1
|
Ramírez-Guerrero G, Ronco C, Lorenzin A, Brendolan A, Sgarabotto L, Zanella M, Reis T. Development of a new miniaturized system for ultrafiltration. Heart Fail Rev 2024; 29:615-630. [PMID: 38289525 DOI: 10.1007/s10741-024-10384-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/09/2024] [Indexed: 04/23/2024]
Abstract
Acute decompensated heart failure and fluid overload are the most common causes of hospitalization in heart failure patients, and often, they contribute to disease progression. Initial treatment encompasses intravenous diuretics although there might be a percentual of patients refractory to this pharmacological approach. New technologies have been developed to perform extracorporeal ultrafiltration in fluid overloaded patients. Current equipment allows to perform ultrafiltration in most hospital and acute care settings. Extracorporeal ultrafiltration is then prescribed and conducted by specialized teams, and fluid removal is planned to restore a status of hydration close to normal. Recent clinical trials and European and North American practice guidelines suggest that ultrafiltration is indicated for patients with refractory congestion not responding to medical therapy. Close interaction between nephrologists and cardiologists may be the key to a collaborative therapeutic effort in heart failure patients. Further studies are today suggesting that wearable technologies might become available soon to treat patients in ambulatory and de-hospitalized settings. These new technologies may help to cope with the increasing demand for the care of chronic heart failure patients. Herein, we provide a state-of-the-art review on extracorporeal ultrafiltration and describe the steps in the development of a new miniaturized system for ultrafiltration, called AD1 (Artificial Diuresis).
Collapse
Affiliation(s)
- Gonzalo Ramírez-Guerrero
- International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy
- Nephrology and Dialysis Unit, Carlos Van Buren Hospital, Valparaíso, Chile
- Departamento de Medicina Interna, Universidad de Valparaíso, Valparaíso, Chile
| | - Claudio Ronco
- International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy.
- Department of Nephrology, Dialysis and Kidney Transplantation, San Bortolo Hospital, Vicenza, Italy.
- Department of Medicine (DIMED), Università degli Studi di Padova, Padua, Italy.
| | - Anna Lorenzin
- International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy
- Department of Nephrology, Dialysis and Kidney Transplantation, San Bortolo Hospital, Vicenza, Italy
| | - Alessandra Brendolan
- International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy
- Department of Nephrology, Dialysis and Kidney Transplantation, San Bortolo Hospital, Vicenza, Italy
| | - Luca Sgarabotto
- International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy
- Department of Nephrology, Dialysis and Kidney Transplantation, San Bortolo Hospital, Vicenza, Italy
- Department of Medicine (DIMED), Università degli Studi di Padova, Padua, Italy
| | - Monica Zanella
- International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy
- Department of Nephrology, Dialysis and Kidney Transplantation, San Bortolo Hospital, Vicenza, Italy
| | - Thiago Reis
- International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy
- Laboratory of Molecular Pharmacology, Faculty of Health Sciences, University of Brasília, Brasília, Brazil
- Department of Nephrology and Kidney Transplantation, Fenix Group, Sao Paulo, Brazil
| |
Collapse
|
2
|
Baldwin IC, McKaige A. Fluid Balance in Continuous Renal Replacement Therapy: Prescribing, Delivering, and Review. Blood Purif 2024; 53:533-540. [PMID: 38377974 DOI: 10.1159/000537928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/15/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Historically IV and enteral fluids given during acute kidney injury (AKI) were restricted before the introduction of continuous renal replacement therapies (CRRTs) when more liberal fluids improved nutrition for the critically ill. However, fluid accumulation can occur when higher volumes each day are not considered in the fluid balance prescribing and the NET ultrafiltration (NUF) volume target. KEY MESSAGES The delivered hours of CRRT each day are vital for achievement of fluid balance and time off therapy makes the task more challenging. Clinicians inexperienced with CRRT make this aspect of AKI management a focus of rounding with senior oversight, clear communication, and "precision" a clinical target. Sepsis-associated AKI can be a complex patient where resuscitation and admission days are with a positive fluid load and replacement mind set. Subsequent days in ICU requires fluid regulation, removal, with a comprehensive multilayered assessment before prescribing the daily fluid balance target and the required hourly NET plasma water removal rate (NUF rate). Future machines may include advanced software, new alarms - display metrics, messages and association with machine learning and "AKI models" for setting, monitoring, and guaranteeing fluid removal. This could also link to current hardware such as on-line blood volume assessment with continuous haematocrit measurement. SUMMARY Fluid balance in the acutely ill is a challenge where forecasting and prediction are necessary. NUF rate and volume each hour should be tracked and adjusted to achieve the daily target. This requires human and machine connections.
