1
|
Rouzi L, El-Hamri H, Cherkani-Hassani A, Benbounou N, El Kari K, Bouhya S, Aguenaou H, Jouhadi Z, Fekhaoui M. Lead in umbilical cord blood and associated factors in Casablanca Morocco: A preliminary results. J Trace Elem Med Biol 2024; 85:127494. [PMID: 39024849 DOI: 10.1016/j.jtemb.2024.127494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Lead is the most common toxic metal to which Moroccans are exposed. Given the susceptibility of the fetus to lead, it is crucial to assess prenatal lead exposure. However, in Morocco, no study has assessed prenatal exposure to lead. The main goals of the present study are to determine lead concentration in umbilical cord blood and identify risk factors for prenatal lead exposure in Casablanca, Morocco. METHODS To achieve these purposes, 87 cord blood lead samples were collected from mothers-baby pairs from January to December 2019. Indeed, a structured questionnaire was used to collect socio-demographic characteristics, obstetric data, leisure, cultural habits, and environmental information. Cord blood lead level was analyzed by inductively coupled plasma-mass spectrometry. RESULTS The median lead concentration was 4.902 µg/dl with a minimum and maximum of 0.833 µg/dl and 23.593 µg/dl, respectively. A high proportion of the newborns (65.52 %) had cord blood lead levels above the Centers for Disease Control (CDC) allowable threshold limit (3.5 µg/dl). Statistical analysis was performed to assess the association between blood levels and the above factors. Lead levels in cord blood were significantly associated with the maternal educational level, anemia history, delivery mode, passive smoking during pregnancy as well as with the frequency of consumption of tea. CONCLUSION This study provides the first data on lead levels in newborns. Cord blood lead levels were high in the majority of the participants, these results reinforce the need to establish health surveillance programs in Morocco.
Collapse
Affiliation(s)
- Latifa Rouzi
- Department of Zoology and Animal Ecology, Scientific Institute, Mohammed V University in Rabat, B.P. 1040, Ibn Battuta Av, Rabat 10100, Morocco.
| | | | - Abha Cherkani-Hassani
- Laboratory of Analytical Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, 10100, Morocco
| | - Nadia Benbounou
- Laboratory LIMAT, Hassan II University, B.P 7955, Casablanca, Morocco; The Multi laboratory LC2A, N°182, Industrial Zone Mohammedia, Morocco
| | | | - Said Bouhya
- Department of Maternity, Children's Ibn Rochd University Hospital, Hassan II University, Casablanca, Morocco
| | - Hassan Aguenaou
- Ibn Tofail University- CNESTEN, Joint, Unit of Nutrition, Health and Environment, Laboratory of Biology and Health, FSK, Regional Designated Center for Nutrition, AFRA/IAEA), Kenitra 14000, Morocco
| | - Zineb Jouhadi
- Department of Pediatric Infectious Diseases, Children's Ibn Rochd University Hospital, Hassan II University, Casablanca, Morocco
| | - Mohammed Fekhaoui
- Department of Zoology and Animal Ecology, Scientific Institute, Mohammed V University in Rabat, B.P. 1040, Ibn Battuta Av, Rabat 10100, Morocco
| |
Collapse
|
2
|
Jarczewska M, Sokal M, Olszewski M, Malinowska E. Studies on the Aptasensor Miniaturization for Electrochemical Detection of Lead Ions. BIOSENSORS 2024; 14:110. [PMID: 38392029 PMCID: PMC10886534 DOI: 10.3390/bios14020110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/11/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Lead poses severe effects on living organisms, and since Pb2+ ions tend to accumulate in different organs, it is crucial to monitor Pb2+ concentration in samples such as water and soil. One of the approaches is the utilization of biosensors combined with aptamer-based layers for the electrochemical detection of lead ions. Herein, we present the studies of applying miniaturized screen-printed transducers as solid surfaces to fabricate aptamer layers. As the research is the direct continuation of our previous studies regarding the use of gold disk electrodes, the working parameters of elaborated aptasensors were defined, including the range of linear response (10-100 nM), selectivity as well as stability, regeneration, and feasibility of application for the analysis of real samples. This was achieved using voltammetric techniques including cyclic and square-wave voltammetry in the presence of methylene blue redox indicator.
Collapse
Affiliation(s)
- Marta Jarczewska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Marta Sokal
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Marcin Olszewski
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Koszykowa 75, 00-664 Warsaw, Poland;
| | - Elzbieta Malinowska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
- Center for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 19 Poleczki, 02-822 Warsaw, Poland
| |
Collapse
|
3
|
Wechselberger C, Messner B, Bernhard D. The Role of Trace Elements in Cardiovascular Diseases. TOXICS 2023; 11:956. [PMID: 38133357 PMCID: PMC10747024 DOI: 10.3390/toxics11120956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Essential trace elements play an important role in human physiology and are associated with various functions regulating cellular metabolism. Non-essential trace elements, on the other hand, often have well-documented toxicities that are dangerous for the initiation and development of diseases due to their widespread occurrence in the environment and their accumulation in living organisms. Non-essential trace elements are therefore regarded as serious environmental hazards that are harmful to health even in low concentrations. Many representatives of these elements are present as pollutants in our environment, and many people may be exposed to significant amounts of these substances over the course of their lives. Among the most common non-essential trace elements are heavy metals, which are also associated with acute poisoning in humans. When these elements accumulate in the body over years of chronic exposure, they often cause severe health damage in a variety of tissues and organs. In this review article, the role of selected essential and non-essential trace elements and their role in the development of exemplary pathophysiological processes in the cardiovascular system will be examined in more detail.
