1
|
Chang YL, Nfor ON, Chou YH, Hsiao CH, Zhong JH, Huang CN, Liaw YP. Risk of diabetes mellitus based on the interactive association between G6PD rs72554664 polymorphism and sex in Taiwan Biobank individuals. Sci Rep 2024; 14:12802. [PMID: 38834682 PMCID: PMC11150262 DOI: 10.1038/s41598-024-63361-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
The presence of glucose-6-phosphate dehydrogenase (G6PD) deficiency may increase the risk of type 2 diabetes mellitus (T2DM), with differing prevalence between males and females. Although G6PD deficiency is an X-linked genetic condition, its interaction with sex regarding T2DM risk among the Taiwanese population has not been fully explored. This study aimed to investigate the association between G6PD deficiency and T2DM risk in the Taiwanese population, focusing on the potential influence of sex. Data were obtained from the Taiwan Biobank (TWB) database, involving 85,334 participants aged 30 to 70 years. We used multiple logistic regression analysis to assess the interaction between G6PD rs72554664 and sex in relation to T2DM risk. The T2DM cohort comprised 55.35% females and 44.65% males (p < 0.001). The TC + TT genotype of rs72554664 was associated with an increased risk of T2DM, with an odds ratio (OR) of 1.95 (95% CI: 1.39-2.75), and males showed an OR of 1.31 (95% CI: 1.19-1.44). Notably, the G6PD rs72554664-T allelic variant in hemizygous males significantly elevated the T2DM risk (OR), 4.57; p < 0.001) compared to females with the CC genotype. Our findings suggest that the G6PD rs72554664 variant, in conjunction with sex, significantly affects T2DM risk, particularly increasing susceptibility in males. The association of the G6PD rs72554664-T allelic variant with a higher risk of T2DM highlights the importance of sex-specific mechanisms in the interplay between G6PD deficiency and T2DM.
Collapse
Affiliation(s)
- Yen-Lin Chang
- Department of Pharmacy, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung, 40201, Taiwan
- Center of Evidence-Based Medicine, Taichung Veterans General Hospital, Taichung, 407219, Taiwan
| | - Oswald Ndi Nfor
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung, 40201, Taiwan
| | - Ying-Hsiang Chou
- Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung, 40201, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan
- School of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, 40201, Taiwan
| | - Chih-Hsuan Hsiao
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung, 40201, Taiwan
| | - Ji-Han Zhong
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung, 40201, Taiwan
| | - Chien-Ning Huang
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, 40201, Taiwan.
- Institute of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan.
| | - Yung-Po Liaw
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung, 40201, Taiwan.
- Institute of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan.
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, 40201, Taiwan.
| |
Collapse
|
2
|
Shenkutie TT, Nega D, Hailu A, Kepple D, Witherspoon L, Lo E, Negash MT, Adamu A, Gebremichael SG, Gidey B, Tasew G, Feleke SM, Kebede T. Prevalence of G6PD deficiency and distribution of its genetic variants among malaria-suspected patients visiting Metehara health centre, Eastern Ethiopia. Malar J 2022; 21:260. [PMID: 36076204 PMCID: PMC9461287 DOI: 10.1186/s12936-022-04269-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 08/17/2022] [Indexed: 12/04/2022] Open
Abstract
Background Glucose-6-phosphate dehydrogenase (G6PD) is cytosolic enzyme, which has a vital role for the integrity and functioning of red blood cells. Lower activity of this enzyme leads to the occurrence of acute haemolytic anaemia after exposure to oxidative stressors like primaquine. Primaquine is an important drug for the radical cure of Plasmodium vivax and blocking transmission of Plasmodium falciparum, and thereby enhancing malaria elimination. However, there is a need to identify G6PD deficient individuals and administer the drug with caution due to its haemolytic side effects. The main objective of this study is to determine the prevalence of G6PD deficiency among malaria-suspected individuals. Methods A facility-based cross-sectional study was conducted from September 2020 to September 2021 in Metehara Health Centre, Eastern Ethiopia. A structured questionnaire was used to collect the socio-demographic and clinical information of the study participants. Capillary and venous blood samples were collected based on standard procedures for onsite screening, dried blood spot preparation, and malaria microscopy. The G6PD enzyme activity was measured by careSTART™ G6PD biosensor analyzer. Data was entered and analysed by SPSS. Results A total of 498 study participants were included in the study, of which 62% (309) were males. The overall prevalence of G6PD deficiency based on the biosensor screening was 3.6% (18/498), of which 2.9% and 4.8% were males and females, respectively. Eleven of the G6PD deficient samples had mutations confirmed by G6PD gene sequencing analysis. Mutations were detected in G267 + 119C/T, A376T, and ChrX:154535443. A significant association was found in sex and history of previous malaria infection with G6PD deficiency. Conclusions The study showed that the G6PD deficient phenotype exists in Metehara even if the prevalence is not very high. G267 + 119C/T mutation is the predominant G6PD variant in this area. Therefore, malaria patient treatment using primaquine should be monitored closely for any adverse effects. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04269-5.
