy HM, Jabir MS, Al-Gareeb AI, Albuhadily AK. The conceivable role of prolactin hormone in Parkinson disease: The same goal but with different ways. Ageing Res Rev 2023; 91:102075. [PMID: 37714384 DOI: 10.1016/j.arr.2023.102075] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Parkinson disease (PD) is a progressive neurodegenerative disease (NDD) of the brain. It has been reported that prolactin (PRL) hormone plays a differential effect in PD, may be increasing, reduced or unaffected. PRL level is dysregulated in different neurodegenerative disorders including PD. Preclinical and clinical studies pointed out that PRL may has a neuroprotective against PD neuropathology . Though, the mechanistic role of PRL in PD is not fully elucidated. Therefore, the objective of the present review was to clarify the potential role and mechanistic pathway of PRL in PD neuropathology. The present review highlighted that PRL appears to have a neuroprotective effect against PD neuropathology by inhibiting the expression of pro-inflammatory signaling pathways, antioxidant effects and by inhibiting neuroinflammation. Thus, preclinical and clinical studies are warranted in this regard.
Collapse
Affiliation(s)
- Haydar M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Majid S Jabir
- Department of Applied Science, University of Technology, Iraq.
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
8
|
Duc Nguyen H, Hee Jo W, Hong Minh Hoang N, Kim MS. Short-term treatment with risperidone ameliorated 1,2-diacetylbenzene-induced liver dysfunction. Int Immunopharmacol 2023; 123:110687. [PMID: 37499398 DOI: 10.1016/j.intimp.2023.110687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
1,2-Diacetylbenze (C10H10O2, DAB) is a potential inducer or activator of toxic mechanisms. DAB exerts high absorption by the gastrointestinal tract and high blood-brain barrier penetration. However, only the effects of DAB on the central nervous system were reported, with a dearth of evidence of DAB's effects on the liver, which is more susceptible to toxic substances. Risperidone, an atypical antipsychotic drug, has been shown to protect against DAB-induced cognitive impairment in an animal model. Risperidone was found to have little or no effect on the liver after short-term administration. The question of whether risperidone can protect against DAB-induced liver dysfunction, particularly after short-term administration, is unknown. Thus, this study aimed to assess the hepatoprotective effects of risperidone on DAB-induced liver dysfunction in male C57BL/6 mice treated with DAB 5 mg/kg for 1 week and risperidone 0.125-0.25 mg/kg for 2 weeks. After exposure to DAB 5 mg/kg for 1 week, we found that DAB induced liver damage by increasing liver function biomarkers (GGT, ALT, and AST), reactive oxygen species, nitric oxide, and proinflammatory cytokines (IL-1α, IL-1β, IL-6, IL-12, and TNF- α), activating apoptosis (elevated Caspase-3 and Bax levels and reduced Bcl2 level), TLR4/JNK/NF-κB, Jak2/Stat5 pathways, and suppressing Jak2/Stat3 and IRS1/PI3K/AKT/MDM2 pathways. After a 2-week course of treatment, risperidone was able to lessen these effects; the higher dose (0.25 mg/kg) appeared to be more effective than the lower dose (0.125 mg/kg). To strengthen findings from in vivo analysis, in silico analysis also found three targets (Stat3, Caspase-3, AKT, IL-1β), two miRNAs (miR-26b-5p and miR-34a-5p), two transcription factors (NFKB1 and NFKB2), and numerous pathways ("AGE-RAGE signaling pathway in diabetic complications", "hepatitis B", "alcoholic liver disease", "apoptosis", and "liver cirrhosis") as the key molecular processes involved in the pathogenesis of DAB-induced liver damage and targeted by risperidone. The physicochemical characteristics and pharmacokinetics of DAB and risperidone also support the toxic effects of DAB and the beneficial properties of risperidone in the liver. In conclusion, these findings reflect the therapeutic effects of risperidone on DAB-induced liver dysfunction after 1 week and 2 weeks exposure to DAB and risperidone, respectively.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Won Hee Jo
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Ngoc Hong Minh Hoang
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea.