Collapse
Affiliation(s)
- Christian Wechselberger
- Division of Pathophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Barbara Messner
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria;
| | - David Bernhard
- Division of Pathophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Johannes Kepler University Linz, 4020 Linz, Austria
- Clinical Research Institute for Cardiovascular and Metabolic Diseases, Medical Faculty, Johannes Kepler University Linz, 4020 Linz, Austria
| |
Collapse
|
4
|
Zhao S, Yang J, Wang L, Dong B, Mao Y, Qu H, Zheng L. Selective detection of Pb 2+ ions based on a graphene field-effect transistor gated by DNAzymes in binding mode. Biosens Bioelectron 2023; 237:115549. [PMID: 37523810 DOI: 10.1016/j.bios.2023.115549] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/13/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
Heavy metal contamination has become a severe threat to dairy products through contaminated feed and the environment water. Among them, Pb(II) is highly toxic to the human body even under minimal exposure. Therefore, establishing a fast and sensitive Pb2+ detection technology is significant for rapid screening of vast number of dairy products. Hererin, we report the development of a sensitive and selective Pb(II) biosensor based on a solution-gated graphene transistor (SGGT) with the gate modified by Pb2+-dependent DNAzyme probes. It has also been explored that the DNAzymes working in simple binding mode integrate better with the SGGT than those working in normal catalytic mode, showing significantly stronger channel current responses and lower detection limit down to 0.39 μg/L (or 1.9 nM). Finally, the biosensor was practicably applied to the detection of lead ions in pure milk samples with a high recovery rate. We believe that this work reveals the best strategy for integrating metal ion dependent DNAzyme probes with SGGT sensing platforms to selectively and sensitively detect many metal ions.
Collapse
Affiliation(s)
- Siyu Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jing Yang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Lu Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China; Intelligent Manufacturing Institute of HFUT, Hefei, 230009, China
| | - Baolei Dong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yu Mao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hao Qu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China; Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei, 230009, China.
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China; Intelligent Interconnected Systems Laboratory of Anhui Province, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
5
|
Vaphiades MS, Carey AR. Take the lead. Surv Ophthalmol 2023; 68:1006-1010. [PMID: 37211095 DOI: 10.1016/j.survophthal.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
A 23-year-old previously healthy woman presented with headache, generalized seizures, ataxia, encephalopathy, abdominal pain, nausea, and vomiting culminating in a 40-pound weight loss. A contrasted magnetic resonance imaging scan of the brain showed T2/FLAIR hyperintensities in the sulci of the occipital and parietal lobes, a punctate focus of restricted diffusion along the inferior aspect of the left caudate head and an empty sella. A lumbar puncture showed an opening pressure of 55 cm H2O, and kidney, ureter, and bladder X ray showed a radiopaque particle in the colon. Serum lead level was 85 mcg/dL (<3.5). Blood smear showed foreign bodies identified as lead particles in the blood with basophilic stippling of RBCs. She was treated with chelation therapy and bowel irrigation and eventually recovered. Further investigation indicated that she was being slowly poisoned by her husband, a chiropractor who had access to lead.
Collapse
Affiliation(s)
- Michael S Vaphiades
- Callahan Eye Hospital, Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Andrew R Carey
- Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Qi M, Wu Y, Zhang S, Li G, An T. Pollution Profiles, Source Identification and Health Risk Assessment of Heavy Metals in Soil near a Non-Ferrous Metal Smelting Plant. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1004. [PMID: 36673760 PMCID: PMC9858899 DOI: 10.3390/ijerph20021004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Heavy metal pollution related to non-ferrous metal smelting may pose a significant threat to human health. This study analyzed 58 surface soils collected from a representative non-ferrous metal smelting area to screen potentially hazardous heavy metals and evaluate their health risk in the studied area. The findings demonstrated that human activity had contributed to the pollution degrees of Cu, Cd, As, Zn, and Pb in the surrounding area of a non-ferrous metal smelting plant (NMSP). Cu, Cd, As, Zn, Pb, Ni, and Co pollution within the NMSP was serious. Combining the spatial distribution and Spearman correlations with principal component analysis (PCA), the primary sources of Cd, As, Pb, and Zn in surrounding areas were related to non-ferrous metal smelting and transportation activities. High non-cancer (THI = 4.76) and cancer risks (TCR = 2.99 × 10-4) were found for adults in the NMSP. Moreover, heavy metals in the surrounding areas posed a potential cancer risk to children (TCR = 3.62 × 10-6) and adults (TCR = 1.27 × 10-5). The significant contributions of As, Pb, and Cd to health risks requires special attention. The construction of a heavy metal pollution management system will benefit from the current study for the non-ferrous metal smelting industry.
Collapse
Affiliation(s)
- Mengdie Qi
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yingjun Wu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shu Zhang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|