1
|
Yang CY, Chang PY, Wu BS, Tarng DC, Lee OKS. Mechanical and chemical cues synergistically promote human venous smooth muscle cell osteogenesis through integrin β1-ERK1/2 signaling: A cell model of hemodialysis fistula calcification. FASEB J 2021; 35:e22042. [PMID: 34758125 DOI: 10.1096/fj.202101064rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 11/11/2022]
Abstract
Arteriovenous fistula (AVF) is the vascular access of choice for renal replacement therapy. However, AVF is susceptible to calcification with a high prevalence of 40%-65% in chronic hemodialysis patients. Repeated needle puncture for hemodialysis cannulation results in intimal denudation of AVF. We hypothesized that exposure to blood shear stress in the medial layer promotes venous smooth muscle cell (SMC) osteogenesis. While previous studies of shear stress focused on arterial-type SMCs, SMCs isolated from the vein had not been investigated. This study established a venous cell model of AVF using the fluid shear device, combined with a high phosphate medium to mimic the uremic milieu. Osteogenic gene expression of venous SMCs upon mechanical and chemical cues was analyzed in addition to the activated cell signaling pathways. Our findings indicated that upon shear stress and high phosphate environment, mechanical stimulation (shear stress) had an additive effect in up-regulation of an early osteogenic marker, Runx2. We further identified that the integrin β1-ERK1/2 signaling pathway was responsible for the molecular basis of venous SMC osteogenesis upon shear stress exposure. Mitochondrial biogenesis also took part in the early stage of this venopathy pathogenesis, evident by the up-regulated mitochondrial transcription factor A and mitochondrial DNA polymerase γ in venous SMCs. In conclusion, synergistic effects of fluid shear stress and high phosphate induce venous SMC osteogenesis via the ERK1/2 pathway through activating the mechanosensing integrin β1 signaling. The present study identified a promising druggable target for reducing AVF calcification, which deserves further in vivo investigations.
Collapse
Affiliation(s)
- Chih-Yu Yang
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), Ministry of Education, Taipei, Taiwan.,Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pu-Yuan Chang
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Bo-Sheng Wu
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Der-Cherng Tarng
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), Ministry of Education, Taipei, Taiwan
| | - Oscar Kuang-Sheng Lee
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Orthopedics, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
3
|
Yamauchi M, Takahashi M, Kobayashi M, Sho E, Nanjo H, Kawamura K, Masuda H. Normalization of high-flow or removal of flow cannot stop high-flow induced endothelial proliferation. Biomed Res 2005; 26:21-8. [PMID: 15806980 DOI: 10.2220/biomedres.26.21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Endothelial cells (ECs) are activated in response to high-flow. Our previous studies using arteriovenous fistula (AVF) model have demonstrated that high-flow in blood vessels induces an early and rapid proliferation of ECs before arterial dilatation. Here, we investigated the proliferation of ECs, which had once been stimulated by high-flow loading, in a situation without the influence of high-flow. First, we induced high-flow in the rabbit common carotid artery by using AVF. Then, we removed the influence of high-flow by normalization of high-flow with the closure of AVF or by removal of flow itself with tissue isolation and organ culture or with cell culture of ECs, at the timing considered that ECs began to proliferate. Kinetics of ECs was investigated by a laser scanning confocal microscopy, phase-contrast microscopy and light microscopy using bromodeoxyuridine labeling method. We found that ECs, which had once been stimulated by high-flow, transiently proliferated even after normalization of high-flow or removal of flow. We assume that proliferation of ECs is promised when these cells start to proliferate after high-flow loading.
