1
|
The versatile role of the contact system in cardiovascular disease, inflammation, sepsis and cancer. Biomed Pharmacother 2021; 145:112429. [PMID: 34801854 DOI: 10.1016/j.biopha.2021.112429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 11/24/2022] Open
Abstract
The human contact system consists of plasma proteins, which - after contact to foreign surfaces - are bound to them, thereby activating the zymogens of the system into enzymes. This activation mechanism gave the system its name - contact system. It is considered as a procoagulant and proinflammatory response mechanism, as activation finally leads to the generation of fibrin and bradykinin. To date, no physiological processes have been described that are mediated by contact activation. However, contact system factors play a pathophysiological role in numerous diseases, such as cardiovascular diseases, arthritis, colitis, sepsis, and cancer. Contact system factors are therefore an interesting target for new therapeutic options in different clinical conditions.
Collapse
|
2
|
Zou L, Wang X, Guo Z, Sun H, Shao C, Yang Y, Sun W. Differential urinary proteomics analysis of myocardial infarction using iTRAQ quantification. Mol Med Rep 2019; 19:3972-3988. [PMID: 30942401 PMCID: PMC6471447 DOI: 10.3892/mmr.2019.10088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 02/06/2019] [Indexed: 11/06/2022] Open
Abstract
Myocardial infarction (MI) is a disease characterized by high morbidity and mortality rates. MI biomarkers are frequently used in clinical diagnosis; however, their specificity and sensitivity remain unsatisfactory. Urinary proteome is an easy, efficient and noninvasive source to examine biomarkers associated with various diseases. The present study, to the best of the authors' knowledge, is the first to examine the urinary proteome using the isobaric tags for relative and absolute quantitation (iTRAQ) technology to identify potential diagnostic biomarkers of MI. The urinary proteome was analyzed within 12 h following the first symptoms of early‑onset MI and at day 7 following percutaneous coronary intervention via iTRAQ labeling and two‑dimensional liquid chromatography‑tandem mass spectrometry. Candidate biomarkers were validated by multiple reaction monitoring (MRM) analysis. A total of 233 urinary proteins were differentially expressed. Gene enrichment analysis identified that the urinary proteome in patients with MI was associated with atherosclerosis, abnormal coagulation and abnormal cell metabolism. In total, 12 differentially expressed urinary proteins were validated by MRM analysis, five of which were associated with MI for the first time in the present study. Binary logistic regression analysis suggested that the combination of five urinary proteins (antithrombin‑III, complement C3, α‑1‑acid glycoprotein 1, serotransferrin and cathepsin Z) may be used to diagnose MI with 94% sensitivity and 93% specificity. In addition, the protein expression levels of three proteins were significantly restored to normal levels following surgical treatment. The verified candidate biomarkers may be used for the diagnosis of MI, and for monitoring the disease status and the effects of treatments for MI. The present results may facilitate future clinical applications of the urinary proteome to diagnose MI.