| |
Collapse
|
9
|
Reda H. Neurologic Complications of Endocrine Disorders. Continuum (Minneap Minn) 2023; 29:887-902. [PMID: 37341334 DOI: 10.1212/con.0000000000001262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
OBJECTIVE This article provides an overview of the neurologic complications of the most prevalent endocrine disorders in adults with an emphasis on relevant neurologic symptoms, signs, and laboratory and neuroimaging findings. LATEST DEVELOPMENTS Although the mechanisms of many of the neurologic complications discussed here remain unclear, our understanding of the impacts of diabetes and hypothyroidism on the nervous system and muscle, including complications of rapid correction of chronic hyperglycemia, has advanced in recent years. Recent large studies have not demonstrated a convincing association between subclinical or overt hypothyroidism and cognitive decline. ESSENTIAL POINTS Neurologists must become familiar with the neurologic complications of endocrine disorders not only because they are common and treatable (and often reversible) but also because they may be iatrogenic, as is the case with adrenal insufficiency in the setting of long-term corticosteroid therapy.
Collapse
|
10
|
Wu L, Cui F, Zhang S, Ding X, Gao W, Chen L, Ma J, Niu P. Associations between multiple heavy metals exposure and neural damage biomarkers in welders: A cross-sectional study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161812. [PMID: 36706997 DOI: 10.1016/j.scitotenv.2023.161812] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Both occupational and environmental exposure to heavy metals are associated with various neurodegenerative diseases. However, limited evidence is available on the potential effects of exposure to metallic mixtures and neural damage. OBJECTIVES This study aimed to evaluate the association between metal mixtures in urine and neural damage biomarkers in welders. METHODS In this cross-sectional study, a total of 186 workers were recruited from steel mills. Twenty-three metals in urine were measured by inductively coupled plasma mass spectrometry. Serum neural damage biomarkers, including neurofilament light chain (NfL), sphingosine-1-phosphate (S1P), prolactin (PRL), and dopamine (DA) were detected using enzyme-linked immunosorbent assay kits. Multivariable linear regression, Bayesian kernel machine regression (BKMR), and Quantile g-computation (QG-C) were employed to estimate the association between metals exposure and neural damage biomarkers. RESULTS Inverted u-shaped associations of nickel with NfL, S1P, and DA were observed in the BKMR model. A non-linear relationship was also found between Fe and PRL. Urinary cobalt was positively associated with serum PRL and had the strongest positive weights in the QG-C model. Urinary lead was associated with higher serum S1P levels. We also found the interaction among nickel, zinc, arsenic, strontium, iron, and lead with the neural damage biomarkers. CONCLUSION This study provides new evidence of a direct association between metal mixture exposure and the serum biomarkers of neural damage. Several metals Ni, Co, Pb, Sr, As and Fe, may have adverse effects on the nervous system, while Zn may have neuroprotective effects.
Collapse
Affiliation(s)
- Luli Wu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, 100069 Beijing, China
| | - Fengtao Cui
- Occupational Disease Prevention and Control Hospital of Huaibei Mining Co., Ltd, Huaibei, Anhui Province 235000, China
| | - Shixuan Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, 100069 Beijing, China
| | - Xinping Ding
- Occupational Disease Prevention and Control Hospital of Huaibei Mining Co., Ltd, Huaibei, Anhui Province 235000, China
| | - Wei Gao
- Occupational Disease Prevention and Control Hospital of Huaibei Mining Co., Ltd, Huaibei, Anhui Province 235000, China
| | - Li Chen
- Experimental Teaching Center, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Junxiang Ma
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, 100069 Beijing, China.
| | - Piye Niu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, 100069 Beijing, China.
