1
|
Aekka A, Weisman AG, Papadakis J, Yerkes E, Baker J, Keswani M, Weinstein J, Finlayson C. Clinical utility of early rapid genome sequencing in the evaluation of patients with differences of sex development. Am J Med Genet A 2024; 194:351-357. [PMID: 37789729 DOI: 10.1002/ajmg.a.63377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 10/05/2023]
Abstract
Establishing an early and accurate genetic diagnosis among patients with differences of sex development (DSD) is crucial in guiding the complex medical and psychosocial care they require. Genetic testing routinely utilized in clinical practice for this population is predicated upon physical exam findings and biochemical and endocrine profiling. This approach, however, is inefficient and unstandardized. Many patients with DSD, particularly those with 46,XY DSD, never receive a molecular genetic diagnosis. Rapid genome sequencing (rGS) is gaining momentum as a first-tier diagnostic instrument in the evaluation of patients with DSD given its ability to provide greater diagnostic yield and timely results. We present the case of a patient with nonbinary genitalia and systemic findings for whom rGS identified a novel variant of the WT1 gene and resulted in a molecular diagnosis within two weeks of life. This timeframe of diagnosis for syndromic DSD is largely unprecedented at our institution. Rapid GS expedited mobilization of a multidisciplinary medical team; enabled early understanding of clinical trajectory; informed planning of medical and surgical interventions; and guided individualized psychosocial support provided to the family. This case highlights the potential of early rGS in transforming the evaluation and care of patients with DSD.
Collapse
Affiliation(s)
- Apoorva Aekka
- Division of Endocrinology, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Allison Goetsch Weisman
- Division of Genetics, Genomics, and Metabolism, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jaclyn Papadakis
- Department of Psychiatry and Behavioral Health, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Elizabeth Yerkes
- Division of Urology, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Joshua Baker
- Division of Genetics, Genomics, and Metabolism, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Mahima Keswani
- Division of Nephrology, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Joanna Weinstein
- Division of Hematology, Oncology, Neuro-Oncology and Stem Cell Transplantation, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Courtney Finlayson
- Division of Endocrinology, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
2
|
Krivega M, Zimmer J, Slezko A, Frank-Herrmann P, Rehnitz J, Hohenfellner M, Bettendorf M, Luzarowski M, Strowitzki T. Genomic instability in individuals with sex determination defects and germ cell cancer. Cell Death Discov 2023; 9:173. [PMID: 37217472 PMCID: PMC10202957 DOI: 10.1038/s41420-023-01470-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023] Open
Abstract
The ability to transmit genetic information through generations depends on the preservation of genome integrity. Genetic abnormalities affect cell differentiation, causing tissue specification defects and cancer. We addressed genomic instability in individuals with Differences of Sex Development (DSD), characterized by gonadal dysgenesis, infertility, high susceptibility for different types of cancer, especially Germ Cell Tumors (GCT), and in men with testicular GCTs. Whole proteome analysis of leukocytes, supported by specific gene expression assessment, and dysgenic gonads characterization, uncovered DNA damage phenotypes with altered innate immune response and autophagy. Further examination of DNA damage response revealed a reliance on deltaTP53, which was compromised by mutations in the transactivation domain in DSD-individuals with GCT. Accordingly, drug-induced rescue of DNA damage was achieved by autophagy inhibition but not by stabilization of TP53 in DSD-individuals' blood in vitro. This study elucidates possibilities for prophylactic treatments of DSD-individuals, as well as new diagnostic approaches of GCT.
Collapse
Affiliation(s)
- Maria Krivega
- Research Group of Gonadal Differentiation and Embryonic Development, Department of Gynecological Endocrinology & Fertility Disorders, Women Hospital, University of Heidelberg, 69120, Heidelberg, Germany.
