1
|
Bose D, Famurewa AC, Akash A, Othman EM. The Therapeutic Mechanisms of Honey in Mitigating Toxicity from Anticancer Chemotherapy Toxicity: A Review. J Xenobiot 2024; 14:1109-1129. [PMID: 39189178 PMCID: PMC11348124 DOI: 10.3390/jox14030063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 08/28/2024] Open
Abstract
Within the domain of conventional oncochemotherapeutics, anticancer chemotherapy (AC) has emerged as a potent strategy for the treatment of cancers. AC is the mainstay strategy for solid and non-solid cancer treatment. Its mechanistic action targets the blockage of DNA transcription and the dysregulation of cell cycle machinery in cancer cells, leading to the activation of death pathways. However, the attendant side effect of toxicity inflicted by AC on healthy tissues presents a formidable challenge. The crucial culprit in the AC side effect of toxicity is unknown, although oxidative stress, mitochondrial impairment, inflammatory cascades, autophagy dysregulation, apoptosis, and certain aberrant signaling have been implicated. Honey is a natural bee product with significant health benefits and pharmacological properties. Interestingly, the literature reports that honey may proffer a protection mechanism for delicate tissue/organs against the side effect of toxicity from AC. Thus, this review delves into the prospective role of honey as an alleviator of the AC side effect of toxicity; it provides an elucidation of the mechanisms of AC toxicity and honey's molecular mechanisms of mitigation. The review endeavors to unravel the specific molecular cascades by which honey orchestrates its mitigating effects, with the overarching objective of refining its application as an adjuvant natural product. Honey supplementation prevents AC toxicity via the inhibition of oxidative stress, NF-κB-mediated inflammation, and caspase-dependent apoptosis cascades. Although there is a need for increased mechanistic studies, honey is a natural product that could mitigate the various toxicities induced by AC.
Collapse
Affiliation(s)
- Debalina Bose
- P.K. Sinha Centre for Bioenergy and Renewables, Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur 721302, West Bengal, India;
| | - Ademola C. Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike Ikwo, P.M.B. 1010, Abakaliki 482131, Nigeria
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Aman Akash
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany;
| | - Eman M. Othman
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany;
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Cancer Therapy Research Center (CTRC), Department of Biochemistry-I, Biocenter, University of Wuerzburg, Theodor-Boveri-Weg 1, 97074 Wuerzburg, Germany
| |
Collapse
|
2
|
Kassym L, Kussainova A, Semenova Y, McLoone P. Antimicrobial Effect of Honey Phenolic Compounds against E. coli-An In Vitro Study. Pharmaceuticals (Basel) 2024; 17:560. [PMID: 38794130 PMCID: PMC11123796 DOI: 10.3390/ph17050560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Growing concern over antimicrobial resistance in chronic wound patients necessitates the exploration of alternative treatments from natural sources. This study suggests that honey's phenolic compounds may offer antimicrobial benefits, warranting further investigation for therapeutic development. The main aim of this study was to investigate the antimicrobial activity of phenolic compounds and to determine the effects of their sub-inhibitory concentrations against Escherichia coli (E. coli). 3-phenyllactic acid (PLA), p-coumaric acid (PCA), and phloretin were tested against the bacterial strain of E. coli ATCC 25922. Comparison of the antimicrobial activity of honey constituents in vitro was performed using a broth culture assay. Measurement of the inhibitory properties of constituents in vitro was conducted using disc and well diffusion assays. The effects of sub-inhibitory concentrations of PCA on the susceptibility of E. coli ATCC 25922 to penicillin-streptomycin were tested. The results demonstrated that PLA was the most efficient antimicrobial agent, followed by PCA, whereas phloretin, at lower (2 mg/mL) concentrations, led to an increase in the growth of E. coli. Various modifications of the agar diffusion assay did not reveal the antibacterial properties of the studied phytochemicals. The enhancing effect of a sub-inhibitory concentration of PCA in cooperation with penicillin-streptomycin was shown. These findings might be helpful for the further investigation and development of new antimicrobial agents for the treatment of skin infections and wounds.
