Rieneck K. Cell-Free DNA and Next-Generation Sequencing for Prenatal Diagnosis.
Methods Mol Biol 2024;
2753:583-609. [PMID:
38285369 DOI:
10.1007/978-1-0716-3625-1_38]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Deep sequencing by NGS of targeted amplicons can identify rare genetic variants in a pool of DNA where the vast majority of genomic DNA does not contain the variant. This approach can be used to detect a previously described paternally inherited, fetal variant in cell-free DNA (cfDNA) in maternal plasma. This is useful in cases where risk for the fetus is contingent upon inheritance of a paternal variant that the woman does not have. Both pathogenic and non-pathogenic variants that the woman does not have can be detected. In cases of compound heterozygosity, presence of the paternal pathogenic variant also requires detection of the maternal variant for risk assessment, which requires a chorion villus biopsy.We have used this approach to focus on detection of fetal blood groups in cases of presence of maternal alloantibodies against blood group antigens in pregnancy, to predict whether the fetus has inherited a blood group antigen that is targeted by the alloantibodies. In cases of maternal alloantibodies against blood group antigens, the fetus is at risk of hemolytic disease of the fetus and newborn (HDFN). With a known specificity of the maternal antibodies and if the fetal blood group can be determined in the pregnancy, then it can be ascertained if the fetus is at risk of HDFN and rational pregnancy care can be instituted. A noninvasive procedure avoids risks for the fetus. We have reported a procedure based on NGS analysis of PCR amplified cfDNA from maternal plasma. Some fetuses may die as early as week 18. We use this approach to predict fetal K, k, RhC, Rhc, RhE, and ABO blood groups in cases with a risk of HDFN due to the corresponding maternally produced antibodies.The NGS-based analysis can predict the presence or absence of incompatible antigens on the fetal RBCs.In this chapter, a noninvasive method for predicting some fetal blood groups early in pregnancy is described. There is a clinical need for such assays, and they may be a useful tool for management of pregnancies complicated by these alloantibodies within the field of precision medicine.
Collapse