1
|
Konrath S, Mailer RK, Beerens M, Englert H, Frye M, Kuta P, Preston RJS, Maas C, Butler LM, Roest M, de Laat B, Renné T. Intrinsic coagulation pathway-mediated thrombin generation in mouse whole blood. Front Cardiovasc Med 2022; 9:1008410. [PMID: 36518684 PMCID: PMC9742269 DOI: 10.3389/fcvm.2022.1008410] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/26/2022] [Indexed: 08/27/2023] Open
Abstract
Calibrated Automated Thrombography (CAT) is a versatile and sensitive method for analyzing coagulation reactions culminating in thrombin generation (TG). Here, we present a CAT method for analyzing TG in murine whole blood by adapting the CAT assay used for measuring TG in human plasma. The diagnostically used artificial and physiologic factor XII (FXII) contact activators kaolin, ellagic acid and polyphosphate (polyP) stimulated TG in murine blood in a dose-dependent manner resulting in a gradual increase in endogenous thrombin potential and peak thrombin, with shortened lag times and times to peak. The activated FXII inhibitor rHA-Infestin-4 and direct oral anticoagulants (DOACs) interfered with TG triggered by kaolin, ellagic acid and polyP and TG was completely attenuated in blood of FXII- (F12 -/-) and FXI-deficient (F11 -/-) mice. Moreover, reconstitution of blood from F12 -/- mice with human FXII restored impaired contact-stimulated TG. HEK293 cell-purified polyP also initiated FXII-driven TG in mouse whole blood and addition of the selective inhibitor PPX_Δ12 ablated natural polyP-stimulated TG. In conclusion, the data provide a method for analysis of contact activation-mediated TG in murine whole blood. As the FXII-driven intrinsic pathway of coagulation has emerged as novel target for antithrombotic agents that are validated in mouse thrombosis and bleeding models, our novel assay could expedite therapeutic drug development.
Collapse
Affiliation(s)
- Sandra Konrath
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Reiner K. Mailer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manu Beerens
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hanna Englert
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maike Frye
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Piotr Kuta
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roger J. S. Preston
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Coen Maas
- Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Lynn M. Butler
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Clinical Medicine, The Arctic University of Norway, Tromsø, Norway
- Clinical Chemistry and Blood Coagulation Research, Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Mark Roest
- Department of Platelet Pathophysiology, Synapse Research Institute, Maastricht, Netherlands
| | - Bas de Laat
- Department of Functional Coagulation, Synapse Research Institute, Maastricht, Netherlands
- Department of Data Analysis and Artificial Intelligence, Synapse Research Institute, Maastricht, Netherlands
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
2
|
Assessing Plasmin Generation in Health and Disease. Int J Mol Sci 2021; 22:ijms22052758. [PMID: 33803235 PMCID: PMC7963172 DOI: 10.3390/ijms22052758] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/20/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Fibrinolysis is an important process in hemostasis responsible for dissolving the clot during wound healing. Plasmin is a central enzyme in this process via its capacity to cleave fibrin. The kinetics of plasmin generation (PG) and inhibition during fibrinolysis have been poorly understood until the recent development of assays to quantify these metrics. The assessment of plasmin kinetics allows for the identification of fibrinolytic dysfunction and better understanding of the relationships between abnormal fibrin dissolution and disease pathogenesis. Additionally, direct measurement of the inhibition of PG by antifibrinolytic medications, such as tranexamic acid, can be a useful tool to assess the risks and effectiveness of antifibrinolytic therapy in hemorrhagic diseases. This review provides an overview of available PG assays to directly measure the kinetics of plasmin formation and inhibition in human and mouse plasmas and focuses on their applications in defining the role of plasmin in diseases, including angioedema, hemophilia, rare bleeding disorders, COVID-19, or diet-induced obesity. Moreover, this review introduces the PG assay as a promising clinical and research method to monitor antifibrinolytic medications and screen for genetic or acquired fibrinolytic disorders.
Collapse
|
3
|
Wan J, Konings J, Yan Q, Kelchtermans H, Kremers R, de Laat B, Roest M. A novel assay for studying the involvement of blood cells in whole blood thrombin generation. J Thromb Haemost 2020; 18:1291-1301. [PMID: 32108990 PMCID: PMC7317846 DOI: 10.1111/jth.14786] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 02/12/2020] [Accepted: 02/20/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Fluorogenic thrombin generation (TG) assays are commonly used to determine global coagulation phenotype in plasma. Whole blood (WB)-TG assays reach one step closer to physiology by involving the intrinsic blood cells, but erythrocytes cause variable quenching of the fluorescence signals, hampering its routine application. OBJECTIVE To develop a new assay for continuous WB-TG measurement. METHODS In the new WB-TG assay, the erythrocyte-caused distortion of signal was solved by continuously mixing the sample during the measurement. The assay was validated by evaluating the reproducibility and comparing with the paper-based WB-TG assay. Reconstituted human blood and WB from 119 healthy donors was tested to explore the influences of hematocrit and platelet count on TG. RESULTS This novel WB-TG assay showed good reproducibility while being less affected by contact activation compared with the previous paper-based assay. Reconstitution experiments showed that the lag time of TG was shortened by the addition of platelets but not erythrocytes. Increasing hematocrit strongly augmented the peak thrombin, even in the presence of high platelet counts. The lag time and peak of WB-TG of 119 healthy donors were positively related to erythrocyte count after adjusting for age, sex, and oral contraceptive use with multiple linear regression analyses. The reference range and interindividual variation of WB-TG were determined in the healthy cohort. CONCLUSIONS A novel WB-TG assay was developed, which is a straightforward tool to measure the involvement of platelets and erythrocytes in TG and may assist the research of blood cell-associated coagulation disorders.
