1
|
Zhang X, Chen X, Meng X, Wu Y, Gao J, Chen H, Li X. Extracellular adenosine triphosphate: A new gateway for food allergy mechanism research? Food Chem 2024; 464:141821. [PMID: 39486282 DOI: 10.1016/j.foodchem.2024.141821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Although various studies have been conducted, the detailed mechanisms of food allergy remain a topic of ongoing debate. Recently, researchers have reported that extracellular adenosine triphosphate (eATP), a member of damage-associated molecular patterns secreted by stressed cells, plays a critical role in the progression of asthma and atopic dermatitis. These studies suggest that dysregulated eATP significantly influences various aspects of disease progression, from bodily sensitization to the emergence of clinical manifestations. Given the shared pathogenic mechanisms among asthma, atopic dermatitis, and food allergies, we hypothesize that eATP may also serve as a crucial regulator in the development of food allergies. To elucidate this hypothesis, we first summarize the evidence and limitations of food allergy theories, then discuss the roles of eATP in allergic diseases. We conclude with speculative insights into the potential influence of eATP on food allergy development, aiming to inspire further investigation into the molecular mechanisms of food allergies.
Collapse
Affiliation(s)
- Xing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Xiao Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Xuanyi Meng
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Yong Wu
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Jinyan Gao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
2
|
Xu X, Yuan J, Zhu M, Gao J, Meng X, Wu Y, Li X, Tong P, Chen H. The potential of orally exposed risk factors and constituents aggravating food allergy: Possible mechanism and target cells. Compr Rev Food Sci Food Saf 2024; 23:e70014. [PMID: 39230383 DOI: 10.1111/1541-4337.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/10/2024] [Accepted: 08/18/2024] [Indexed: 09/05/2024]
Abstract
Food allergy is a significant concern for the health of humans worldwide. In addition to dietary exposure of food allergens, genetic and environmental factors also play an important role in the development of food allergy. However, only the tip of the iceberg of risk factors in food allergy has been identified. The importance of food allergy caused by orally exposed risk factors and constituents, including veterinary drugs, pesticides, processed foods/derivatives, nanoparticles, microplastics, pathogens, toxins, food additives, dietary intake of salt/sugar/total fat, vitamin D, and therapeutic drugs, are highlighted and discussed in this review. Moreover, the epithelial barrier hypothesis, which is closely associated with the occurrence of food allergy, is also introduced. Additionally, several orally exposed risk factors and constituents that have been reported to disrupt the epithelial barrier are elucidated. Finally, the possible mechanisms and key immune cells of orally exposed risk factors and constituents in aggravating food allergy are overviewed. Further work should be conducted to define the specific mechanism by which these risk factors and constituents are driving food allergy, which will be of central importance to the targeted therapy of food allergy.
Collapse
Affiliation(s)
- Xiaoqian Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Jin Yuan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Mengting Zhu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Jinyan Gao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Xuanyi Meng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Yong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Ping Tong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| |
Collapse
|
3
|
Córdova S, Tena-Garitaonaindia M, Álvarez-Mercado AI, Gámez-Belmonte R, Gómez-Llorente MA, Sánchez de Medina F, Martínez-Cañavate A, Martínez-Augustin O, Gómez-Llorente C. Differential Modulation of Mouse Intestinal Organoids with Fecal Luminal Factors from Obese, Allergic, Asthmatic Children. Int J Mol Sci 2024; 25:866. [PMID: 38255939 PMCID: PMC10815115 DOI: 10.3390/ijms25020866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Asthma is a multifactorial condition that can be associated with obesity. The phenotypes of asthma in lean and obese patients are different, with proinflammatory signatures being further elevated in the latter. Both obesity and asthma are associated with alterations in intestinal barrier function and immunity, and with the composition of the intestinal microbiota and food consumption. In this study, we aimed to establish an organoid model to test the hypothesis that the intestinal content of lean and obese, allergic, asthmatic children differentially regulates epithelial intestinal gene expression. A model of mouse jejunum intestinal organoids was used. A group of healthy, normal-weight children was used as a control. The intestinal content of asthmatic obese children differentially induced the expression of inflammatory and mitochondrial response genes (Tnf-tumor necrosis factor, Cd14, Muc13-mucin 13, Tff2-Trefoil factor 2 and Tff3, Cldn1-claudin 1 and 5, Reg3g-regenerating family member 3 gamma, mt-Nd1-NADH dehydrogenase 1 and 6, and mt-Cyb-mitochondrial cytochrome b) via the RAGE-advanced glycosylation end product-specific receptor, NF-κB-nuclear factor kappa b and AKT kinase signal transduction pathways. Fecal homogenates from asthmatic normal-weight and obese children induce a differential phenotype in intestinal organoids, in which the presence of obesity plays a major role.