| |
Collapse
|
11
|
Neurotherapeutic Effects of Quercetin and Its Metabolite Compounds on Cognitive Impairment and Parkinson's Disease: An In Silico Study. Eur J Drug Metab Pharmacokinet 2023; 48:151-169. [PMID: 36848007 DOI: 10.1007/s13318-023-00816-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 03/01/2023]
Abstract
BACKGROUND AND OBJECTIVE Little is known about the metabolomic profile of quercetin and its biological effects. This study aimed to determine the biological activities of quercetin and its metabolite products, as well as the molecular mechanisms of quercetin in cognitive impairment (CI) and Parkinson's disease (PD). METHODS Key methods used were MetaTox, PASS Online, ADMETlab 2.0, SwissADME, CTD MicroRNA MIENTURNE, AutoDock, and Cytoscape. RESULTS A total of 28 quercetin metabolite compounds were identified by phase I reactions (hydroxylation and hydrogenation reactions) and phase II reactions (methylation, O-glucuronidation, and O-sulfation reactions). Quercetin and its metabolites were found to inhibit cytochrome P450 (CYP) 1A, CYP1A1, and CYP1A2. The studied compounds demonstrated significant gastrointestinal absorption and satisfied Lipinsky's criterion. Due to their high blood-brain barrier permeability, P-glycoprotein inhibition, anticancer, anti-inflammatory, and antioxidant capabilities, quercetin and its metabolite products have been proposed as promising molecular targets for the therapy of CI and PD. By regulating the expression of crucial signaling pathways [mitogen-activated protein kinase (MAPK) signaling pathway, and neuroinflammation and glutamatergic signaling], genes [brain derived neurotrophic factor (BDNF), human insulin gene (INS), and dopamine receptor D2 (DRD2), miRNAs (hsa-miR-16-5p, hsa-miR-26b-5p, hsa-miR-30a-5p, hsa-miR-125b-5p, hsa-miR-203a-3p, and hsa-miR-335-5p], and transcription factors [specificity protein 1 (SP1), v-rel avian reticuloendotheliosis viral oncogene homolog A (RELA), and nuclear factor Kappa B subunit 1 (NFKB1)], quercetin exhibited its neurotherapeutic effects in CI and PD. In addition to inhibiting β-N-acetylhexosaminidase, quercetin also showed robust interactions and binding affinities with heme oxygenase 1 (HMOX1), superoxide dismutase 2 (SOD2), tumor necrosis factor (TNF), nitric oxide synthase 2 (NOS2), brain-derived neurotrophic factor (BDNF), INS, DRD2, and γ-aminobutyric acid type A (GABAa). CONCLUSION This study identified 28 quercetin metabolite products. The metabolites have similar characteristics to quercetin such as physicochemical properties, absorption, distribution, metabolism, and excretion (ADME), and biological activities. More research, especially clinical trials, is needed to find out how quercetin and its metabolites protect against CI and PD.
Collapse
|
12
|
Nguyen HD, Jo WH, Hoang NHM, Kim MS. Risperidone ameliorated 1,2-Diacetylbenzene-induced cognitive impairments in mice via activating prolactin signaling pathways. Int Immunopharmacol 2023; 115:109726. [PMID: 36641890 DOI: 10.1016/j.intimp.2023.109726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/26/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Cognitive impairment and organic solvent exposure have been becoming public health concerns due to an increasingly aging population, increased life expectancy, urbanization, and industrialization. Converging evidence indicates the link between 1,2-diacetylbenzene (DAB), prolactin (PRL), risperidone, and cognitive impairment. However, these relationships remain unclear. We investigated the therapeutic properties of risperidone in DAB-induced cognitive impairment using both in vivo and in silico methods. Risperidone alleviated DAB-induced cognitive impairment in hippocampal mice, possibly by inhibiting GSK-3β, β-amyloid, CDK5, BACE, and tau hyperphosphorylation. Risperidone also attenuated the activation of TREM-1/DAP12/NLRP3/caspase-1/IL-1β, and TLR4/NF-κB pathways caused by DAB. Furthermore, risperidone inhibited DAB-induced oxidative stress, advanced glycation end products, and proinflammatory cytokines, as well as increased the expression of Nrf2, IL-10, Stat3, MDM2, and catalase activity. On the other hand, risperidone activated the expression of IRS1, PI3K, AKT, BDNF, Drd2, Scna5, and Trt as well as reduced the Bax/Bcl2 ratio and Caspase-3 levels. In silico analyses identified the prolactin signaling pathway, miR-155-5p, miR-34a-5p, and CEBPB as the main molecular mechanisms involved in the pathophysiology of DAB-induced cognitive impairment and targeted by risperidone. Our results suggest that risperidone could be used to treat cognitive impairment caused by organic solvents, especially DAB.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Won Hee Jo
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Ngoc Hong Minh Hoang
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea.
