1
|
Kutscha N, Mahmutovic M, Bhusal B, Vu J, Chemlali C, Hansen SLJD, May MW, Knake S, Golestanirad L, Keil B. A deep brain stimulation-conditioned RF coil for 3T MRI. Magn Reson Med 2025; 93:1411-1426. [PMID: 39444303 DOI: 10.1002/mrm.30331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/20/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
PURPOSE To develop and test an MRI coil assembly for imaging deep brain stimulation (DBS) at 3 T with a reduced level of local specific absorption rate of RF fields near the implant. METHODS A mechanical rotatable linearly polarized birdcage transmitter outfitted with a 32-channel receive array was constructed. The coil performance and image quality were systematically evaluated using bench-level measurements and imaging performance tests, including SNR maps, array element noise correlation, and acceleration capabilities. Electromagnetic simulations and phantom experiments were performed with clinically relevant DBS device configurations to evaluate the reduction of specific absorption rate and temperature near the implant compared with a circular polarized body coil setup. RESULTS The linearly polarized birdcage coil features a block-shaped low electric field region to be co-aligned with the implanted DBS lead trajectory, while the close-fit receive array enables imaging with high SNR and enhanced encoding capabilities. CONCLUSION The 3T coil assembly, consisting of a rotating linear birdcage and a 32-channel close-fit receive array, showed DBS-conditioned imaging technology with substantially reduced heat generation at the DBS implants.
Collapse
Affiliation(s)
- Nicolas Kutscha
- Institute of Medical Physics and Radiation Protection, Department of Life Science Engineering, TH-Mittelhessen University of Applied Sciences, Giessen, Germany
| | - Mirsad Mahmutovic
- Institute of Medical Physics and Radiation Protection, Department of Life Science Engineering, TH-Mittelhessen University of Applied Sciences, Giessen, Germany
| | - Bhumi Bhusal
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jasmine Vu
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, USA
| | - Chaimaa Chemlali
- Institute of Medical Physics and Radiation Protection, Department of Life Science Engineering, TH-Mittelhessen University of Applied Sciences, Giessen, Germany
| | - Sam-Luca J D Hansen
- Institute of Medical Physics and Radiation Protection, Department of Life Science Engineering, TH-Mittelhessen University of Applied Sciences, Giessen, Germany
| | - Markus W May
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Susanne Knake
- Department of Neurology, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg, Darmstadt, Germany
- LOEWE Research Cluster for Advanced Medical Physics in Imaging and Therapy (ADMIT), TH-Mittelhessen University of Applied Sciences, Giessen, Germany
| | - Laleh Golestanirad
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, USA
| | - Boris Keil
- Institute of Medical Physics and Radiation Protection, Department of Life Science Engineering, TH-Mittelhessen University of Applied Sciences, Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg, Darmstadt, Germany
- LOEWE Research Cluster for Advanced Medical Physics in Imaging and Therapy (ADMIT), TH-Mittelhessen University of Applied Sciences, Giessen, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
2
|
Zulkarnain NIH, Sadeghi-Tarakameh A, Lagore RL, Koski DM, Metzger GJ, Cayci Z, Harel N, Eryaman Y. Feasibility of using toroidal transceivers for acquiring intraoperative MR images around deep brain stimulation electrodes. Neuroimage 2024; 302:120912. [PMID: 39486494 DOI: 10.1016/j.neuroimage.2024.120912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/07/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024] Open
Abstract
INTRODUCTION Magnetic resonance imaging (MRI) provides excellent soft tissue contrast for visualizing of deep brain stimulation (DBS) targets, allowing validation of the electrode placement, and assessing complications such as microhemorrhage and edema. However, the presence of the electrodes can introduce challenges such as radiofrequency (RF) induced current artifacts and excessive heating of the electrode contacts. Additionally, extended procedure times are also considered a disadvantage when using MRI as an intraoperative imaging modality following DBS electrode placement. METHOD We propose a novel approach of using toroidal resonators to inductively couple the shaft of the electrode to the scanner's transmit-receive chain thereby utilizing it as a localized imaging antenna. The small extent of the field generated by the electrode antenna allows fast imaging with smaller field-of-views (FOVs) spanning only a few centimeters. Furthermore, we present a fast and accurate safety monitoring strategy that can be used to predict the temperature increase at the electrical contacts of the electrode. RESULTS AND DISCUSSION Imaging with the toroidal transceiver yields a higher signal-to-noise ratio (SNR) efficiency in proximity to the electrodes. This approach reduced the RF induced current artifacts around the electrode which enhanced the visibility of the shaft and improved electrode localization. Moreover, the limited sensitivity around the electrode can be exploited to perform fast scans with small FOVs. The predicted heating around DBS contacts was in quantitative agreement with the experimental heating in swine studies with a normalized root-mean-square error (NRMSE) ≤ 0.09.