Collapse
Affiliation(s)
- Lili Zou
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Xubo Wang
- Department of Cardiology, The Fourth Hospital of Jilin University, Changchun, Jilin 130011, P.R. China
| | - Zhengguang Guo
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Haidan Sun
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Chen Shao
- National Key Laboratory of Medical Molecular Biology, Department of Physiology and Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Yehong Yang
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Wei Sun
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| |
Collapse
|
3
|
Yin SJ, Cho IH, Yang HS, Park YD, Yang JM. Analysis of the peptides detected in atopic dermatitis and various inflammatory diseases patients-derived sera. Int J Biol Macromol 2018; 106:1052-1061. [DOI: 10.1016/j.ijbiomac.2017.08.109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 12/11/2022]
|
4
|
Cubedo J, Blasco A, Padró T, Ramaiola I, Juan-Babot O, Goicolea J, Fernández-Díaz J, Oteo J, Badimon L. Molecular signature of coronary stent thrombosis: oxidative stress and innate immunity cells. Thromb Haemost 2017. [DOI: 10.1160/th17-03-069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
SummaryThe clinical impact of in-stent thrombosis is high because it is associated with high mortality and 20 % of the patients suffer a recurrent event within the two following years. The aim of this study was to characterise the morphologic and proteomic profile of in-stent thrombi (IST) in comparison to thrombi developed on native coronary arteries (CT) to identify a differential molecular signature. The study included 45 patients with ST-elevation-myocardial-infarction (STEMI) treated by primary-percutaneous-intervention and thrombus aspiration: 21 had IST and 24 had CT. Thrombi were characterised by morphologic immunohistochemical analysis and differential proteomic profiling (2-DE+MALDI-TOF/TOF). Bioinformatic analysis revealed differences in proteins related to oxidative-stress and cell death/survival. IST showed a higher content of structural proteins (gelsolin, actin-cytoplasmic-1, tropomyosin, and myosin) together with an imbalance in redox-homeostasis related proteins (increased superoxide-dismutase and decreased peroxiredoxin-2 thrombus content), and a coordinated increase of chaperones (HSP60 and HSC70) and cellular quality control-related proteins (26S–protease-regulatory-subunit-7). These changes were reflected into a significant decrease in HSC70 systemic levels and a significant increase in advanced-oxidation-protein-products (AOPP) indicative of increased oxidative stress-mediated protein damage in IST. Our results reveal an imbalance in redox-related proteins indicative of an exacerbated oxidative-stress that leads to an accumulation of AOPP serum levels in IST. Moreover, the coordinated increase in chaperones and regulatory proteins reflects the activation of intracellular protection mechanisms to maintain protein integrity in IST. The failure to counterbalance the stress situation could trigger cellular apoptosis leading to the destabilization of the thrombus and to a worse prognosis of IST-STEMI-patients.Supplementary Material to this article is available online at www.thrombosis-online.com.
Collapse
|
5
|
Cubedo J, Suades R, Padro T, Martin-Yuste V, Sabate-Tenas M, Cinca J, Sans-Rosello J, Sionis A, Badimon L. Erythrocyte-heme proteins and STEMI: implications in prognosis. Thromb Haemost 2017; 117:1970-1980. [PMID: 28837209 DOI: 10.1160/th17-05-0314] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 06/16/2017] [Indexed: 11/05/2022]
Abstract
The role of erythrocytes in thrombus formation has been often neglected, but some studies have highlighted their active role in thrombotic events. Free-haemoglobin (Hb) has shown to induce oxidative-stress damage. Herein we have investigated the coordinated changes in heme-related proteins in patients with acute-coronary-syndromes (ACS), their association to ongoing thrombosis and their impact on patients' prognosis. The serum proteome of STEMI-patients (N=27) within the first 6h after event-onset and 3d after were compared to controls (N=60). Changes in heme-metabolism were characterized in a second STEMI-group by a dual proteomic approach analyzing in-vivo aspirated coronary thrombi at PCI (N=24) and the associated peripheral-blood changes (N=10). A third STEMI-group (N=132) was studied to analyze the impact of the observed