Collapse
Affiliation(s)
- Samir Córdova
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Campus de Cartuja s/n, Universidad de Granada, 18071 Granada, Spain; (S.C.); (M.T.-G.); (A.I.Á.-M.); (C.G.-L.)
| | - Mireia Tena-Garitaonaindia
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Campus de Cartuja s/n, Universidad de Granada, 18071 Granada, Spain; (S.C.); (M.T.-G.); (A.I.Á.-M.); (C.G.-L.)
| | - Ana Isabel Álvarez-Mercado
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Campus de Cartuja s/n, Universidad de Granada, 18071 Granada, Spain; (S.C.); (M.T.-G.); (A.I.Á.-M.); (C.G.-L.)
- Ibs.GRANADA, 18012 Granada, Spain; (M.A.G.-L.); (F.S.d.M.)
| | - Reyes Gámez-Belmonte
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Granada, 18071 Granada, Spain;
| | - Mª Amelia Gómez-Llorente
- Ibs.GRANADA, 18012 Granada, Spain; (M.A.G.-L.); (F.S.d.M.)
- Unidad de Pediatría, Hospital Materno-Infantil, 18071 Granada, Spain;
| | - Fermín Sánchez de Medina
- Ibs.GRANADA, 18012 Granada, Spain; (M.A.G.-L.); (F.S.d.M.)
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Granada, 18071 Granada, Spain;
- Centro de Investigación Biomédica en Red-Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | | | - Olga Martínez-Augustin
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Campus de Cartuja s/n, Universidad de Granada, 18071 Granada, Spain; (S.C.); (M.T.-G.); (A.I.Á.-M.); (C.G.-L.)
- Ibs.GRANADA, 18012 Granada, Spain; (M.A.G.-L.); (F.S.d.M.)
- Centro de Investigación Biomédica en Red-Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Carolina Gómez-Llorente
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Campus de Cartuja s/n, Universidad de Granada, 18071 Granada, Spain; (S.C.); (M.T.-G.); (A.I.Á.-M.); (C.G.-L.)
- Ibs.GRANADA, 18012 Granada, Spain; (M.A.G.-L.); (F.S.d.M.)
- Instituto de Nutrición y Tecnología de los Alimento José Mataix, 18071 Granada, Spain
- Centro de Investigación Biomédica en Red-Obesidad (CIBERobn), Spain
| |
Collapse
|
4
|
Zhang Q, Zhang C, Zhang Y, Liu Y, Wang J, Gao Z, Sun J, Li Q, Sun J, Cui X, Wang Y, Fu L. Early-life risk factors for food allergy: Dietary and environmental factors revisited. Compr Rev Food Sci Food Saf 2023; 22:4355-4377. [PMID: 37679957 DOI: 10.1111/1541-4337.13226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 09/09/2023]
Abstract
There appears a steep increase in the prevalence of food allergy worldwide in the past few decades. It is believed that, rather than genetic factors, the recently altered dietary and environmental factors are the driving forces behind the rapid increase of this disease. Accumulating evidence has implied that external exposures that occurred in prenatal and postnatal periods could affect the development of oral tolerance in later life. Understanding the potential risk factors for food allergy would greatly benefit the progress of intervention and therapy. In this review, we present updated knowledge on the dietary and environmental risk factors in early life that have been shown to impact the development of food allergy. These predominantly include dietary habits, microbial exposures, allergen exposure routes, environmental pollutants, and so on. The key evidence, conflicts, and potential research topics of each theory are discussed, and associated interventional strategies to prevent the disease development and ameliorate treatment burden are included. Accumulating evidence has supported the causative role of certain dietary and environmental factors in the establishment of oral tolerance in early life, especially the time of introducing allergenic foods, skin barrier function, and microbial exposures. In addition to certain immunomodulatory factors, increasing interest is raised toward modern dietary patterns, where adequately powered studies are required to identify contributions of those modifiable risk factors. This review broadens our understanding of the connections between diet, environment, and early-life immunity, thus benefiting the progress of intervention and therapy of food allergy.