| |
Collapse
|
13
|
Santiago JA, Quinn JP, Potashkin JA. Sex-specific transcriptional rewiring in the brain of Alzheimer’s disease patients. Front Aging Neurosci 2022; 14:1009368. [PMID: 36389068 PMCID: PMC9659968 DOI: 10.3389/fnagi.2022.1009368] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/11/2022] [Indexed: 11/28/2022] Open
Abstract
Sex-specific differences may contribute to Alzheimer’s disease (AD) development. AD is more prevalent in women worldwide, and female sex has been suggested as a disease risk factor. Nevertheless, the molecular mechanisms underlying sex-biased differences in AD remain poorly characterized. To this end, we analyzed the transcriptional changes in the entorhinal cortex of symptomatic and asymptomatic AD patients stratified by sex. Co-expression network analysis implemented by SWItchMiner software identified sex-specific signatures of switch genes responsible for drastic transcriptional changes in the brain of AD and asymptomatic AD individuals. Pathway analysis of the switch genes revealed that morphine addiction, retrograde endocannabinoid signaling, and autophagy are associated with both females with AD (F-AD) and males with (M-AD). In contrast, nicotine addiction, cell adhesion molecules, oxytocin signaling, adipocytokine signaling, prolactin signaling, and alcoholism are uniquely associated with M-AD. Similarly, some of the unique pathways associated with F-AD switch genes are viral myocarditis, Hippo signaling pathway, endometrial cancer, insulin signaling, and PI3K-AKT signaling. Together these results reveal that there are many sex-specific pathways that may lead to AD. Approximately 20–30% of the elderly have an accumulation of amyloid beta in the brain, but show no cognitive deficit. Asymptomatic females (F-asymAD) and males (M-asymAD) both shared dysregulation of endocytosis. In contrast, pathways uniquely associated with F-asymAD switch genes are insulin secretion, progesterone-mediated oocyte maturation, axon guidance, renal cell carcinoma, and ErbB signaling pathway. Similarly, pathways uniquely associated with M-asymAD switch genes are fluid shear stress and atherosclerosis, FcγR mediated phagocytosis, and proteoglycans in cancer. These results reveal for the first time unique pathways associated with either disease progression or cognitive resilience in asymptomatic individuals. Additionally, we identified numerous sex-specific transcription factors and potential neurotoxic chemicals that may be involved in the pathogenesis of AD. Together these results reveal likely molecular drivers of sex differences in the brain of AD patients. Future molecular studies dissecting the functional role of these switch genes in driving sex differences in AD are warranted.
Collapse
Affiliation(s)
| | | | - Judith A. Potashkin
- Cellular and Molecular Pharmacology Department, Center for Neurodegenerative Diseases and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- *Correspondence: Judith A. Potashkin,
| |
Collapse
|
14
|
Wen Q, Verheijen M, Wittens MMJ, Czuryło J, Engelborghs S, Hauser D, van Herwijnen MHM, Lundh T, Bergdahl IA, Kyrtopoulos SA, de Kok TM, Smeets HJM, Briedé JJ, Krauskopf J. Lead-exposure associated miRNAs in humans and Alzheimer's disease as potential biomarkers of the disease and disease processes. Sci Rep 2022; 12:15966. [PMID: 36153426 PMCID: PMC9509380 DOI: 10.1038/s41598-022-20305-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that eventually affects memory and behavior. The identification of biomarkers based on risk factors for AD provides insight into the disease since the exact cause of AD remains unknown. Several studies have proposed microRNAs (miRNAs) in blood as potential biomarkers for AD. Exposure to heavy metals is a potential risk factor for onset and development of AD. Blood cells of subjects that are exposed to lead detected in the circulatory system, potentially reflect molecular responses to this exposure that are similar to the response of neurons. In this study we analyzed blood cell-derived miRNAs derived from a general population as proxies of potentially AD-related mechanisms triggered by lead exposure. Subsequently, we analyzed these mechanisms in the brain tissue of AD subjects and controls. A total of four miRNAs were identified as lead exposure-associated with hsa-miR-3651, hsa-miR-150-5p and hsa-miR-664b-3p being negatively and hsa-miR-627 positively associated. In human brain derived from AD and AD control subjects all four miRNAs were detected. Moreover, two miRNAs (miR-3651, miR-664b-3p) showed significant differential expression in AD brains versus controls, in accordance with the change direction of lead exposure. The miRNAs' gene targets were validated for expression in the human brain and were found enriched in AD-relevant pathways such as axon guidance. Moreover, we identified several AD relevant transcription factors such as CREB1 associated with the identified miRNAs. These findings suggest that the identified miRNAs are involved in the development of AD and might be useful in the development of new, less invasive biomarkers for monitoring of novel therapies or of processes involved in AD development.