Collapse
Affiliation(s)
| | | | - Russell L Lagore
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Dee M Koski
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Gregory J Metzger
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Zuzan Cayci
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Noam Harel
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Yigitcan Eryaman
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
3
|
Vu J, Bhusal B, Rosenow JM, Pilitsis J, Golestanirad L. Effect of surgical modification of deep brain stimulation lead trajectories on radiofrequency heating during MRI at 3T: from phantom experiments to clinical implementation. J Neurosurg 2024; 140:1459-1470. [PMID: 37948679 PMCID: PMC11065613 DOI: 10.3171/2023.8.jns23580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/22/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE Radiofrequency (RF) tissue heating around deep brain stimulation (DBS) leads is a well-known safety risk during MRI, resulting in strict imaging guidelines and limited allowable protocols. The implanted lead's trajectory and orientation with respect to the MRI electric fields contribute to variations in the magnitude of RF heating across patients. Currently, there are no surgical requirements for implanting the extracranial portion of the DBS lead, resulting in substantial variations in clinical lead trajectories and consequently RF heating. Recent studies have shown that incorporating concentric loops in the extracranial lead trajectory can reduce RF heating. However, optimal positioning of the loops and the quantitative benefit of trajectory modification in terms of added safety margins during MRI remain unknown. In this study, the authors systematically evaluated the characteristics of DBS lead trajectories that minimize RF heating during 3T MRI to develop the best surgical practices for safe access to postoperative MRI, and they present the first surgical implementation of these modified trajectories. METHODS The authors performed experiments to assess the maximum temperature increase of 244 distinct lead trajectories. They investigated the effect of the position, number, and size of the concentric loops on the skull. Experiments were performed in an anthropomorphic phantom implanted with a commercial DBS system, and RF exposure was generated by applying a high specific absorption rate sequence (B1+rms = 2.7 µT). The authors conducted test-retest experiments to assess the reliability of measurements. Additionally, they evaluated the effect of imaging landmarks and perturbations to the DBS device configuration on the efficacy of low-heating trajectories. Finally, two neurosurgeons implanted the recommended modified trajectories in patients, and the authors characterized their RF heating in comparison with unmodified trajectories. RESULTS The maximum temperature increase ranged from 0.09°C to 7.34°C. The authors found that increasing the number of loops and positioning them closer to the surgical burr hole, particularly for the contralateral lead, substantially reduced RF heating. These trajectory modifications were easily incorporated during the surgical procedure and resulted in a threefold reduction in RF heating. CONCLUSIONS Surgically modifying the extracranial portion of the DBS lead trajectory can substantially reduce RF heating during 3T MRI. The authors' results indicate that simple adjustments to the lead's configuration, such as small, concentric loops near the burr hole, can be readily adopted during DBS lead implantation to improve patient safety during MRI.
Collapse
Affiliation(s)
- Jasmine Vu
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Bhumi Bhusal
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Joshua M. Rosenow
- Department of Neurosurgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Julie Pilitsis
- Department of Neurosciences and Experimental Therapeutics, Albany Medical College, Albany, New York
| | - Laleh Golestanirad
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
4
|
Cavallieri F, Mulroy E, Moro E. The history of deep brain stimulation. Parkinsonism Relat Disord 2024; 121:105980. [PMID: 38161106 DOI: 10.1016/j.parkreldis.2023.105980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Deep brain stimulation (DBS) surgery is an established and effective treatment for several movement disorders (tremor, Parkinson's disease, and dystonia), and is under investigation in numerous other neurological and psychiatric disorders. However, the origins and development of this neurofunctional technique are not always well understood and recognized. In this mini-review, we review the history of DBS, highlighting important milestones and the most remarkable protagonists (neurosurgeons, neurologists, and neurophysiologists) who pioneered and fostered this therapy throughout the 20th and early 21st century. Alongside DBS historical markers, we also briefly discuss newer developments in the field, and the future challenges which accompany such progress.
Collapse
Affiliation(s)
- Francesco Cavallieri
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Eoin Mulroy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Elena Moro
- Grenoble Alpes University, Division of Neurology, Centre Hospitalier Universitaire de Grenoble, Grenoble Institute of Neuroscience, INSERM U1216, Grenoble, France.
| |
Collapse
|
5
|
Vu J, Bhusal B, Rosenow J, Pilitsis J, Golestanirad L. Optimizing the trajectory of deep brain stimulation leads reduces RF heating during MRI at 3 T: Characteristics and clinical translation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-5. [PMID: 38083480 PMCID: PMC10838567 DOI: 10.1109/embc40787.2023.10340979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Radiofrequency (RF) induced tissue heating around deep brain stimulation (DBS) leads is a well-known safety risk during magnetic resonance imaging (MRI), hindering routine protocols for patients. Known factors that contribute to variations in the magnitude of RF heating across patients include the implanted lead's trajectory and its orientation with respect to the MRI electric fields. Currently, there are no consistent requirements for surgically implanting the extracranial portion of the DBS lead. Recent studies have shown that incorporating concentric loops in the extracranial trajectory of the lead can reduce RF heating, but the optimal positioning of the loop is unknown. In this study, we evaluated RF heating of 77 unique lead trajectories to determine how different characteristics of the trajectory affect RF heating during MRI at 3 T. We performed phantom experiments with commercial DBS systems from two manufacturers to determine how consistently modifying the lead trajectory mitigates RF heating. We also presented the first surgical implementation of these modified trajectories in patients. Low-heating trajectories included small concentric loops near the surgical burr hole which were readily implemented during the surgical procedure; these trajectories generated nearly a 2-fold reduction in RF heating compared to unmodified trajectories.Clinical Relevance- Surgically modifying the DBS lead trajectory can be a cost-effective strategy for reducing RF-induced heating during MRI at 3 T.
Collapse
|