| | - Jutta Zimmer
- Research Group of Gonadal Differentiation and Embryonic Development, Department of Gynecological Endocrinology & Fertility Disorders, Women Hospital, University of Heidelberg, 69120, Heidelberg, Germany
| | - Anna Slezko
- Research Group of Gonadal Differentiation and Embryonic Development, Department of Gynecological Endocrinology & Fertility Disorders, Women Hospital, University of Heidelberg, 69120, Heidelberg, Germany
| | - Petra Frank-Herrmann
- Department of Gynecological Endocrinology & Fertility Disorders, Women Hospital, University of Heidelberg, 69120, Heidelberg, Germany
| | - Julia Rehnitz
- Department of Gynecological Endocrinology & Fertility Disorders, Women Hospital, University of Heidelberg, 69120, Heidelberg, Germany
| | - Markus Hohenfellner
- Department of Urology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Markus Bettendorf
- Division of Pediatric Endocrinology, Children's Hospital, University of Heidelberg, 69120, Heidelberg, Germany
| | - Marcin Luzarowski
- Core Facility for Mass Spectrometry & Proteomics, ZMBH, University of Heidelberg, 69120, Heidelberg, Germany
| | - Thomas Strowitzki
- Department of Gynecological Endocrinology & Fertility Disorders, Women Hospital, University of Heidelberg, 69120, Heidelberg, Germany
| |
Collapse
|
3
|
Mary L, Fradin M, Pasquier L, Quelin C, Loget P, Le Lous M, Le Bouar G, Nivot-Adamiak S, Lokchine A, Dubourg C, Jauffret V, Nouyou B, Henry C, Launay E, Odent S, Jaillard S, Belaud-Rotureau MA. Role of chromosomal imbalances in the pathogenesis of DSD: A retrospective analysis of 115 prenatal samples. Eur J Med Genet 2023; 66:104748. [PMID: 36948288 DOI: 10.1016/j.ejmg.2023.104748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/10/2023] [Accepted: 03/18/2023] [Indexed: 03/24/2023]
Abstract
Differences of sex development (DSDs) are a group of congenital conditions characterized by a discrepancy between chromosomal, gonadal, and genital sex development of an individual, with significant impact on medical, psychological and reproductive life. The genetic heterogeneity of DSDs complicates the diagnosis and almost half of the patients remains undiagnosed. In this context, chromosomal imbalances in syndromic DSD patients may help to identify new genes implicated in DSDs. In this study, we aimed at describing the burden of chromosomal imbalances including submicroscopic ones (copy number variants or CNVs) in a cohort of prenatal syndromic DSD patients, and review their role in DSDs. Our patients carried at least one pathogenic or likely pathogenic chromosomal imbalance/CNV or low-level mosaicism for aneuploidy. Almost half of the cases resulted from an unbalanced chromosomal rearrangement. Chromosome 9p/q, 4p/q, 3q and 11q anomalies were more frequently observed. Review of the literature confirmed the causative role of CNVs in DSDs, either in disruption of known DSD-causing genes (SOX9, NR0B1, NR5A1, AR, ATRX, …) or as a tool to suspect new genes in DSDs (HOXD cluster, ADCY2, EMX2, CAMK1D, …). Recurrent CNVs of regulatory elements without coding sequence content (i.e. duplications/deletions upstream of SOX3 or SOX9) confirm detection of CNVs as a mean to explore our non-coding genome. Thus, CNV detection remains a powerful tool to explore undiagnosed DSDs, either through routine techniques or through emerging technologies such as long-read whole genome sequencing or optical genome mapping.
Collapse
Affiliation(s)
- L Mary
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France; Univ Rennes, CHU Rennes, Inserm, EHESP, Irset, UMR_S, 1085, F-35000, Rennes, France.