changes in prognosis at 6-months-follow-up. The haptoglobin/hemopexin(Hpg/Hpx)-scavenging-system revealed a time-dependent response after STEMI with an early increase in Hpg circulating levels in the acute phase (P=0.01) and a late increase in Hpx levels 3d after (P=0.045). Beta-Hb content in coronary thrombi was directly correlated with systemic beta-Hb and Hpg (R=0.804,P=0.0029; R=0.859,P=0.0007) levels. The presence of a fully-occlusive thrombus was associated to higher circulating levels of beta-Hb (P=0.03) and unbound-Hpg (P=0.03). ELISA validation demonstrated a decreased survival rate at 6-months follow-up in STEMI-patients with lower Hpg plasma levels at admission (P=0.027). Our results show active Hb-release form erythrocytes in ACS. This release is followed by a systemic early increase in Hpg levels and a late increase in Hpx levels that can co-ordinately help to prevent systemic pro-oxidative effects. The Hb-scavenging ability of haptoglobin is related to patients' prognosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lina Badimon
- Prof. Lina Badimon, Cardiovascular Science Institute - ICCC, c/Sant Antoni MªClaret 167, 08025 Barcelona, Spain, Tel.: +34 935565880, Fax: +34 935565559, E-mail:
| |
Collapse
|
6
|
Cubedo J, Padró T, Formiga F, Ferrer A, Padrós G, Peña E, Badimon L. Inflammation and hemostasis in older octogenarians: implication in 5-year survival. Transl Res 2017; 185:34-46.e9. [PMID: 28506697 DOI: 10.1016/j.trsl.2017.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/13/2017] [Accepted: 04/19/2017] [Indexed: 11/19/2022]
Abstract
Social changes and medical advances have increased longevity, but the conditions governing healthy vs unhealthy cardiovascular (CV) aging are not fully known. Factors beyond classical CV risk factors may have an important unrecognized value. We sought to identify proteins differentially expressed in healthy octogenarians (HOs) without a history of cardiovascular disease (CVD) and preserved functional and cognitive state compared with octogenarians with a history of CVD and cognitive decline (UHOs) using a systems biology approach, and investigated how these proteins relate to CV mortality at 5-year follow-up. Plasmas obtained from older octogenarians (87 ± 0 years) were analyzed by 2-DE + MS and bioinformatic pathway analysis in HOs (N = 38) and UHOs with cognitive (MEC<25) and functional (Barthel<90) decline and a previous ischemic event (acute myocardial infarction and/or stroke; N = 27). Results were validated by ELISA in HOs and UHOs and in an additional group of older octogenarians without cognitive impairment but with a previous CVD manifestation (HO-CVD; N = 35). UHOs showed a coordinated change in several inflammation-related proteins (AMBP, RBP4, and ITIH4; P < 0.05), together with a significant increase in the major inducer of the acute-phase reaction, interleukin-6 (P = 0.03). UHOs also showed a coordinated increase in hemostatic proteins that was associated with an impairment of fibrinolysis and an increased 5-year CV mortality (P = 0.003). The combination of inflammation (ITIH4 and interleukin-6) and hemostatic markers (D-dimer, A2AP, and coagulation factor XIII) was able to discriminate the presence of an unhealthy phenotype in the elderly (AUC = 0.750; P = 0.001). Unhealthy older octogenarians show increased levels of several plasma proteins of inflammation and coagulation. In older octogenarians, the increase in hemostatic markers indicated an increase in 5-year CV mortality at follow-up.
Collapse
Affiliation(s)
- Judit Cubedo
- Cardiovascular Science Institute - ICCC, CiberCV and Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital Santa Creu i Sant Pau, Barcelona, Spain
| | - Teresa Padró
- Cardiovascular Science Institute - ICCC, CiberCV and Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital Santa Creu i Sant Pau, Barcelona, Spain
| | - Francesc Formiga
- Internal Medicine Service, University Hospital of Bellvitge, Barcelona, Spain
| | - Assumpta Ferrer
- Primary Healthcare Centre El Plà CAP-I, Sant Feliu de Llobregat, Spain
| | | | - Esther Peña
- Cardiovascular Science Institute - ICCC, CiberCV and Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital Santa Creu i Sant Pau, Barcelona, Spain
| | - Lina Badimon
- Cardiovascular Science Institute - ICCC, CiberCV and Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital Santa Creu i Sant Pau, Barcelona, Spain; Cardiovascular Research Chair UAB, Barcelona, Spain.