Collapse
Affiliation(s)
- Qiaozhi Zhang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Chi Zhang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yong Zhang
- Nutrition Department of the First Medical Centre of PLA General Hospital, Beijing, China
| | - Yinghua Liu
- Nutrition Department of the First Medical Centre of PLA General Hospital, Beijing, China
| | - Jin Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Zhongshan Gao
- Allergy Research Center, Zhejiang University, Hangzhou, China
| | - Jinlyu Sun
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qianqian Li
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jiachen Sun
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Xin Cui
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
5
|
Morąg B, Kozubek P, Gomułka K. Obesity and Selected Allergic and Immunological Diseases-Etiopathogenesis, Course and Management. Nutrients 2023; 15:3813. [PMID: 37686844 PMCID: PMC10489982 DOI: 10.3390/nu15173813] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Obesity is a global problem. It affects every age group and is associated with many negative health effects. As an example, there is a relationship between obesity and allergic and immunological diseases, such as asthma, psoriasis, food allergies, allergic rhinitis and atopic dermatitis. Obesity undeniably affects their development. In addition, it causes adverse changes in the course and response to therapy in relation to patients without excessive body weight. The treatment of diseases associated with obesity is difficult; drugs are less effective and must be used in higher doses, and their use in patients with obesity is often associated with higher risks. The main form of treatment of all obesity-related diseases is a change in eating habits and increased physical activity, which leads to a decrease in body fat mass. The positive effect of reducing BMI has been confirmed in many independent studies. This paper reviews various types of research documents published since 2019. It aims to systematize the latest knowledge and highlight the need for further research for effective and sustainable treatment options for obesity, its complications and obesity-related diseases.
Collapse
Affiliation(s)
- Bartłomiej Morąg
- Faculty of Dentistry, Wroclaw Medical University, 50-425 Wrocław, Poland;
| | - Patrycja Kozubek
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Krzysztof Gomułka
- Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland;
| |
Collapse
|
6
|
Stefani C, Pecoraro L, Flodmark CE, Zaffanello M, Piacentini G, Pietrobelli A. Allergic Diseases and Childhood Obesity: A Detrimental Link? Biomedicines 2023; 11:2061. [PMID: 37509700 PMCID: PMC10377533 DOI: 10.3390/biomedicines11072061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Several epidemiological studies have described childhood obesity as a risk factor for atopic disease, particularly asthma. At the same time, this association seems to be more conflicting for allergic rhinitis, atopic dermatitis, and chronic urticaria. This article aims to deepen the possibility of a relationship between childhood obesity and allergic diseases. As regards asthma, the mechanical and inflammatory effects of obesity can lead to its development. In addition, excess adiposity is associated with increased production of inflammatory cytokines and adipokines, leading to low-grade systemic inflammation and an increased risk of asthma exacerbations. Allergic rhinitis, atopic dermatitis, food allergies, and chronic urticaria also seem to be related to this state of chronic low-grade systemic inflammation typical of obese children. Vitamin D deficiency appears to play a role in allergic rhinitis, while dyslipidemia and skin barrier defects could explain the link between obesity and atopic dermatitis. Starting from this evidence, it becomes of fundamental importance to act on body weight control to achieve general and allergic health, disentangling the detrimental link between obesity allergic diseases and childhood obesity. Further studies on the association between adiposity and atopy are needed, confirming the biologically active role of fat tissue in the development of allergic diseases and exploring the possibility of new therapeutic strategies.