Collapse
Affiliation(s)
- Jun Wan
- Synapse Research InstituteMaastrichtThe Netherlands
- Cardiovascular Research Institute MaastrichtMaastricht UniversityMaastrichtThe Netherlands
| | - Joke Konings
- Synapse Research InstituteMaastrichtThe Netherlands
- Cardiovascular Research Institute MaastrichtMaastricht UniversityMaastrichtThe Netherlands
| | - Qiuting Yan
- Synapse Research InstituteMaastrichtThe Netherlands
- Cardiovascular Research Institute MaastrichtMaastricht UniversityMaastrichtThe Netherlands
| | - Hilde Kelchtermans
- Synapse Research InstituteMaastrichtThe Netherlands
- Cardiovascular Research Institute MaastrichtMaastricht UniversityMaastrichtThe Netherlands
| | - Romy Kremers
- Synapse Research InstituteMaastrichtThe Netherlands
- Cardiovascular Research Institute MaastrichtMaastricht UniversityMaastrichtThe Netherlands
| | - Bas de Laat
- Synapse Research InstituteMaastrichtThe Netherlands
- Cardiovascular Research Institute MaastrichtMaastricht UniversityMaastrichtThe Netherlands
| | - Mark Roest
- Synapse Research InstituteMaastrichtThe Netherlands
- Cardiovascular Research Institute MaastrichtMaastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
4
|
Prior SM, Mann KG, Freeman K, Butenas S. Continuous thrombin generation in whole blood: New applications for assessing activators and inhibitors of coagulation. Anal Biochem 2018; 551:19-25. [PMID: 29746819 DOI: 10.1016/j.ab.2018.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/14/2018] [Accepted: 05/03/2018] [Indexed: 11/25/2022]
Abstract
Hemostatic tests have been utilized to clarify the blood coagulation potential. The novel thrombin generation (TG) assay of this study provides explicit information and is the most physiologically-relevant hemostatic test ex vivo. We describe how this assay allows for TG under a number of relevant circumstances. First, whole blood (WB) from healthy individuals was analyzed ± 5 pM tissue factor (TF) and ± contact pathway inhibition. Without an exogenous initiator TG was decreased and delayed, but addition of 5 pM TF shortened the lag phase and increased peak thrombin. Additional experiments included fresh WB from a trauma patient analyzed for endogenous activity and TG from healthy donors subjected to TG antagonists which prolonged the lag phase whereas TG agonists consistently shortened the lag phase in a dose dependent manner. Lastly, platelet-poor plasma was reconstituted with packed red blood cells and TG was monitored in the presence and absence of both TF as an activator and PCPS as a phospholipid surface. Our data illustrate the potential that this continuous TG assay has in the evaluation of disorders relevant to blood coagulation and in the monitoring of treatments administered in response to these disorders.
Collapse
Affiliation(s)
- Shannon M Prior
- University of Vermont, Department of Biochemistry, 360 South Park Drive, Colchester, VT 05446, USA.
| | - Kenneth G Mann
- University of Vermont, Department of Biochemistry, 360 South Park Drive, Colchester, VT 05446, USA.
| | - Kalev Freeman
- University of Vermont, Department of Surgery, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| | - Saulius Butenas
- University of Vermont, Department of Biochemistry, 360 South Park Drive, Colchester, VT 05446, USA.
| |
Collapse
|
5
|
Didelot M, Docq C, Wahl D, Lacolley P, Regnault V, Lagrange J. Platelet aggregation impacts thrombin generation assessed by calibrated automated thrombography. Platelets 2017; 29:156-161. [PMID: 29022492 DOI: 10.1080/09537104.2017.1356452] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A calibrated automated thrombogram (CAT) is performed usually with human platelet-free plasma (PFP) but may be more relevant with platelet-rich plasma (PRP). In this case, platelets are not stimulated by subendothelial molecules like collagen. Our aim was to assess the consequence of strong (collagen) or weak (ADP) induction of platelet release and aggregation on thrombin generation. Platelet aggregation in PRP was triggered with 10 µg/mL collagen or 10 µM ADP using a lumi-aggregometer. Thrombin generation curves were monitored by CAT in different conditions: PRP, PRP with activated platelets (actPRP), aggregated PRP (agPRP), aggregated platelets resuspended in autologous PFP (resPRP), PFP and PFP obtained after aggregation (agPFP). We found a 3-fold shortening of the lag time and time to peak and a marked increase in velocity and thrombin peak without changes in endogenous thrombin potential (ETP) in agPRP with both agonists compared with PRP. The same holds true in agPFP but with a marked increase in ETP compared with PFP. Similar changes in the kinetics of thrombin generation were observed with actPRP-collagen and to a lesser extent in resPRP-collagen compared with PRP. By contrast, there were no modifications of the thrombin generation curves in actPRP-ADP. Alpha-2-macroglobin-thrombin complexes were unchanged in the different PRP conditions but were increased in PFP prepared from agPFP compared to control PFP. Platelet aggregation during activation by agonists other than thrombin did not increase thrombin generation but accelerated its kinetics mainly via platelet content release and platelet-derived extracellular vesicules formation. In diseases characterized by altered platelet granule content or release as well as altered platelet activation, a platelet aggregation step prior to CAT analysis may be clinically relevant to improve laboratory estimation of the bleeding/thrombotic balance.