| | - M Fradin
- Service de Génétique Clinique, Centre de Référence Anomalies Du Développement, CLAD Ouest, CHU Rennes, Rennes, France
| | - L Pasquier
- Service de Génétique Clinique, Centre de Référence Anomalies Du Développement, CLAD Ouest, CHU Rennes, Rennes, France; Université de Rennes, IGDR (Institut de Génétique et Développement), CNRS UMR 6290, INSERM ERL 1305, Rennes, France
| | - C Quelin
- Service de Génétique Clinique, Centre de Référence Anomalies Du Développement, CLAD Ouest, CHU Rennes, Rennes, France
| | - P Loget
- Service D'Anatomie Pathologique, Hôpital Pontchaillou, CHU Rennes, Rennes, France
| | - M Le Lous
- Unité de Médecine Fœtale, Service de Gynécologie-Obstétrique, CHU Rennes, Rennes, France
| | - G Le Bouar
- Unité de Médecine Fœtale, Service de Gynécologie-Obstétrique, CHU Rennes, Rennes, France
| | - S Nivot-Adamiak
- Service D'endocrinologie Pédiatrique, CHU Rennes, Rennes, France
| | - A Lokchine
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France
| | - C Dubourg
- Université de Rennes, IGDR (Institut de Génétique et Développement), CNRS UMR 6290, INSERM ERL 1305, Rennes, France; Service de Génétique Moléculaire et Génomique, CHU de Rennes, Rennes, 35033, France
| | - V Jauffret
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France
| | - B Nouyou
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France
| | - C Henry
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France
| | - E Launay
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France
| | - S Odent
- Service de Génétique Clinique, Centre de Référence Anomalies Du Développement, CLAD Ouest, CHU Rennes, Rennes, France; Université de Rennes, IGDR (Institut de Génétique et Développement), CNRS UMR 6290, INSERM ERL 1305, Rennes, France
| | - S Jaillard
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France; Univ Rennes, CHU Rennes, Inserm, EHESP, Irset, UMR_S, 1085, F-35000, Rennes, France
| | - M A Belaud-Rotureau
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France; Univ Rennes, CHU Rennes, Inserm, EHESP, Irset, UMR_S, 1085, F-35000, Rennes, France
| |
Collapse
|
4
|
Mellone S, Bertelli E, Roviglione B, Vurchio D, Ronzani S, Secco A, Felici E, Strozzi MM, Schena F, Giordano M. Co-Occurrence of a Pathogenic HSD3B2 Variant and a Duplication on 10q22.3-q23.2 Detected in Newborn Twins with Salt-Wasting Congenital Adrenal Hyperplasia. Genes (Basel) 2022; 13:genes13122190. [PMID: 36553457 PMCID: PMC9777535 DOI: 10.3390/genes13122190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive disorders caused by enzyme deficiencies required for cortisol biosynthesis in the adrenal cortex. The majority of CAH are due to the deficiency of the 21-hydroxylase enzyme, while 3β-hydroxysteroid dehydrogenase type 2 deficiency accounts for less than five percent of all CAH cases. We report two Moroccan twins from a spontaneous triplet pregnancy. The 46,XY newborn exhibited a disorder of sexual differentiation (DSD) with hypo virilization, while the 46,XX newborn had normal female external genitalia. In the first week of life, they showed hyponatremia and primary adrenal insufficiency with a slight 17OHP elevation and increased DHEAS and renin levels. The aCGH-SNP analysis disclosed a 8.36 Mb long contiguous stretch of homozygosity (LCSH) on chromosome 1p13.2-p11.2 including the candidate HSD3B2 gene, a LCSH of 7.3 Mb on 14q31.1-q32.11, and a 7 Mb duplication on 10q22.3-q23.2. Clinical exome sequencing revealed the biallelic c.969T > G (p.Asn323Lys) HSD3B2, likely pathogenic, variant in both of the affected twins. This case emphasizes the importance of a prompt molecular diagnosis performed through the combination of aCGH and clinical exome, both for establishment of correct therapy and for follow-up, as the newborns also carry a genomic rearrangement with possible clinical implications.