Collapse
Affiliation(s)
- Camilla Stefani
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37126 Verona, Italy
| | - Luca Pecoraro
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37126 Verona, Italy
| | | | - Marco Zaffanello
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37126 Verona, Italy
| | - Giorgio Piacentini
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37126 Verona, Italy
| | - Angelo Pietrobelli
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37126 Verona, Italy
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| |
Collapse
|
7
|
Ding H, Zhang H, Lu Y, Jiang X, Liu Q, Hu Y, Sun H, Ma A. Effects of the polypeptide from peanut meal mixed fermentation on lipid metabolism and intestinal flora of hyperlipidemic mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4351-4359. [PMID: 36782346 DOI: 10.1002/jsfa.12500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Hyperlipidemia is one of the metabolic disorders posing great threat to human health. Our previous studies have shown that the nutritional properties of peanut meal after fermentation are markedly improved, and can effectively improve hyperlipidemia caused by high-fat diet in mice. In this study, in order to facilitate the further utilization of peanut meal, the effect of peanut polypeptide (PP) from peanut meal mixed fermentation on lipid metabolism in mice fed with high-fat diet (HFD) and its possible mechanism were investigated. Fifty male C57BL/6J mice were randomly divided into five groups: normal control group (N), high-fat model group (M), PP low-dose group (PL), PP high-dose group (PH), and atorvastatin positive control group (Y). RESULTS The results show that PP supplementation can effectively reduce the body weight of mice, decrease the serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and leptin levels (P < 0.05), increase the high-density lipoprotein cholesterol (HDL-C) levels (P < 0.05), up-regulate the expression levels of ileal tight junction proteins ZO-1 and occludin (P < 0.05), reduce the hepatocyte injury and lipid accumulation caused by high-fat diet and increase the species richness of intestinal flora. CONCLUSION PP can significantly improve hyperlipidemia and regulate intestinal flora disorders caused by hyperlipidemia. The possible mechanism may be related to the reduction of serum leptin levels and up-regulating the expression levels of the ileal tight junction proteins ZO-1 and occludin. This study provides evidence for its regulatory role in lipid metabolism and intestinal function, and provides a research basis for the potential nutritional benefits of underutilized food by-products. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Haoyue Ding
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao, China
| | | | - Yaqian Lu
- Jining No.1 People's Hospital, Jining, China
| | | | - Qing Liu
- Women and Children's Hospital, Qingdao University, Qingdao, China
| | - Yingfen Hu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, China
| | - Haiyan Sun
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Aiguo Ma
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Huang YY, Liang YT, Wu JM, Wu WT, Liu XT, Ye TT, Chen XR, Zeng XA, Manzoor MF, Wang LH. Advances in the Study of Probiotics for Immunomodulation and Intervention in Food Allergy. Molecules 2023; 28:molecules28031242. [PMID: 36770908 PMCID: PMC9919562 DOI: 10.3390/molecules28031242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Food allergies are a serious food safety and public health issue. Soybean, dairy, aquatic, poultry, and nut products are common allergens inducing allergic reactions and adverse symptoms such as atopic dermatitis, allergic eczema, allergic asthma, and allergic rhinitis. Probiotics are assumed as an essential ingredient in maintaining intestinal microorganisms' composition. They have unique physiological roles and therapeutic effects in maintaining the mucosal barrier, immune function, and gastrointestinal tract, inhibiting the invasion of pathogenic bacteria, and preventing diarrhea and food allergies. Multiple pieces of evidence reveal a significant disruptive effect of probiotics on food allergy pathology and progression mechanisms. Thus, this review describes the allergenic proteins as an entry point and briefly describes the application of probiotics in allergenic foods. Then, the role of probiotics in preventing and curing allergic diseases by regulating human immunity through intestinal flora and intestinal barrier, modulating host immune active cells, and improving host amino acid metabolism are described in detail. The anti-allergic role of probiotics in the function and metabolism of the gastrointestinal tract has been comprehensively explored to furnish insights for relieving food allergy symptoms and preventing food allergy.
Collapse
Affiliation(s)
- Yan-Yan Huang
- College of Food Science and Engineering, Foshan University, Foshan 528225, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Yan-Tong Liang
- College of Food Science and Engineering, Foshan University, Foshan 528225, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Jia-Min Wu
- College of Food Science and Engineering, Foshan University, Foshan 528225, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Wei-Tong Wu
- College of Food Science and Engineering, Foshan University, Foshan 528225, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Xin-Tong Liu
- College of Food Science and Engineering, Foshan University, Foshan 528225, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Ting-Ting Ye
- College of Food Science and Engineering, Foshan University, Foshan 528225, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Xiao-Rong Chen
- College of Food Science and Engineering, Foshan University, Foshan 528225, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Xin-An Zeng
- College of Food Science and Engineering, Foshan University, Foshan 528225, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
- Correspondence: (X.-A.Z.); (M.F.M.); (L.-H.W.)