Collapse
Affiliation(s)
- Tassew Tefera Shenkutie
- Department of Medical Laboratory Sciences, Debre Berhan University, Debre Berhan, Ethiopia. .,Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Addis Ababa, Ethiopia. .,Bacterial, Parasitic, and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia.
| | - Desalegn Nega
- Bacterial, Parasitic, and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Asrat Hailu
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Daniel Kepple
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, USA
| | - Logan Witherspoon
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, USA
| | - Eugenia Lo
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, USA.,School of Data Science, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Meshesha Tsigie Negash
- Bacterial, Parasitic, and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Aderaw Adamu
- Department of Medical Laboratory Sciences, Wollo University, Dessie, Ethiopia
| | | | - Bokretsion Gidey
- Bacterial, Parasitic, and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Geremew Tasew
- Bacterial, Parasitic, and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Sindew M Feleke
- Bacterial, Parasitic, and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Tadesse Kebede
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
3
|
Ali Albsheer MM, Lover AA, Eltom SB, Omereltinai L, Mohamed N, Muneer MS, Mohamad AO, Abdel Hamid MM. Prevalence of glucose-6-phosphate dehydrogenase deficiency (G6PDd), CareStart qualitative rapid diagnostic test performance, and genetic variants in two malaria-endemic areas in Sudan. PLoS Negl Trop Dis 2021; 15:e0009720. [PMID: 34699526 PMCID: PMC8547650 DOI: 10.1371/journal.pntd.0009720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 08/09/2021] [Indexed: 11/24/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase deficiency (G6PDd) is the most common enzymopathy globally, and deficient individuals may experience severe hemolysis following treatment with 8-aminoquinolines. With increasing evidence of Plasmodium vivax infections throughout sub-Saharan Africa, there is a pressing need for population-level data at on the prevalence of G6PDd. Such evidence-based data will guide the expansion of primaquine and potentially tafenoquine for radical cure of P. vivax infections. This study aimed to quantify G6PDd prevalence in two geographically distinct areas in Sudan, and evaluating the performance of a qualitative CareStart rapid diagnostic test as a point-of-care test. Blood samples were analyzed from 491 unrelated healthy persons in two malaria-endemic sites in eastern and central Sudan. A pre-structured questionnaire was used which included demographic data, risk factors and treatment history. G6PD levels were measured using spectrophotometry (SPINREACT) and first-generation qualitative CareStart rapid tests. G6PD variants (202 G>A; 376 A>G) were determined by PCR/RFLP, with a subset confirmed by Sanger sequencing. The prevalence of G6PDd by spectrophotometry was 5.5% (27/491; at 30% of adjusted male median, AMM); 27.3% (134/491; at 70% of AMM); and 13.1% (64/490) by qualitative CareStart rapid diagnostic test. The first-generation CareStart rapid diagnostic test had an overall sensitivity of 81.5% (95%CI: 61.9 to 93.7) and negative predictive value of 98.8% (97.3 to 99.6). All persons genotyped across both study sites were wild type for the G6PD G202 variant. For G6PD A376G all participants in New Halfa had wild type AA (100%), while in Khartoum the AA polymorphism was found in 90.7%; AG in 2.5%; and GG in 6.8%. Phenotypic G6PD B was detected in 100% of tested participants in New Halfa while in Khartoum, the phenotypes observed were B (96.2%), A (2.8%), and AB (1%). The African A- phenotype was not detected in this study population. Overall, G6PDd prevalence in Sudan is low-to-moderate but highly heterogeneous. Point-of-care testing with the qualitative CareStart rapid diagnostic test demonstrated moderate performance with moderate sensitivity and specificity but high negative predicative value. The two sites harbored primarily the African B phenotype. A country-wide survey is recommended to understand GP6PD deficiencies more comprehensively in Sudan.
Collapse
Affiliation(s)
- Musab M. Ali Albsheer
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
- Faculty of Medical Laboratory Sciences, Sinnar University, Sennar, Sudan
| | - Andrew A. Lover
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts-Amherst; Amherst, Massachusetts, United States of America
| | - Sara B. Eltom
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Leena Omereltinai
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Nouh Mohamed
- Department of Parasitology and Medical Entomology, Faculty of Medical Laboratory Sciences, Nile University, Khartoum, Sudan
| | - Mohamed S. Muneer
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Abdelrahim O. Mohamad
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Muzamil Mahdi Abdel Hamid
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| |
Collapse
|
4
|
Juchniewicz P, Piotrowska E, Kloska A, Podlacha M, Mantej J, Węgrzyn G, Tukaj S, Jakóbkiewicz-Banecka J. Dosage Compensation in Females with X-Linked Metabolic Disorders. Int J Mol Sci 2021; 22:ijms22094514. [PMID: 33925963 PMCID: PMC8123450 DOI: 10.3390/ijms22094514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 01/19/2023] Open
Abstract
Through the use of new genomic and metabolomic technologies, our comprehension of the molecular and biochemical etiologies of genetic disorders is rapidly expanding, and so are insights into their varying phenotypes. Dosage compensation (lyonization) is an epigenetic mechanism that balances the expression of genes on heteromorphic sex chromosomes. Many studies in the literature have suggested a profound influence of this phenomenon on the manifestation of X-linked disorders in females. In this review, we summarize the clinical and genetic findings in female heterozygotic carriers of a pathogenic variant in one of ten selected X-linked genes whose defects result in metabolic disorders.
Collapse
Affiliation(s)
- Patrycja Juchniewicz
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (P.J.); (A.K.); (J.J.-B.)
| | - Ewa Piotrowska
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.P.); (J.M.); (G.W.); (S.T.)
- Correspondence: ; Tel.: +48-58-523-6040
| | - Anna Kloska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (P.J.); (A.K.); (J.J.-B.)
| | - Magdalena Podlacha
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.P.); (J.M.); (G.W.); (S.T.)
| | - Jagoda Mantej
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.P.); (J.M.); (G.W.); (S.T.)
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.P.); (J.M.); (G.W.); (S.T.)
| | - Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.P.); (J.M.); (G.W.); (S.T.)
| | - Joanna Jakóbkiewicz-Banecka
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (P.J.); (A.K.); (J.J.-B.)
| |
Collapse
|