Collapse
Affiliation(s)
- Qingfeng Wen
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
- MHeNS, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| | - Marcha Verheijen
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- MHeNS, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Mandy Melissa Jane Wittens
- Department of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, 2610, Antwerpen, Belgium
- Neuroprotection and Neuromodulation (NEUR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussel, Belgium
- Department of Neurology, and Brussels Integrated Center for Brain and Memory (Bru-BRAIN), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Brussel, Belgium
| | - Julia Czuryło
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Sebastiaan Engelborghs
- Department of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, 2610, Antwerpen, Belgium
- Neuroprotection and Neuromodulation (NEUR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussel, Belgium
- Department of Neurology, and Brussels Integrated Center for Brain and Memory (Bru-BRAIN), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Brussel, Belgium
| | - Duncan Hauser
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Marcel H M van Herwijnen
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Thomas Lundh
- Division of Occupational and Environmental Medicine, Lund University Hospital, Lund, Sweden
| | - Ingvar A Bergdahl
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | | | - Theo M de Kok
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Hubert J M Smeets
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- MHeNS, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands
| | - Jacco Jan Briedé
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- MHeNS, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Julian Krauskopf
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- MHeNS, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| |
Collapse
|
15
|
Nguyen HD, Jo WH, Hoang NHM, Yu BP, Chung HY, Kim MS. 1,2-Diacetylbenzene impaired hippocampal memory by activating proinflammatory cytokines and upregulating the prolactin pathway: An in vivo and in vitro study. Int Immunopharmacol 2022; 108:108901. [DOI: 10.1016/j.intimp.2022.108901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/04/2022] [Accepted: 05/24/2022] [Indexed: 02/07/2023]
|
16
|
Yeo XY, Cunliffe G, Ho RC, Lee SS, Jung S. Potentials of Neuropeptides as Therapeutic Agents for Neurological Diseases. Biomedicines 2022; 10:343. [PMID: 35203552 PMCID: PMC8961788 DOI: 10.3390/biomedicines10020343] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Despite recent leaps in modern medicine, progress in the treatment of neurological diseases remains slow. The near impermeable blood-brain barrier (BBB) that prevents the entry of therapeutics into the brain, and the complexity of neurological processes, limits the specificity of potential therapeutics. Moreover, a lack of etiological understanding and the irreversible nature of neurological conditions have resulted in low tolerability and high failure rates towards existing small molecule-based treatments. Neuropeptides, which are small proteinaceous molecules produced by the body, either in the nervous system or the peripheral organs, modulate neurological function. Although peptide-based therapeutics originated from the treatment of metabolic diseases in the 1920s, the adoption and development of peptide drugs for neurological conditions are relatively recent. In this review, we examine the natural roles of neuropeptides in the modulation of neurological function and the development of neurological disorders. Furthermore, we highlight the potential of these proteinaceous molecules in filling gaps in current therapeutics.
Collapse
Affiliation(s)
- Xin Yi Yeo
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore; (X.Y.Y.); (G.C.)
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Grace Cunliffe
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore; (X.Y.Y.); (G.C.)
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Roger C. Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Institute for Health Innovation & Technology (iHealthtech), National University of Singapore, Singapore 117599, Singapore
| | - Su Seong Lee
- NanoBio Lab, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
| | - Sangyong Jung
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore; (X.Y.Y.); (G.C.)
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| |
Collapse
|
17
|
MicroRNA-Target Interaction Regulatory Network in Alzheimer's Disease. J Pers Med 2021; 11:jpm11121275. [PMID: 34945753 PMCID: PMC8708198 DOI: 10.3390/jpm11121275] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/20/2021] [Accepted: 11/26/2021] [Indexed: 12/19/2022] Open
Abstract
Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia; however, early diagnosis of the disease is challenging. Research suggests that biomarkers found in blood, such as microRNAs (miRNA), may be promising for AD diagnostics. Experimental data on miRNA–target interactions (MTI) associated with AD are scattered across databases and publications, thus making the identification of promising miRNA biomarkers for AD difficult. In response to this, a list of experimentally validated AD-associated MTIs was obtained from miRTarBase. Cytoscape was used to create a visual MTI network. STRING software was used for protein–protein interaction analysis and mirPath was used for pathway enrichment analysis. Several targets regulated by multiple miRNAs were identified, including: BACE1, APP, NCSTN, SP1, SIRT1, and PTEN. The miRNA with the highest numbers of interactions in the network were: miR-9, miR-16, miR-34a, miR-106a, miR-107, miR-125b, miR-146, and miR-181c. The analysis revealed seven subnetworks, representing disease modules which have a potential for further biomarker development. The obtained MTI network is not yet complete, and additional studies are needed for the comprehensive understanding of the AD-associated miRNA targetome.
Collapse
|