| | - Muhammad Faisal Manzoor
- College of Food Science and Engineering, Foshan University, Foshan 528225, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
- Correspondence: (X.-A.Z.); (M.F.M.); (L.-H.W.)
| | - Lang-Hong Wang
- College of Food Science and Engineering, Foshan University, Foshan 528225, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
- Correspondence: (X.-A.Z.); (M.F.M.); (L.-H.W.)
| |
Collapse
|
9
|
Alzahrani A, Alzahrani AJ, Shori AB. Inflammatory Bowel Disease: A focus on the Role of Probiotics in Ulcerative Colitis. Open Access Maced J Med Sci 2023. [DOI: 10.3889/oamjms.2023.11020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a cluster of disorders of the gastrointestinal tract characterized by chronic inflammation and imbalance of the gut microbiota in a genetically vulnerable host. Crohn’s disease and ulcerative colitis (UC) are well-known types of IBD, and due to its high prevalence, IBD has attracted the attention of researchers globally. The exact etiology of IBD is still unknown; however, various theories have been proposed to provide some explanatory clues that include gene-environment interactions and dysregulated immune response to the intestinal microbiota. These diseases are manifested by several clinical symptoms that depend on the affected segment of the intestine such as diarrhea, abdominal pain, and rectal bleeding. In this era of personalized medicine, various options are developing starting from improved intestinal microecology, small molecules, exosome therapy, to lastly stem cell transplantation. From another aspect, and in parallel to pharmacological intervention, nutrition, and dietary support have shown effectiveness in IBD management. There is an increasing evidence supporting the benefit of probiotics in the prophylaxis and treatment of IBD. There are several studies that have demonstrated that different probiotics alleviate UC. The present review summarizes the progress in the IBD studies focusing and exploring more on the role of probiotics as a potential adjunct approach in UC management.
Collapse
|
10
|
Yang N, Maskey AR, Srivastava K, Kim M, Wang Z, Musa I, Shi Y, Gong Y, Fidan O, Wang J, Dunkin D, Chung D, Zhan J, Miao M, Sampson HA, Li XM. Inhibition of pathologic immunoglobulin E in food allergy by EBF-2 and active compound berberine associated with immunometabolism regulation. Front Immunol 2023; 14:1081121. [PMID: 36825019 PMCID: PMC9941740 DOI: 10.3389/fimmu.2023.1081121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/02/2023] [Indexed: 02/10/2023] Open
Abstract
Introduction Food allergy is a significant public health problem with limited treatment options. As Food Allergy Herbal Formula 2 (FAHF-2) showed potential as a food allergy treatment, we further developed a purified version named EBF-2 and identified active compounds. We investigated the mechanisms of EBF-2 on IgE-mediated peanut (PN) allergy and its active compound, berberine, on IgE production. Methods IgE plasma cell line U266 cells were cultured with EBF-2 and FAHF-2, and their effects on IgE production were compared. EBF-2 was evaluated in a murine PN allergy model for its effect on PN-specific IgE production, number of IgE+ plasma cells, and PN anaphylaxis. Effects of berberine on IgE production, the expression of transcription factors, and mitochondrial glucose metabolism in U266 cells were evaluated. Results EBF-2 dose-dependently suppressed IgE production and was over 16 times more potent than FAHF-2 in IgE suppression in U266 cells. EBF-2 significantly suppressed PN-specific IgE production (70%, p<0.001) and the number of IgE-producing plasma cells in PN allergic mice, accompanied by 100% inhibition of PN-induced anaphylaxis and plasma histamine release (p<0.001) without affecting IgG1 or IgG2a production. Berberine markedly suppressed IgE production, which was associated with suppression of XBP1, BLIMP1, and STAT6 transcription factors and a reduced rate of mitochondrial oxidation in an IgE-producing plasma cell line. Conclusions EBF-2 and its active compound berberine are potent IgE suppressors, associated with cellular regulation of immunometabolism on IgE plasma cells, and may be a potential therapy for IgE-mediated food allergy and other allergic disorders.