Collapse
Affiliation(s)
- Laura Kassym
- Department of General Medical Practice with a Course of Evidence-Based Medicine, NJSC “Astana Medical University”, Astana 010000, Kazakhstan;
| | - Assiya Kussainova
- School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan;
| | - Yuliya Semenova
- School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan;
| | - Pauline McLoone
- School of Medicine, University of Kurdistan Hewler, Erbil 44001, Iraq;
| |
Collapse
|
3
|
CHETTOUM A, FEKNOUS N, BOUMENDJEL M, MEKHANCHA DE, BOUDIDA Y, SEDARI A, BERREDJEM A, ATI H, ZAIDI K, BOUMENDJEL A, MESSARAH M. Biological, physicochemical and antibacterial properties of pure honey harvested at the municipality of Seraïdi (Annaba, north east of Algeria). FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.41022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
| | | | | | - Djamel-Eddine MEKHANCHA
- Brothers Mentouri Constantine 1 University, Algeria; Salah Boubnider Constantine 3 University, Algeria
| | | | | | | | - Hanène ATI
- Chadli Bendjedid El-Tarf University, Algeria
| | | | | | | |
Collapse
|
4
|
Dehumidified-Air-Assisted Spray Drying of Buckwheat Honey with Maltodextrin and Skim Milk Powder as Carriers. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11073150] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Buckwheat honey is proven to demonstrate health beneficial properties; however, its application in the industry is limited due to its high viscosity and syrupy-like consistency. The paper aimed to investigate process performance and physiochemical properties of carrier-reduced buckwheat honey. Honey was spray dried conventionally (inlet/outlet drying temperature: 180 °C/80 °C) and at low drying temperature with dehumidified air application (inlet/outlet drying temperature: 80 °C/45 °C) with maltodextrin as traditional carrier and alternatively with skim milk powder. The results of this study indicate that lowering the humidity of drying air enabled a decrease in carrier content of up to 25% (w/w solids), following powder recovery over 87%, which has not been recorded before for buckwheat honey powders. The results for the physicochemical properties proved that the application of the dehumidified air and skim milk powder as a carrier ameliorated their physiochemical properties and the antioxidant activity. Furthermore, the energy consumption of dehumidified-air-assisted spray drying was investigated as a basis for potential industrial application of this innovative method, which has not been studied in the literature before. The industrial application of this method must be carefully analyzed with regard to its advantages, as the energy consumption is significantly higher than in conventional spray drying.
Collapse
|
5
|
Kumari A, Chaudhary HK. Nutraceutical crop buckwheat: a concealed wealth in the lap of Himalayas. Crit Rev Biotechnol 2020; 40:539-554. [PMID: 32290728 DOI: 10.1080/07388551.2020.1747387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Buckwheat is a crop that has gained considerable interest worldwide due to its nutritional, economical, and pharmaceutical values. To ensure food and nutritional security in a scenario of global climate change, this pseudocereal is a competent alternative to staple crops. With rising knowledge regarding the nutraceutical potential, the popularity of this species is expected to increase further in coming years. The main bioactive component of this species is rutin that has been proven to have a wide range of health-promoting benefits. Due to breeding constraints, asynchronous maturity, seed shattering, and restricted distribution, this species holds the status of an underutilized or neglected crop in many parts of the world. In the North-western Himalayan zone, it is an integral part of local dietary intake and is grown as a second crop after harvesting barley and peas. Fagopyrum esculentum and F. tataricum are the species of buckwheat cultivated in the North-western Himalayas. However, more studies in the direction of conservation, utilization, and genetic amelioration of plant genetic resources are needed to sustain food security in Southeast Asia. The present review paper accentuates the multicore potential of buckwheat besides highlighting the commercial and pharmaceutical perspective. This article also focuses on the conservation and sustainable utilization of Himalayan gene pools, desirable agronomic traits, and genetic diversity besides focusing on the biochemical and molecular response of Fagopyrum to biotic and abiotic stress including modulation of the rutin content. The role of biotechnological interventions and future prospects are also summarized.
Collapse
Affiliation(s)
- Anita Kumari
- Molecular Cytogenetics and Tissue Culture Lab, Department of Crop Improvement, CSK HP Agricultural University, Palampur, Himachal Pradesh, India
| | - Harinder Kumar Chaudhary
- Molecular Cytogenetics and Tissue Culture Lab, Department of Crop Improvement, CSK HP Agricultural University, Palampur, Himachal Pradesh, India
| |
Collapse
|
6
|
Dżugan M, Grabek-Lejko D, Swacha S, Tomczyk M, Bednarska S, Kapusta I. Physicochemical quality parameters, antibacterial properties and cellular antioxidant activity of Polish buckwheat honey. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100538] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Phenolics and Carbohydrates in Buckwheat Honey Regulate the Human Intestinal Microbiota. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6432942. [PMID: 32184894 PMCID: PMC7061112 DOI: 10.1155/2020/6432942] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/13/2019] [Accepted: 01/08/2020] [Indexed: 12/26/2022]
Abstract
Intestinal microbiota plays an important role in human health. The aim of this paper is to determine the impact of the phenolics and carbohydrate in buckwheat honey on human intestinal microbiota. We investigated the phenolics and carbohydrate compositions of eight buckwheat honey samples using high-performance liquid chromatography and ion chromatography. The human intestinal microbes were cultured in a medium supplemented with eight buckwheat honey samples or the same concentration of fructooligosaccharides. The bacterial 16S rDNA V4 region sequence of DNA extraction was determined by the Illumina MiSeq platform. 12 phenolics and 4 oligosaccharides were identified in almost all buckwheat honey samples, namely, protocatechuic acid, 4-hydroxy benzoic acid, vanillin, gallic acid, p-coumaric acid, benzoic acid, isoferulic acid, methyl syringate, trans,trans-abscisic acid, cis,trans-abscisic acid, ferulic acid, 4-hydroxybenzaldehyde, kestose, isomaltose, isomaltotriose, and panose. Most notably, this is the first study to reveal the presence of 4-hydroxybenzaldehyde in buckwheat honey. 4-Hydroxybenzaldehyde seems to be a land marker of buckwheat honey. Our results indicate that buckwheat honey can provide health benefits to the human gut by selectively supporting the growth of indigenous Bifidobacteria and restraining the pathogenic bacterium in the gut tract. We infer that buckwheat honey may be a type of natural intestinal-health products.