| |
Collapse
|
7
|
Navas-Carrillo D, Marín F, Valdés M, Orenes-Piñero E. Deciphering acute coronary syndrome biomarkers: High-resolution proteomics in platelets, thrombi and microparticles. Crit Rev Clin Lab Sci 2016; 54:49-58. [DOI: 10.1080/10408363.2016.1241214] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Diana Navas-Carrillo
- Department of Surgery, Hospital de la Vega Lorenzo Guirao, University of Murcia, Murcia, Spain,
| | - Francisco Marín
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, (IMIB-Arrixaca), Universidad de Murcia, Murcia, Spain, and
| | - Mariano Valdés
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, (IMIB-Arrixaca), Universidad de Murcia, Murcia, Spain, and
| | - Esteban Orenes-Piñero
- Proteomic Unit, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Universidad de Murcia, Murcia, Spain
| |
Collapse
|
8
|
von Zur Mühlen C, Koeck T, Schiffer E, Sackmann C, Zürbig P, Hilgendorf I, Reinöhl J, Rivera J, Zirlik A, Hehrlein C, Mischak H, Bode C, Peter K. Urine proteome analysis as a discovery tool in patients with deep vein thrombosis and pulmonary embolism. Proteomics Clin Appl 2016; 10:574-84. [PMID: 26898369 DOI: 10.1002/prca.201500105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/15/2015] [Accepted: 02/08/2016] [Indexed: 02/03/2023]
Abstract
PURPOSE Early and accurate detection of deep vein thrombosis (DVT) is an important clinical need. Based on the hypothesis that urinary peptides may hold information on DVT in conjunction with pulmonary embolism (PE), the study was aimed at identifying such peptide biomarkers using capillary electrophoresis coupled mass spectrometry. EXPERIMENTAL DESIGN Patients with symptoms of unprovoked/idiopathic DVT and/or PE were examined by doppler-sonography or angio-computed tomography. Urinary proteome analysis allowed for identification of respective peptide biomarkers. To confirm their biological relevance, we induced PE in mice and assessed human ex vivo thrombi. RESULTS We identified 62 urinary peptides as DVT-specific biomarkers, i.e. fragments of collagen type I and a fragment of fibrinogen β-chain. The presence of fibrinogen α/β in the acute thrombus, and collagen type I and osteopontin in the older, organized thrombus was demonstrated. The classifier DVT62 established through support vector machine (SVM) modeling based on the 62 identified peptides was validated in an independent cohort of 47 subjects (six cases and 41 controls) with a sensitivity of 100% and specificity of 83%. CONCLUSIONS AND CLINICAL RELEVANCE Urine proteome analysis enabled the detection of DVT-specific peptides, which were validated in human and mouse tissue. Furthermore, it allowed for the establishment of an urinary-proteome based classifier that is relatively specific for DVT. The data provide the basis for assessment of these biomarkers in a prospective clinical study.
Collapse
Affiliation(s)
| | | | | | - Christine Sackmann
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Freiburg, Germany
| | | | - Ingo Hilgendorf
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Freiburg, Germany
| | - Jochen Reinöhl
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Freiburg, Germany
| | - Jennifer Rivera
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Andreas Zirlik
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Freiburg, Germany
| | - Christoph Hehrlein
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Freiburg, Germany
| | - Harald Mischak
- Mosaiques Diagnostics GmbH, Hannover, Germany.,BHF Glasgow Cardiovascular Research, University of Glasgow, UK
| | - Christoph Bode
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Freiburg, Germany
| | - Karlheinz Peter
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| |
Collapse
|
9
|
Ménoret A, Crocker SJ, Rodriguez A, Rathinam VA, Clark RB, Vella AT. Transition from identity to bioactivity-guided proteomics for biomarker discovery with focus on the PF2D platform. Proteomics Clin Appl 2015. [PMID: 26201056 DOI: 10.1002/prca.201500029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteomic strategies provide a valuable tool kit to identify proteins involved in diseases. With recent progress in MS technology, high throughput proteomics has accelerated protein identification for potential biomarkers. Numerous biomarker candidates have been identified in several diseases, and many are common among pathologies. An overall strategy that could complement and strengthen the search for biomarkers is combining protein identity with biological outcomes. This review describes an emerging framework of bridging bioactivity to protein identity, exploring the possibility that some biomarkers will have a mechanistic role in the disease process. A review of pulmonary, cardiovascular, and CNS biomarkers will be discussed to demonstrate the utility of combining bioactivity with identification as a means to not only find meaningful biomarkers, but also to uncover functional mediators of disease.