Collapse
Affiliation(s)
- Nan Yang
- General Nutraceutical Technology, Elmsford, NY, United States.,Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Anish R Maskey
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Kamal Srivastava
- General Nutraceutical Technology, Elmsford, NY, United States.,Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Monica Kim
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Zixi Wang
- Department of Allergy, Peking Union Medical College Hospital, Beijing, China
| | - Ibrahim Musa
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Yanmei Shi
- Academy of Chinese Medicine Sciences, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Yixuan Gong
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ozkan Fidan
- Department of Biological Engineering, Utah State University, Logan, UT, United States.,Department of Bioengineering, Abdullah Gul University, Kayseri, Türkiye
| | - Julie Wang
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - David Dunkin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Danna Chung
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jixun Zhan
- Department of Biological Engineering, Utah State University, Logan, UT, United States
| | - Mingsan Miao
- Academy of Chinese Medicine Sciences, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Hugh A Sampson
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Xiu-Min Li
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States.,Department of Otolaryngology, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
11
|
Guo Y, Ma Y, Ma L, Guo Z, Xiao Y, Liu Y, Li J, Wang S, Liu Y. Oleuropein Prevents OVA-Induced Food Allergy in Mice by Enhancing the Intestinal Epithelial Barrier and Remodeling the Intestinal Flora. Mol Nutr Food Res 2022; 66:e2200455. [PMID: 36314290 DOI: 10.1002/mnfr.202200455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/16/2022] [Indexed: 11/07/2022]
Abstract
SCOPE This study assesses whether oleuropein prevents ovalbumin (OVA)-induced food allergy (FA) and investigates the underlying mechanisms. METHODS AND RESULTS A Balb/c FA mouse model is established and maintained for 7 weeks. The subjects are administered OVA by oral gavage to induce FA and supplemented with different oleuropein doses (1.00-20.00 mg kg-1 per day) to evaluate its preventative efficacy. The results indicate that oleuropein effectively alleviates OVA-induced allergy symptoms and promotes temperature elevation in sensitized mice. The secretion of serology-specific OVA-immunoglobulin (Ig)E, OVA-IgG, and histamine is inhibited in the sensitized mice. Oleuropein dramatically upregulates the expression of intestinal tight junction (TJ) proteins, regenerating gene (Reg) IIIγ, and interleukin (IL)-22, enhancing the physical and biochemical barrier function of the intestinal epithelium. Additionally, oleuropein improves the immune homeostasis of the intestinal epithelium by affecting the function of mucosal mast cells and regulatory T (Treg) cells. The disordered intestinal flora of the sensitized mice also improves after oleuropein administration. CONCLUSIONS These findings suggest that oleuropein prevents FA by enhancing intestinal epithelial barrier function and improving immune homeostasis and intestinal flora in sensitized mice. Therefore, diets rich in oleuropein should be recommended for people with FA.
Collapse
Affiliation(s)
- Yuanjie Guo
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, P. R. China
| | - Yu Ma
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, P. R. China
| | - Liyuan Ma
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, P. R. China
| | - Zixin Guo
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, P. R. China
| | - Yingliang Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, P. R. China
| | - Yunjun Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, P. R. China
| | - Jie Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, P. R. China
| | - Shengnan Wang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, P. R. China
| | - Yixiang Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, P. R. China.,Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, 116034, P. R. China
| |
Collapse
|
12
|
The Interaction of Food Allergy and Diabetes: Food Allergy Effects on Diabetic Mice by Intestinal Barrier Destruction and Glucagon-like Peptide 1 Reduction in Jejunum. Foods 2022; 11:foods11233758. [PMID: 36496564 PMCID: PMC9741085 DOI: 10.3390/foods11233758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
The increase in food allergies and diabetes leads to the assumption that they are related. This study aimed to (1) verify the interaction between food allergy and diabetes and (2) explore the potential mechanisms by which food allergy promotes diabetes. Female BALB/c mice were grouped into a control group (CK), an ovalbumin-sensitized group (OVA), a diabetes group (STZ), and a diabetic allergic group (STZ + OVA) (Mice were modeled diabetes with STZ first, then were given OVA to model food allergies), and an allergic diabetic group (OVA + STZ) (Mice were modeled food allergies with OVA first, then were given STZ to model diabetes). The results showed that OVA + STZ mice exhibited a more serious Th2 humoral response, and they were more susceptible to diabetes. Furthermore, when the OVA + STZ mice were in the sensitized state, the intestinal barrier function was severely impaired, and mast cell activation was promoted. Moreover, we found that the effect of food allergy on diabetes is related to the inhibition of GLP-1 secretion and the up-regulation of the PI3K/Akt/mTOR/NF-κB P65 signaling pathway in the jejunum. Overall, our results suggest that food allergies have interactions with diabetes, which sheds new light on the importance of food allergies in diabetes.