Collapse
Affiliation(s)
- Simona Mellone
- Laboratory of Genetics, Clinical Biochemistry Unit, University Hospital Maggiore della Carità, 28100 Novara, Italy
| | - Enrica Bertelli
- Pediatric and Pediatric Emergency Unit, Children Hospital, Azienda Ospedaliera SS Antonio e Biagio e C. Arrigo, 15121 Alessandria, Italy
| | - Barbara Roviglione
- Pediatric and Pediatric Emergency Unit, Children Hospital, Azienda Ospedaliera SS Antonio e Biagio e C. Arrigo, 15121 Alessandria, Italy
| | - Denise Vurchio
- Laboratory of Genetics, Clinical Biochemistry Unit, University Hospital Maggiore della Carità, 28100 Novara, Italy
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Sara Ronzani
- Laboratory of Genetics, Clinical Biochemistry Unit, University Hospital Maggiore della Carità, 28100 Novara, Italy
| | - Andrea Secco
- Pediatric and Pediatric Emergency Unit, Children Hospital, Azienda Ospedaliera SS Antonio e Biagio e C. Arrigo, 15121 Alessandria, Italy
| | - Enrico Felici
- Pediatric and Pediatric Emergency Unit, Children Hospital, Azienda Ospedaliera SS Antonio e Biagio e C. Arrigo, 15121 Alessandria, Italy
| | | | - Federico Schena
- Neonatal Intensive Care Unit, Azienda Ospedaliera SS Antonio e Biagio e C. Arrigo, 15121 Alessandria, Italy
| | - Mara Giordano
- Laboratory of Genetics, Clinical Biochemistry Unit, University Hospital Maggiore della Carità, 28100 Novara, Italy
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
- Correspondence:
| |
Collapse
|
5
|
Chen YS, Racca JD, Weiss MA. Tenuous Transcriptional Threshold of Human Sex Determination. I. SRY and Swyer Syndrome at the Edge of Ambiguity. Front Endocrinol (Lausanne) 2022; 13:945030. [PMID: 35957822 PMCID: PMC9360328 DOI: 10.3389/fendo.2022.945030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/22/2022] [Indexed: 11/28/2022] Open
Abstract
Male sex determination in mammals is initiated by SRY, a Y-encoded transcription factor. The protein contains a high-mobility-group (HMG) box mediating sequence-specific DNA bending. Mutations causing XY gonadal dysgenesis (Swyer syndrome) cluster in the box and ordinarily arise de novo. Rare inherited variants lead to male development in one genetic background (the father) but not another (his sterile XY daughter). De novo and inherited mutations occur at an invariant Tyr adjoining the motif's basic tail (box position 72; Y127 in SRY). In SRY-responsive cell lines CH34 and LNCaP, de novo mutations Y127H and Y127C reduced SRY activity (as assessed by transcriptional activation of principal target gene Sox9) by 5- and 8-fold, respectively. Whereas Y127H impaired testis-specific enhancer assembly, Y127C caused accelerated proteasomal proteolysis; activity was in part rescued by proteasome inhibition. Inherited variant Y127F was better tolerated: its expression was unperturbed, and activity was reduced by only twofold, a threshold similar to other inherited variants. Biochemical studies of wild-type (WT) and variant HMG boxes demonstrated similar specific DNA affinities (within a twofold range), with only subtle differences in sharp DNA bending as probed by permutation gel electrophoresis and fluorescence resonance-energy transfer (FRET); thermodynamic stabilities of the free boxes were essentially identical. Such modest perturbations are within the range of species variation. Whereas our cell-based findings rationalize the de novo genotype-phenotype relationships, a molecular understanding of inherited mutation Y127F remains elusive. Our companion study uncovers cryptic biophysical perturbations suggesting that the para-OH group of Y127 anchors a novel water-mediated DNA clamp.
Collapse
Affiliation(s)
- Yen-Shan Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Joseph D Racca
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Michael A Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
6
|
Ahmed SF, Alimusina M, Batista RL, Domenice S, Lisboa Gomes N, McGowan R, Patjamontri S, Mendonca BB. The Use of Genetics for Reaching a Diagnosis in XY DSD. Sex Dev 2022; 16:207-224. [DOI: 10.1159/000524881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/03/2022] [Indexed: 11/19/2022] Open
Abstract
Reaching a firm diagnosis is vital for the long-term management of a patient with a difference or disorder of sex development (DSD). This is especially the case in XY DSD where the diagnostic yield is particularly low. Molecular genetic technology is playing an increasingly important role in the diagnostic process, and it is highly likely that it will be used more often at an earlier stage in the diagnostic process. In many cases of DSD, the clinical utility of molecular genetics is unequivocally clear, but in many other cases there is a need for careful exploration of the benefit of genetic diagnosis through long-term monitoring of these cases. Furthermore, the incorporation of molecular genetics into the diagnostic process requires a careful appreciation of the strengths and weaknesses of the evolving technology, and the interpretation of the results requires a clear understanding of the wide range of conditions that are associated with DSD.