Collapse
Affiliation(s)
- Misa Yamauchi
- Department of Pathology and Immunology, Akita University School of Medicine, Akita, Japan
| | | | | | | | | | | | | |
Collapse
|
4
|
Sho E, Komatsu M, Sho M, Nanjo H, Singh TM, Xu C, Masuda H, Zarins CK. High flow drives vascular endothelial cell proliferation during flow-induced arterial remodeling associated with the expression of vascular endothelial growth factor. Exp Mol Pathol 2003; 75:1-11. [PMID: 12834620 DOI: 10.1016/s0014-4800(03)00032-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Endothelial cell activation and proliferation are the essential steps in flow-induced arterial remodeling. We investigated endothelial cell turnover in the early stages of high-flow in the rabbit common carotid arteries using an arteriovenous fistula (AVF) model by kinetic investigation of cell proliferation and cell molecular analysis. BrdU was administrated to label endothelial cells (ECs) in DNA synthetic phase (S-phase) of the cell mitotic cycle. Pulse labeling revealed that ECs entered S-phase at 1.5 days of AVF (0.93 +/- 0.19%). Endothelial cell labeling index (EC-LI) peaked at 2 days of AVF (8.90 +/- 0.87%) with a high index of endothelial cell mitosis (EC-MI, 1.67 +/- 0.47%). Endothelial cell density increased remarkably at 3 days of AVF with a significant decrease in EC-LI (54%) and EC-MI (60%). Study of kinetics of EC proliferation revealed that endothelial cells took 16-24 h to finish one cycle of cell mitosis. Tracking investigation of pulse BrdU-labeled endothelial cells at 1.5 days showed that more than 66% of endothelial cells were BrdU-labeled 1.5 days after labeling. VEGF, integrin alphanubeta3, PECAM-1, and VE-cadherin were upregulated significantly preceding endothelial cell proliferation and kept at high levels during endothelial cell proliferation. These data suggest that endothelial cell proliferation is the initial step in flow-induced arterial remodeling. Hemodynamic forces may drive endothelial cell downstream migration. Expression of VEGF and cell junction molecules contribute to flow-induced arterial remodeling.
Collapse
Affiliation(s)
- Eiketsu Sho
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305-5642, USA.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Jackson ZS, Ishibashi H, Gotlieb AI, Langille BL. Effects of anastomotic angle on vascular tissue responses at end-to-side arterial grafts. J Vasc Surg 2001; 34:300-7. [PMID: 11496283 DOI: 10.1067/mva.2001.115815] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Hemodynamics has been implicated in the late failure of arterial bypass grafts, which frequently occurs at the distal anastomosis site. This study was designed to assess the relationship between local hemodynamics and pathologic responses of the distal anastomosis by manipulation of the angle of anastomosis of the graft, a major determinant of local hemodynamics. METHODS End-to-side anastomoses of the right carotid to the left carotid arteries of rabbits were performed at anastomotic angles of less than 10 degrees (acute), 45 degrees (intermediate), or 90 degrees (right angle), and then the upstream left carotid arteries were ligated to simulate pathologic occlusion. We examined tissue responses on the wall of the recipient vessel opposite the anastomosis site (the bed), where unusual hemodynamic forces are imposed. RESULTS Three months after surgery, intimal thickening was observed on the upstream portion of the acute, and more rarely, the intermediate anastomoses only. Medial thinning caused by loss of cells and matrix, and an aneurysm-like dilation, was observed in the right angle and some intermediate anastomoses, but not in the acute anastomoses. En face confocal microscopy at 3 weeks after surgery revealed severe disruption of the internal elastic lamina in all anastomotic models. Zymography and Western immunoblotting demonstrated gelatinolytic activity, caused by expression and activation of MMP-2, that was lowest in the acute anastomoses, higher in the intermediate anastomoses, and highest in the right-angle anastomoses. CONCLUSIONS We infer that very different pathologic changes to the vessel wall are elicited when local hemodynamics is manipulated by altering the anastomotic branch angle.
Collapse
Affiliation(s)
- Z S Jackson
- Department of Laboratory Medicine and Pathobiology, University of Toronto, and the Toronto General Research Institute, Ontario, Canada
| | | | | | | |
Collapse
|