Collapse
Affiliation(s)
- Antoine Ménoret
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Stephen J Crocker
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Annabelle Rodriguez
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Vijay A Rathinam
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Robert B Clark
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Anthony T Vella
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
10
|
Khan GH, Galazis N, Docheva N, Layfield R, Atiomo W. Overlap of proteomics biomarkers between women with pre-eclampsia and PCOS: a systematic review and biomarker database integration. Hum Reprod 2015; 30:133-48. [PMID: 25351721 PMCID: PMC4262466 DOI: 10.1093/humrep/deu268] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/29/2014] [Accepted: 09/19/2014] [Indexed: 01/12/2023] Open
Abstract
STUDY QUESTION Do any proteomic biomarkers previously identified for pre-eclampsia (PE) overlap with those identified in women with polycystic ovary syndrome (PCOS). SUMMARY ANSWER Five previously identified proteomic biomarkers were found to be common in women with PE and PCOS when compared with controls. WHAT IS KNOWN ALREADY Various studies have indicated an association between PCOS and PE; however, the pathophysiological mechanisms supporting this association are not known. STUDY DESIGN, SIZE, DURATION A systematic review and update of our PCOS proteomic biomarker database was performed, along with a parallel review of PE biomarkers. The study included papers from 1980 to December 2013. PARTICIPANTS/MATERIALS, SETTING, METHODS In all the studies analysed, there were a total of 1423 patients and controls. The number of proteomic biomarkers that were catalogued for PE was 192. MAIN RESULTS AND THE ROLE OF CHANCE Five proteomic biomarkers were shown to be differentially expressed in women with PE and PCOS when compared with controls: transferrin, fibrinogen α, β and γ chain variants, kininogen-1, annexin 2 and peroxiredoxin 2. In PE, the biomarkers were identified in serum, plasma and placenta and in PCOS, the biomarkers were identified in serum, follicular fluid, and ovarian and omental biopsies. LIMITATIONS, REASONS FOR CAUTION The techniques employed to detect proteomics have limited ability in identifying proteins that are of low abundance, some of which may have a diagnostic potential. The sample sizes and number of biomarkers identified from these studies do not exclude the risk of false positives, a limitation of all biomarker studies. The biomarkers common to PE and PCOS were identified from proteomic analyses of different tissues. WIDER IMPLICATIONS OF THE FINDINGS This data amalgamation of the proteomic studies in PE and in PCOS, for the first time, discovered a panel of five biomarkers for PE which are common to women with PCOS, including transferrin, fibrinogen α, β and γ chain variants, kininogen-1, annexin 2 and peroxiredoxin 2. If validated, these biomarkers could provide a useful framework for the knowledge infrastructure in this area. To accomplish this goal, a well co-ordinated multidisciplinary collaboration of clinicians, basic scientists and mathematicians is vital. STUDY FUNDING/COMPETING INTERESTS No financial support was obtained for this project. There are no conflicts of interest.
Collapse
Affiliation(s)
- Gulafshana Hafeez Khan
- Division of Human Development, School of Clinical Sciences, University of Nottingham, Queen's Medical Centre, D Floor, East Block, Nottingham, UK
| | - Nicolas Galazis
- Division of Human Development, School of Clinical Sciences, University of Nottingham, Queen's Medical Centre, D Floor, East Block, Nottingham, UK
| | - Nikolina Docheva
- Division of Human Development, School of Clinical Sciences, University of Nottingham, Queen's Medical Centre, D Floor, East Block, Nottingham, UK
| | - Robert Layfield
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - William Atiomo
- Division of Human Development, School of Clinical Sciences, University of Nottingham, Queen's Medical Centre, D Floor, East Block, Nottingham, UK
| |
Collapse
|
11
|
Vilahur G, Cubedo J, Padró T, Casaní L, Juan-Babot O, Crespo J, Bendjama K, Lawton M, Badimon L. Roflumilast-induced Local Vascular Injury Is Associated with a Coordinated Proteome and Microparticle Change in the Systemic Circulation in Pigs. Toxicol Pathol 2014; 43:569-80. [PMID: 25311372 DOI: 10.1177/0192623314551971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Drug-induced vascular injury (DIVI) is commonly associated with phosphodiesterase (PDE) inhibitors. Despite histological characterization, qualified biomarkers for DIVI detection are lacking. We investigated whether a single administration of roflumilast (PDE-IV inhibitor) induces vascular damage and identified novel surrogate biomarkers of acute vascular injury. Pigs received postoperative 250, 375, or 500 μg of roflumilast or placebo/control. After 1.5 hr, coronary reactivity was determined by catheter-based administration of acetylcholine and sodium nitroprusside (SNP) in the coronary sinus. Immunohistochemical analysis of vessel integrity (von Willebrand factor [vWF]) and fibrin(ogen) deposition was performed in the coronary artery and aorta. Peripheral blood was collected for differential proteomics and microparticles analysis. Circulating interleukin (IL)-6 was analyzed. Roflumilast-treated animals displayed higher vasodilation to acetylcholine and SNP versus controls (p < .05). Roflumilast-treated animals showed a dose-dependent (p < .05) decrease in vessel integrity and dose-dependent increase in fibrin deposition forming a continuous layer at roflumilast-500 μg. Peripheral blood of roflumilast-500-μg-treated animals showed increased levels of total and endothelial-derived microparticles and exhibited a coordinated change in proteins kininogen-1, endothelin-1, gelsolin, apolipoprotein A-I, and apolipoprotein-J associated with vascular injury (p < .05 vs. controls). IL-6 remained unaltered. Roflumilast-induced vascular injury can be detected by novel markers in peripheral blood. Validation of these surrogate markers in human samples seems required.