Collapse
|
7
|
Ramos L. WT1, NR0B1, NR5A1, LHX9, ZFP92, ZNF275, INSL3, and NRIP1 Genetic Variants in Patients with Premature Ovarian Insufficiency in a Mexican Cohort. Genes (Basel) 2022; 13:611. [PMID: 35456418 PMCID: PMC9025227 DOI: 10.3390/genes13040611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
Premature ovarian insufficiency (POI) is one of the main causes of female premature infertility. POI is a genetically heterogeneous disorder with a complex molecular etiology; as such, the genetic causes remain unknown in the majority of patients. Therefore, this study aimed to identify mutations and characterize the associated molecular contribution of gonadogenesis-determinant genes to POI. Genomic assays, including PCR-SSCP and Sanger sequencing, followed by in silico analyses were used to investigate the underpinnings of ovarian deficiency in 11 women affected by POI. Large deletions and nucleotide insertions and duplications were excluded by PCR. Thirteen genetic variants were identified in the WT1 (c.213G>T, c.609T>C, c.873A>G, c.1122G>A), NR0B1 (c.353C>T, c.425G>A), NR5A1 (c.437G>C, IVS4-20C>T), LHX9 (IVS2-12G>C, IVS3+13C>T, c.741T>C), ZNF275 (c.969C>T), and NRIP1 (c.3403C>T) genes. Seven novel genetic variants and five unpublished substitutions were identified. No genetic aberrations were detected in the ZFP92 and INSL3 genes. Each variant was genotyped using PCR-SSCP in 100 POI-free subjects, and their allelic frequencies were similar to the patients. These analyses indicated that allelic variation in the WT1, NR0B1, NR5A1, LHX9, ZFP92, ZNF275, INSL3, and NRIP1 genes may be a non-disease-causing change or may not contribute significantly to the genetics underlying POI disorders. Findings support the polygenic nature of this clinical disorder, with the SNVs identified representing only a probable contribution to the variability of the human genome.
Collapse
Affiliation(s)
- Luis Ramos
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Ciudad de México 14080, Mexico
| |
Collapse
|
8
|
Racca JD, Chatterjee D, Chen YS, Rai RK, Yang Y, Georgiadis MM, Haas E, Weiss MA. Tenuous transcriptional threshold of human sex determination. II. SRY exploits water-mediated clamp at the edge of ambiguity. Front Endocrinol (Lausanne) 2022; 13:1029177. [PMID: 36568077 PMCID: PMC9771472 DOI: 10.3389/fendo.2022.1029177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
Y-encoded transcription factor SRY initiates male differentiation in therian mammals. This factor contains a high-mobility-group (HMG) box, which mediates sequence-specific DNA binding with sharp DNA bending. A companion article in this issue described sex-reversal mutations at box position 72 (residue 127 in human SRY), invariant as Tyr among mammalian orthologs. Although not contacting DNA, the aromatic ring seals the domain's minor wing at a solvent-exposed junction with a basic tail. A seeming paradox was posed by the native-like biochemical properties of inherited Swyer variant Y72F: its near-native gene-regulatory activity is consistent with the father's male development, but at odds with the daughter's XY female somatic phenotype. Surprisingly, aromatic rings (Y72, F72 or W72) confer higher transcriptional activity than do basic or polar side chains generally observed at solvated DNA interfaces (Arg, Lys, His or Gln). Whereas biophysical studies (time-resolved fluorescence resonance energy transfer and heteronuclear NMR spectroscopy) uncovered only subtle perturbations, dissociation of the Y72F complex was markedly accelerated relative to wild-type. Studies of protein-DNA solvation by molecular-dynamics (MD) simulations of an homologous high-resolution crystal structure (SOX18) suggest that Y72 para-OH anchors a network of water molecules at the tail-DNA interface, perturbed in the variant in association with nonlocal conformational fluctuations. Loss of the Y72 anchor among SRY variants presumably "unclamps" its basic tail, leading to (a) rapid DNA dissociation despite native affinity and (b) attenuated transcriptional activity at the edge of sexual ambiguity. Conservation of Y72 suggests that this water-mediated clamp operates generally among SRY and metazoan SOX domains.
Collapse
Affiliation(s)
- Joseph D. Racca
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Joseph D. Racca, ; Michael A. Weiss,
| | - Deepak Chatterjee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yen-Shan Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ratan K. Rai
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yanwu Yang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Millie M. Georgiadis
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Elisha Haas
- Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | - Michael A. Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Joseph D. Racca, ; Michael A. Weiss,
| |
Collapse
|