Collapse
|
8
|
Inhibitory effects of Cinnamaldehyde, Carvacrol, and honey on the expression of exoS and ampC genes in multidrug-resistant Pseudomonas aeruginosa isolated from burn wound infections. Microb Pathog 2019; 140:103946. [PMID: 31874231 DOI: 10.1016/j.micpath.2019.103946] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022]
Abstract
This study aimed to evaluate the effects of Cinnamaldehyde, Carvacrol, and honey either alone or in combinations on the expression of exoS and ampC genes in multidrug-resistant (MDR) P. aeruginosa isolates. Thirty-five P. aeruginosa isolates were recovered from burn wound infections of patients admitted to the burn ward of Besat hospital of Hamadan, Iran, during 2018. Antibiotic susceptibility testing was performed using the Kirby-Bauer disk diffusion method to identify MDR isolates. The antibacterial effects of Cinnamaldehyde, Carvacrol, and honey either alone or in combinations with each other were compared to Imipenem (as the control group) using the broth dilution method. The expressions of exoS and ampC genes were determined in bacteria treated with sub-minimum inhibitory concentration (MIC) of the ternary combination of Cinnamaldehyde, Carvacrol, and honey by Real-Time-PCR. The data were analyzed using SPSS software applying student t-test, Kruskal-Wallis, and Mann-Whitney U tests. The P-value less than 0.05 was considered as statistically significant. The average MICs of Cinnamaldehyde, Carvacrol, and honey were 0.82-0.01, 0.01-0.6, and 62.5-250 μg/mL, respectively. The average MIC of the mentioned compounds was 430 times lower than that of Imipenem. A synergistic effect was detected between these drugs against 70% of the isolates. At sub-MIC concentration, the triple combination of Cinnamaldehyde, Carvacrol, and honey reduced the expressions of exoS and ampC genes by 6.12 and 2.85 folds, respectively. The combination of Cinnamaldehyde, Carvacrol, and honey showed a higher antibacterial effect than Imipenem. However, it needs confirmation with more isolates.
Collapse
|
9
|
Grecka K, Kuś PM, Worobo RW, Szweda P. Study of the Anti-Staphylococcal Potential of Honeys Produced in Northern Poland. Molecules 2018; 23:molecules23020260. [PMID: 29382105 PMCID: PMC6017226 DOI: 10.3390/molecules23020260] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 01/21/2023] Open
Abstract
The antimicrobial activity of 144 samples of honeys including 95 products from apiaries located in Northern Poland was evaluated. The antibacterial activity of those natural products, their thermal stability, and activity in the presence of catalase was investigated by microdilution assays in titration plates. The MTT assay was performed for the determination of anti-biofilm activity. Spectrophotometric assays were used for the determination of antioxidant potential, total phenolic content, and ability to generate hydrogen peroxide. Some of the investigated honeys exhibited surprisingly high antimicrobial, especially anti-staphylococcal, potential, with Minimal Inhibitory Concentration (MIC) values of only 1.56% (v/v). Much higher resistance was observed in the case of staphylococci growing as biofilms. Lower concentrations of the product, up to 12.5% (v/v) stimulated its growth and effective eradication of biofilm required concentration of at least 25% (v/v). Hydrogen peroxide has been identified as a crucial contributor to the antimicrobial activity of honeys supplied by Polish beekeepers. However, some of the results suggest that phytochemicals, especially polyphenols, play an important role depending on botanical source (both positive, e.g., in the case of buckwheat honeys as well as negative, e.g., in the case of some rapeseed honeys) in their antimicrobial potential.
Collapse
Affiliation(s)
- Katarzyna Grecka
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Piotr M Kuś
- Department of Pharmacognosy, Wrocław Medical University, ul. Borowska 211a, 50-556 Wrocław, Poland.
| | - Randy W Worobo
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA.
| | - Piotr Szweda
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland.
| |
Collapse
|