Collapse
Affiliation(s)
- Mélusine Didelot
- a INSERM, U1116 , Faculté de Médecine , Vandoeuvre-les-Nancy , France.,b Université de Lorraine , Nancy , France
| | - Clémence Docq
- a INSERM, U1116 , Faculté de Médecine , Vandoeuvre-les-Nancy , France.,b Université de Lorraine , Nancy , France
| | - Denis Wahl
- a INSERM, U1116 , Faculté de Médecine , Vandoeuvre-les-Nancy , France.,b Université de Lorraine , Nancy , France.,c CHRU Nancy , Vandœuvre-lès-Nancy , France
| | - Patrick Lacolley
- a INSERM, U1116 , Faculté de Médecine , Vandoeuvre-les-Nancy , France.,b Université de Lorraine , Nancy , France.,c CHRU Nancy , Vandœuvre-lès-Nancy , France
| | - Véronique Regnault
- a INSERM, U1116 , Faculté de Médecine , Vandoeuvre-les-Nancy , France.,b Université de Lorraine , Nancy , France.,c CHRU Nancy , Vandœuvre-lès-Nancy , France
| | - Jérémy Lagrange
- a INSERM, U1116 , Faculté de Médecine , Vandoeuvre-les-Nancy , France.,b Université de Lorraine , Nancy , France.,d Center for Thrombosis and Hemostasis , University Medical Center Mainz , Mainz , Germany
| |
Collapse
|
6
|
Thrombin Cleavage of Plasmodium falciparum Erythrocyte Membrane Protein 1 Inhibits Cytoadherence. mBio 2016; 7:mBio.01120-16. [PMID: 27624125 PMCID: PMC5021802 DOI: 10.1128/mbio.01120-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmodium falciparum malaria remains one of the most deadly infections worldwide. The pathogenesis of the infection results from the sequestration of infected erythrocytes (IRBC) in vital organs, including the brain, with resulting impairment of blood flow, hypoxia, and lactic acidosis. Sequestration occurs through the adhesion of IRBC to host receptors on microvascular endothelium by Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), a large family of variant surface antigens, each with up to seven extracellular domains that can bind to multiple host receptors. Consequently, antiadhesive therapies directed at single endothelial adhesion molecules may not be effective. In this study, we demonstrated that the serine protease thrombin, which is pivotal in the activation of the coagulation cascade, cleaved the major parasite adhesin on the surface of IRBC. As a result, adhesion under flow was dramatically reduced, and already adherent IRBC were detached. Thrombin cleavage sites were mapped to the Duffy binding-like δ1 (DBLδ1) domain and interdomains 1 and 2 in the PfEMP1 of the parasite line IT4var19. Furthermore, we observed an inverse correlation between the presence of thrombin and IRBC in cerebral malaria autopsies of children. We investigated a modified (R67A) thrombin and thrombin inhibitor, hirugen, both of which inhibit the binding of substrates to exosite I, thereby reducing its proinflammatory properties. Both approaches reduced the barrier dysfunction induced by thrombin without affecting its proteolytic activity on PfEMP1, raising the possibility that thrombin cleavage of variant PfEMP1 may be exploited as a broadly inhibitory antiadhesive therapy. Plasmodium falciparum malaria is the third leading cause of mortality due to a pathogen, with 214 million people infected and 438,000 deaths annually. The adhesion of Plasmodium falciparum-infected erythrocytes (IRBC) to microvascular endothelium is a major pathological process in severe malaria. While the recent implementation of artemisinin-based antimalarial therapy for severe malaria improves patient survival by targeting all parasite stages, antiparasite drugs alone may not immediately reverse pathophysiological processes in occluded vessels. Here we show that thrombin, an enzyme intimately involved in the clotting process, cleaves the main parasite adhesin expressed on the surface of IRBC, thereby preventing and reversing the binding of IRBC to endothelial cells. This beneficial effect of thrombin can be achieved by modified thrombins that cause significantly less clotting and vessel leakage while preserving the ability to cleave the parasite protein. Our results provide the basis for using modified thrombins as adjunctive therapy in severe malaria.
Collapse
|