Collapse
Affiliation(s)
- Gemma Vilahur
- Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Judit Cubedo
- Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Teresa Padró
- Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Laura Casaní
- Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Oriol Juan-Babot
- Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Javier Crespo
- Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | | | - Michael Lawton
- Pfizer Worldwide Research and Development, Groton, Connecticut, USA
| | - Lina Badimon
- Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain Cardiovascular Research Chair, UAB, Barcelona, Spain
| |
Collapse
|
12
|
Ramaiola I, Padró T, Peña E, Juan-Babot O, Cubedo J, Martin-Yuste V, Sabate M, Badimon L. Changes in thrombus composition and profilin-1 release in acute myocardial infarction. Eur Heart J 2014; 36:965-75. [PMID: 25217443 DOI: 10.1093/eurheartj/ehu356] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 08/08/2014] [Indexed: 12/11/2022] Open
Abstract
AIM Thrombus formation is a dynamic process regulated by flow, blood cells, and plasma proteins. The present study was performed to investigate the characteristics of human coronary thrombus in ST-segment elevation myocardial infarction (STEMI). METHODS AND RESULTS Patients admitted with ST-elevation myocardial infarction, in which thrombectomy was performed, were included (n = 86). Intracoronary thrombi and blood from the culprit coronary site and the systemic circulation were obtained during percutaneous coronary intervention (PCI). Thrombi were categorized by onset-of-pain-to-PCI elapsed time in thrombus of <3 (T3) and more than 6 h of evolution (T6). Clinical, morphological, and proteomic variables were investigated. While T3 were mainly composed by platelets and fibrin(ogen), T6 were characterized by a reduced platelet content, increased leucocytes infiltration (including monocytes, neutrophils, T-cells, and B-cells), and appearance of undifferentiated progenitor cells. Significant differences between T3 and T6 were found in the cell cytoskeleton-associated proteome (beta-actin and tropomyosin 3 and 4). By discovery proteomics, we have identified profilin-1 (Pfn-1) in the coronary thrombi and detected higher levels in T3 than in T6. While plasma Pfn-1 levels were low in T3 patients, levels significantly increased in both coronary and peripheral circulation in T6 patients indicating release. In vitro platelet aggregation studies showed that platelets secrete Pfn-1 upon complete activation. CONCLUSION Coronary thrombi show rapid dynamic changes both in structure and cell composition as a function of elapsed onset-of-pain-to-PCI time. Aged ischaemic thrombi were more likely to have reduced Pfn-1 content releasing Pfn-1 to the circulation. Onset-of-pain-to-PCI elapsed time in STEMI patients and hence age of occlusive thrombus can be profiled by Pfn-1 levels found in the peripheral circulation.