Collapse
|
13
|
Factors of Obesity and Metabolically Healthy Obesity in Asia. Medicina (B Aires) 2022; 58:medicina58091271. [PMID: 36143948 PMCID: PMC9500686 DOI: 10.3390/medicina58091271] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/14/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
The East Asian region (China, Japan, and South Korea) is comprised of almost 1.5 billion people and recent industrialization has brought with it a pandemic of rising obesity, even in children. As these countries are rapidly aging and functioning at sub-replacement birthrates, the burgeoning costs of obesity-related care may threaten socialized healthcare systems and quality of life. However, a condition called metabolically healthy obesity (MHO) has been found to be without immediate cardiopulmonary or diabetic risk. Thus, maintenance of the MHO condition for the obese in East Asia could buffer the burden of long-term obesity care on medical systems and knowledge of the biochemical, genetic, and physiological milieu associated with it could also provide new targets for intervention. Diverse physiological, psychological, environmental, and social factors play a role in obesogenesis and the transition of MHO to a metabolically unhealthy obesity. This review will give a broad survey of the various causes of obesity and MHO, with special emphasis on the East Asian population and studies from that region.
Collapse
|
14
|
Shah MZ, Polk BI. Eosinophilic Esophagitis. Immunol Allergy Clin North Am 2022; 42:761-770. [DOI: 10.1016/j.iac.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Han B, Ma Y, Liu Y. Fucoxanthin Prevents the Ovalbumin-Induced Food Allergic Response by Enhancing the Intestinal Epithelial Barrier and Regulating the Intestinal Flora. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10229-10238. [PMID: 35947424 DOI: 10.1021/acs.jafc.2c04685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study aimed to determine whether fucoxanthin alleviated ovalbumin (OVA)-induced food allergy (FA) and explored the possible mechanisms. The results indicated that supplementation with fucoxanthin at 10.0-20.0 mg/kg per day for 7 weeks inhibited food anaphylaxis and the production of immunoglobulin (Ig) E, IgG, histamine, and related cytokines while alleviating allergic symptoms in sensitized mice. Fucoxanthin enhanced the intestinal epithelial barrier by up-regulating tight junction (TJ) protein expression and promoting regenerating islet-derived protein III-gamma (RegIIIγ) and secretory IgA (sIgA) secretion. In addition, fucoxanthin induced the secretion of anti-inflammatory factors (interleukin (IL)-10 and transforming growth factor β (TGF-β)) by regulatory T (Treg) cells and decreased the pro-inflammatory factor levels (IL-4, tumor necrosis factor-α (TNF-α), IL-17, and IL-1β), ameliorating intestinal inflammation. Compared with the model group, beneficial bacteria, such as Lactobacillaceae, increased in the intestinal flora, while pathogenic bacteria like Helicobacteraceae, Desulfovibrionaceae, and Streptococcaceae decreased. Therefore, fucoxanthin may effectively prevent FA by enhancing the intestinal epithelial barrier and reshaping the intestinal flora.
Collapse
Affiliation(s)
- Bing Han
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Yu Ma
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Yixiang Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
16
|
Li G, Wu H, Sun L, Cheng K, Lv Z, Chen K, Qian F, Li Y. (-)-α-Bisabolol Alleviates Atopic Dermatitis by Inhibiting MAPK and NF-κB Signaling in Mast Cell. Molecules 2022; 27:molecules27133985. [PMID: 35807237 PMCID: PMC9268635 DOI: 10.3390/molecules27133985] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/12/2022] [Accepted: 06/18/2022] [Indexed: 11/30/2022] Open
Abstract
(-)-α-Bisabolol (BIS) is a sesquiterpene alcohol derived mostly from Matricaria recutita L., which is a traditional herb and exhibits multiple biologic activities. BIS has been reported for treatment of skin disorders, but the effect of BIS on anti-atopic dermatitis (AD) remains unclear. Therefore, we investigated the effects of BIS on 2,4-dinitrochlorobenzene (DNCB)-induced AD in BALB/c mice and the underlying mechanism in Bone Marrow-Derived Mast Cells (BMMCs). Topical BIS treatment reduced AD-like symptoms and the release of interleukin (IL)-4 without immunoglobulin (Ig)-E production in DNCB-induced BALB/c mice. Histopathological examination revealed that BIS reduced epidermal thickness and inhibited mast cells in the AD-like lesions skin. Oral administration of BIS effectively and dose-dependently suppressed mast-cell-mediated passive cutaneous anaphylaxis. In IgE-mediated BMMCs, the levels of β-hexosaminidase (β-hex), histamine, and tumor necrosis factor (TNF)-α were reduced by blocking the activation of nuclear factor-қB (NF-қB) and c-Jun N-terminal kinase (JNK) without P38 mitogen activated protein (P38) and extracellular regulated protein kinases (Erk1/2). Taken together, our experimental results indicated BIS suppresses AD by inhibiting the activation of JNK and NF-κB in mast cells. BIS may be a promising therapeutic agent for atopic dermatitis and other mast-cell-related diseases.