Collapse
Affiliation(s)
- Ian Charles Baldwin
- Department of Intensive Care, Austin Hospital, Melbourne, Victoria, Australia
| | - Amy McKaige
- Department of Intensive Care, Austin Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Ramírez-Guerrero G, Ronco C. Ultrafiltration Tolerance: A Phenotype That We Need to Recognize. Blood Purif 2024; 53:541-547. [PMID: 38377967 DOI: 10.1159/000537941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/19/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND The evaluation and management of fluid balance are key challenges in critical care patients who require renal replacement therapies because cumulative fluid balance is an independent factor that increases morbidity and mortality in different clinical scenarios. SUMMARY One of the strategies when fluid overload is refractory to diuretics is extracorporeal fluid removal (i.e., net ultrafiltration [UFNET] during kidney replacement therapy). However, problems with UFNET without individualized assessment are cardiovascular events and intradialytic hypotension, events that contribute to decreasing organ perfusion and sympathetic stress. Therefore, we must consider and try to predict the best timing for the start of ultrafiltration and find the point where the patient is most tolerant to ultrafiltration, making a simile to the concept of fluid tolerance. KEY MESSAGES UFNET is a continuous and dynamic process, going through moments of tolerance and intolerance to ultrafiltration; as nephrologists, we must take the necessary measures to move through this period.
Collapse
Affiliation(s)
- Gonzalo Ramírez-Guerrero
- International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy
- Nephrology and Dialysis Unit, Carlos Van Buren Hospital, Valparaíso, Chile
- Department of Medicine, Universidad de Valparaíso, Valparaíso, Chile
| | - Claudio Ronco
- International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy
- Department of Nephrology, Dialysis and Kidney Transplantation, San Bortolo Hospital, Vicenza, Italy
- Department of Medicine (DIMED), Università degli Studi di Padova, Padova, Italy
| |
Collapse
|
4
|
Kazory A. Combination Diuretic Therapy to Counter Renal Sodium Avidity in Acute Heart Failure: Trials and Tribulations. Clin J Am Soc Nephrol 2023; 18:1372-1381. [PMID: 37102974 PMCID: PMC10578637 DOI: 10.2215/cjn.0000000000000188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/20/2023] [Indexed: 04/28/2023]
Abstract
In contrast to significant advances in the management of patients with chronic heart failure over the past few years, there has been little change in how patients with acute heart failure are treated. Symptoms and signs of fluid overload are the primary reason for hospitalization of patients who experience acute decompensation of heart failure. Intravenous loop diuretics remain the mainstay of therapy in this patient population, with a significant subset of them showing suboptimal response to these agents leading to incomplete decongestion at the time of discharge. Combination diuretic therapy, that is, using loop diuretics along with an add-on agent, is a widely applied strategy to counter renal sodium avidity through sequential blockade of sodium absorption within renal tubules. The choice of the second diuretic is affected by several factors, including the site of action, the anticipated secondary effects, and the available evidence on their efficacy and safety. While the current guidelines recommend combination diuretic therapy as a viable option to overcome suboptimal response to loop diuretics, it is also acknowledged that this strategy is not supported by strong evidence and remains an area of uncertainty. The recent publication of landmark studies has regenerated the interest in sequential nephron blockade. In this article, we provide an overview of the results of the key studies on combination diuretic therapy in the setting of acute heart failure and discuss their findings primarily with regard to the effect on renal sodium avidity and cardiorenal outcomes.
Collapse
Affiliation(s)
- Amir Kazory
- Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, Florida
| |
Collapse
|
5
|
Whaley-Connell A, Ronco C, Manrique-Acevedo C. Volume Removal in Heart Failure: Current Concepts and a Look into the Future. Cardiorenal Med 2023; 13:342-343. [PMID: 37748449 DOI: 10.1159/000534094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 08/23/2023] [Indexed: 09/27/2023] Open
Affiliation(s)
- Adam Whaley-Connell
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, USA,
- Divisions of Nephrology and Hypertension, Department of Medicine, University of Missouri-Columbia School of Medicine, Columbia, Missouri, USA,
- Department of Medicine, Endocrinology and Metabolism, University of Missouri-Columbia School of Medicine, Columbia, Missouri, USA,
| | - Claudio Ronco
- International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy
- Department of Medicine, University of Padova, Padova, Italy
| | - Camila Manrique-Acevedo
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, USA
- Department of Medicine, Endocrinology and Metabolism, University of Missouri-Columbia School of Medicine, Columbia, Missouri, USA
| |
Collapse
|