1
|
Kramer J, Aires R, Keeley SD, Schröder TA, Lauer G, Sandoval-Guzmán T. Axolotl mandible regeneration occurs through mechanical gap closure and a shared regenerative program with the limb. Dis Model Mech 2024; 17:dmm050743. [PMID: 39206627 PMCID: PMC11449444 DOI: 10.1242/dmm.050743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
The mandible plays an essential part in human life and, thus, defects in this structure can dramatically impair the quality of life in patients. Axolotls, unlike humans, are capable of regenerating their lower jaws; however, the underlying mechanisms and their similarities to those in limb regeneration are unknown. In this work, we used morphological, histological and transcriptomic approaches to analyze the regeneration of lateral resection defects in the axolotl mandible. We found that this structure can regenerate all missing tissues in 90 days through gap minimization, blastema formation and, finally, tissue growth, differentiation and integration. Moreover, transcriptomic comparisons of regenerating mandibles and limbs showed that they share molecular phases of regeneration, that these similarities peak during blastema stages and that mandible regeneration occurs at a slower pace. Altogether, our study demonstrates the existence of a shared regenerative program used in two different regenerating body structures with different embryonic origins in the axolotl and contributes to our understanding of the minimum requirements for a successful regeneration in vertebrates, bringing us closer to understand similar lesions in human mandibles.
Collapse
Affiliation(s)
- Julia Kramer
- Clinic of Oral and Maxillofacial Surgery, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Rita Aires
- Department of Internal Medicine III, Center for Healthy Aging, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Sean D. Keeley
- Department of Internal Medicine III, Center for Healthy Aging, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Tom Alexander Schröder
- Clinic of Oral and Maxillofacial Surgery, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Günter Lauer
- Clinic of Oral and Maxillofacial Surgery, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Tatiana Sandoval-Guzmán
- Department of Internal Medicine III, Center for Healthy Aging, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Paul Langerhans Institute Dresden, Helmholtz Centre Munich, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
2
|
Adamson CJ, Morrison-Welch N, Rogers CD. The amazing and anomalous axolotls as scientific models. Dev Dyn 2022; 251:922-933. [PMID: 35322911 PMCID: PMC9536427 DOI: 10.1002/dvdy.470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 11/05/2022] Open
Abstract
Ambystoma mexicanum (axolotl) embryos and juveniles have been used as model organisms for developmental and regenerative research for many years. This neotenic aquatic species maintains the unique capability to regenerate most, if not all, of its tissues well into adulthood. With large externally developing embryos, axolotls were one of the original model species for developmental biology. However, increased access to, and use of, organisms with sequenced and annotated genomes, such as Xenopus laevis and tropicalis and Danio rerio, reduced the prevalence of axolotls as models in embryogenesis studies. Recent sequencing of the large axolotl genome opens up new possibilities for defining the recipes that drive the formation and regeneration of tissues like the limbs and spinal cord. However, to decode the large Ambystoma mexicanum genome will take a herculean effort, community resources, and the development of novel techniques. Here, we provide an updated axolotl-staging chart ranging from 1-cell stage to immature adult paired with a perspective on both historical and current axolotl research that spans from their use in early studies of development to the recent cutting-edge research, employment of transgenesis, high resolution imaging, and study of mechanisms deployed in regeneration. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Carly J Adamson
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA
| | | | - Crystal D Rogers
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA
| |
Collapse
|
3
|
Zavvarian MM, Zhou C, Kahnemuyipour S, Hong J, Fehlings MG. The MAPK Signaling Pathway Presents Novel Molecular Targets for Therapeutic Intervention after Traumatic Spinal Cord Injury: A Comparative Cross-Species Transcriptional Analysis. Int J Mol Sci 2021; 22:12934. [PMID: 34884738 PMCID: PMC8657729 DOI: 10.3390/ijms222312934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 11/29/2022] Open
Abstract
Despite the debilitating consequences following traumatic spinal cord injury (SCI), there is a lack of safe and effective therapeutics in the clinic. The species-specific responses to SCI present major challenges and opportunities for the clinical translation of biomolecular and pharmacological interventions. Recent transcriptional analyses in preclinical SCI studies have provided a snapshot of the local SCI-induced molecular responses in different animal models. However, the variation in the pathogenesis of traumatic SCI across species is yet to be explored. This study aims to identify and characterize the common and inconsistent SCI-induced differentially expressed genes across species to identify potential therapeutic targets of translational relevance. A comprehensive search of open-source transcriptome datasets identified four cross-compatible microarray experiments in rats, mice, and salamanders. We observed consistent expressional changes in extracellular matrix components across the species. Conversely, salamanders showed downregulation of intracellular MAPK signaling compared to rodents. Additionally, sequence conservation and interactome analyses highlighted the well-preserved sequences of Fn1 and Jun with extensive protein-protein interaction networks. Lastly, in vivo immunohistochemical staining for fibronectin was used to validate the observed expressional pattern. These transcriptional changes in extracellular and MAPK pathways present potential therapeutic targets for traumatic SCI with promising translational relevance.
Collapse
Affiliation(s)
- Mohammad-Masoud Zavvarian
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (C.Z.); (J.H.)
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Cindy Zhou
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (C.Z.); (J.H.)
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sabah Kahnemuyipour
- Human Biology Department, University of Toronto, Toronto, ON M5S 3J6, Canada;
| | - James Hong
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (C.Z.); (J.H.)
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Michael G. Fehlings
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (C.Z.); (J.H.)
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|