Collapse
Affiliation(s)
- Ilaria Ramaiola
- Cardiovascular Research Center (CSIC-ICCC), IIB SantPau, c/Sant Antoni Mª Claret 167, 08025 Barcelona, Spain
| | - Teresa Padró
- Cardiovascular Research Center (CSIC-ICCC), IIB SantPau, c/Sant Antoni Mª Claret 167, 08025 Barcelona, Spain
| | - Esther Peña
- Cardiovascular Research Center (CSIC-ICCC), IIB SantPau, c/Sant Antoni Mª Claret 167, 08025 Barcelona, Spain
| | - Oriol Juan-Babot
- Cardiovascular Research Center (CSIC-ICCC), IIB SantPau, c/Sant Antoni Mª Claret 167, 08025 Barcelona, Spain
| | - Judit Cubedo
- Cardiovascular Research Center (CSIC-ICCC), IIB SantPau, c/Sant Antoni Mª Claret 167, 08025 Barcelona, Spain
| | | | | | - Lina Badimon
- Cardiovascular Research Center (CSIC-ICCC), IIB SantPau, c/Sant Antoni Mª Claret 167, 08025 Barcelona, Spain Cardiovascular Research Chair UAB, Barcelona, Spain
| |
Collapse
|
13
|
Alonso-Orgaz S, Moreno-Luna R, López JA, Gil-Dones F, Padial LR, Moreu J, de la Cuesta F, Barderas MG. Proteomic characterization of human coronary thrombus in patients with ST-segment elevation acute myocardial infarction. J Proteomics 2014; 109:368-81. [DOI: 10.1016/j.jprot.2014.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 01/04/2023]
|
14
|
Cubedo J, Padró T, Badimon L. Glycoproteome of human apolipoprotein A-I: N- and O-glycosylated forms are increased in patients with acute myocardial infarction. Transl Res 2014; 164:209-22. [PMID: 24709669 DOI: 10.1016/j.trsl.2014.03.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/12/2014] [Accepted: 03/13/2014] [Indexed: 02/07/2023]
Abstract
High-density lipoprotein (HDL) functionality, which is closely associated with its composition and transport capabilities, determines its role in atheroprotection. During acute phase processes, HDL seems to lose its anti-inflammatory and cytoprotective properties. In this study, we hypothesized that after an acute myocardial infarction apolipoprotein (Apo) A-I, the main protein component of HDL, might undergo changes in its molecular processing. Therefore, we have characterized the Apo A-I proteome during the evolution of new-onset acute myocardial infarction (AMI). To this end, serum Apo A-I was characterized by 2-dimensional electrophoresis/mass-spectrometry in controls and AMI patients at admission (within the first 6 hours after pain onset) and 8 hours, 16 hours, 24 hours, and 3 days afterward. The Apo A-I glycoproteome was analyzed by lectin-based glycoprotein isolation methods and deglycosylation assays, and Apo A-I serum levels were evaluated by enzyme-linked immunosorbent assay (ELISA). The Apo A-I proteomic signature (5 spots: 28 kDa/pI:5-5.75) was significantly altered in AMI patients 3 days after the event with respect to controls. Increased levels of N- and O-glycosylated Apo A-I forms were found post-AMI. Apo A-I serum levels measured by ELISA were significantly changed and related to left ventricular ejection fraction, troponin-T, and C-reactive protein. The Apo A-I molecule measured by ELISA corresponded to the main glycosylated spots and was specifically O-GlcNAcylated in AMI patients. Therefore, our results demonstrate that Apo A-I is both N- and O-glycosylated and that there is an increase in Apo A-I glycosylation after AMI. Furthermore, the specific increase in the O-GlcNAcylated forms could have a relevant prognostic value and a protective role in the evolution of AMI.
Collapse
Affiliation(s)
- Judit Cubedo
- Cardiovascular Research Center (CSIC-ICCC), Barcelona, Spain; Sant Pau Biomedical Research Institute Sant Pau, Barcelona, Spain
| | - Teresa Padró
- Cardiovascular Research Center (CSIC-ICCC), Barcelona, Spain; Sant Pau Biomedical Research Institute Sant Pau, Barcelona, Spain
| | - Lina Badimon
- Cardiovascular Research Center (CSIC-ICCC), Barcelona, Spain; Sant Pau Biomedical Research Institute Sant Pau, Barcelona, Spain; Cardiovascular Research Chair UAB, Barcelona, Spain.
| |
Collapse
|