Collapse
Affiliation(s)
- Guangxia Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; (G.L.); (H.W.); (L.S.); (K.C.)
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Huayan Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; (G.L.); (H.W.); (L.S.); (K.C.)
| | - Liqin Sun
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; (G.L.); (H.W.); (L.S.); (K.C.)
| | - Kang Cheng
- Shanghai Inoherb Cosmetics Co., Ltd., Shanghai 200080, China; (K.C.); (Z.L.)
| | - Zhi Lv
- Shanghai Inoherb Cosmetics Co., Ltd., Shanghai 200080, China; (K.C.); (Z.L.)
| | - Kaixian Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; (G.L.); (H.W.); (L.S.); (K.C.)
| | - Fei Qian
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
- Correspondence: (F.Q.); (Y.L.)
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; (G.L.); (H.W.); (L.S.); (K.C.)
- Correspondence: (F.Q.); (Y.L.)
| |
Collapse
|
17
|
Yang H, Qu Y, Gao Y, Sun S, Ding R, Cang W, Wu R, Wu J. Role of the dietary components in food allergy: A comprehensive review. Food Chem 2022; 386:132762. [PMID: 35334324 DOI: 10.1016/j.foodchem.2022.132762] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 12/18/2022]
Abstract
Currently, the increasing incidence of food allergy is considered a major public health and food safety concern. Importantly, food-induced anaphylaxis is an acute, life-threatening, systemic reaction with varied clinical presentations and severity that results from the release of mediators from mast cells and basophils. Many factors are blamed for the increasing incidence of food allergy, including hygiene, microbiota (composition and diversity), inopportune complementary foods (a high-fat diet), and increasing processed food consumption. Studies have shown that different food components, including lipids, sugars, polyphenols, and vitamins, can modify the immunostimulating properties of allergenic proteins and change their bioavailability. Understanding the role of the food components in allergy might improve diagnosis, treatment, and prevention of food allergy. This review considers the role of the dietary components, including lipids, sugars, polyphenols, and vitamins, in the development of food allergy as well as results of mechanistic investigations in in vivo and in vitro models.
Collapse
Affiliation(s)
- Hui Yang
- College of Food Science, Shenyang Agricultural University, Engineering Research Center of Food Fermentation Technology, Liaoning, Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Shenyang 110866, China
| | - Yezhi Qu
- College of Food Science, Shenyang Agricultural University, Engineering Research Center of Food Fermentation Technology, Liaoning, Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Shenyang 110866, China
| | - Yaran Gao
- College of Food Science, Shenyang Agricultural University, Engineering Research Center of Food Fermentation Technology, Liaoning, Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Shenyang 110866, China
| | - Shuyuan Sun
- College of Food Science, Shenyang Agricultural University, Engineering Research Center of Food Fermentation Technology, Liaoning, Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Shenyang 110866, China
| | - Ruixue Ding
- College of Food Science, Shenyang Agricultural University, Engineering Research Center of Food Fermentation Technology, Liaoning, Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Shenyang 110866, China
| | - Weihe Cang
- College of Food Science, Shenyang Agricultural University, Engineering Research Center of Food Fermentation Technology, Liaoning, Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Shenyang 110866, China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Engineering Research Center of Food Fermentation Technology, Liaoning, Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Shenyang 110866, China.
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Engineering Research Center of Food Fermentation Technology, Liaoning, Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Shenyang 110866, China.
| |
Collapse
|