1
|
Gao JW, Hao QY, Lin Y, Li ZH, Huang ZG, Bai ZQ, Zhang HF, Wu YB, Xiong ZC, You S, Wang JF, Zhang SL, Liu PM. Variability in Lipid Profiles During Young Adulthood and the Risk of Coronary Artery Calcium Incidence in Midlife: Insights From the CARDIA Study. Circ Cardiovasc Imaging 2024; 17:e016842. [PMID: 39268602 DOI: 10.1161/circimaging.123.016842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/12/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND Intraindividual variability in lipid profiles is recognized as a potential predictor of cardiovascular events. However, the influence of early adulthood lipid profile variability along with mean lipid levels on future coronary artery calcium (CAC) incidence remains unclear. METHODS A total of 2395 participants (41.6% men; mean±SD age, 40.2±3.6 years) with initial CAC =0 from the CARDIA study (Coronary Artery Risk Development in Young Adults) were included. Serial lipid measurements were obtained to calculate mean levels and variability of total cholesterol, low-density lipoprotein cholesterol (LDL-C), non-high-density lipoprotein cholesterol (non-HDL-C), and triglycerides. CAC incidence was defined as CAC >0 at follow-up. RESULTS During a mean follow-up of 9.0 years, 534 individuals (22.3%) exhibited CAC incidence. Higher mean levels of total cholesterol, LDL-C, and non-HDL-C were associated with a greater risk of future CAC incidence. Similarly, 1-SD increment of lipid variability, as assessed by variability independent of the mean, was associated with an increased risk of CAC incidence (LDL-C: hazard ratio, 1.139 [95% CI, 1.048-1.238]; P=0.002; non-HDL-C: hazard ratio, 1.102 [95% CI, 1.014-1.198]; P=0.022; and triglycerides: hazard ratio, 1.480 [95% CI, 1.384-1.582]; P<0.001). Combination analyses demonstrated that participants with both high lipid levels and high variability in lipid profiles (LDL-C and non-HDL-C) faced the greatest risk of CAC incidence. Specifically, elevated variability of LDL-C was associated with an additional risk of CAC incidence even in low mean levels of LDL-C (hazard ratio, 1.396 [95% CI, 1.106-1.763]; P=0.005). These findings remained robust across a series of sensitivity and subgroup analyses. CONCLUSIONS Elevated variability in LDL-C and non-HDL-C during young adulthood was associated with an increased risk of CAC incidence in midlife, especially among those with high mean levels of atherogenic lipoproteins. These findings highlight the importance of maintaining consistently low levels of atherogenic lipids throughout early adulthood to reduce subclinical atherosclerosis in midlife. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT00005130.
Collapse
Affiliation(s)
- Jing-Wei Gao
- Department of Cardiology (J.-W.G., Z.-G.H., H.-F.Z., Y.-B.W., Z.-C.X., S.Y., J.-F.W., P.-M.L.) Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qing-Yun Hao
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China (Q.-Y.H., Z.-H.L.)
| | - Ying Lin
- Department of Endocrinology (Y.L., S.-L.Z.) Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ze-Hua Li
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China (Q.-Y.H., Z.-H.L.)
| | - Ze-Gui Huang
- Department of Cardiology (J.-W.G., Z.-G.H., H.-F.Z., Y.-B.W., Z.-C.X., S.Y., J.-F.W., P.-M.L.) Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Qiang Bai
- Department of Radiology (Z.-Q.B.) Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hai-Feng Zhang
- Department of Cardiology (J.-W.G., Z.-G.H., H.-F.Z., Y.-B.W., Z.-C.X., S.Y., J.-F.W., P.-M.L.) Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu-Biao Wu
- Department of Cardiology (J.-W.G., Z.-G.H., H.-F.Z., Y.-B.W., Z.-C.X., S.Y., J.-F.W., P.-M.L.) Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhuo-Chao Xiong
- Department of Cardiology (J.-W.G., Z.-G.H., H.-F.Z., Y.-B.W., Z.-C.X., S.Y., J.-F.W., P.-M.L.) Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Si You
- Department of Cardiology (J.-W.G., Z.-G.H., H.-F.Z., Y.-B.W., Z.-C.X., S.Y., J.-F.W., P.-M.L.) Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing-Feng Wang
- Department of Cardiology (J.-W.G., Z.-G.H., H.-F.Z., Y.-B.W., Z.-C.X., S.Y., J.-F.W., P.-M.L.) Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shao-Ling Zhang
- Department of Endocrinology (Y.L., S.-L.Z.) Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Pin-Ming Liu
- Department of Cardiology (J.-W.G., Z.-G.H., H.-F.Z., Y.-B.W., Z.-C.X., S.Y., J.-F.W., P.-M.L.) Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Bjelakovic B, Stefanutti C, Reiner Ž, Watts GF, Moriarty P, Marais D, Widhalm K, Cohen H, Harada-Shiba M, Banach M. Risk Assessment and Clinical Management of Children and Adolescents with Heterozygous Familial Hypercholesterolaemia. A Position Paper of the Associations of Preventive Pediatrics of Serbia, Mighty Medic and International Lipid Expert Panel. J Clin Med 2021; 10:4930. [PMID: 34768450 PMCID: PMC8585021 DOI: 10.3390/jcm10214930] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 12/23/2022] Open
Abstract
Heterozygous familial hypercholesterolaemia (FH) is among the most common genetic metabolic lipid disorders characterised by elevated low-density lipoprotein cholesterol (LDL-C) levels from birth and a significantly higher risk of developing premature atherosclerotic cardiovascular disease. The majority of the current pediatric guidelines for clinical management of children and adolescents with FH does not consider the impact of genetic variations as well as characteristics of vascular phenotype as assessed by recently developed non-invasive imaging techniques. We propose a combined integrated approach of cardiovascular (CV) risk assessment and clinical management of children with FH incorporating current risk assessment profile (LDL-C levels, traditional CV risk factors and familial history) with genetic and non-invasive vascular phenotyping. Based on the existing data on vascular phenotype status, this panel recommends that all children with FH and cIMT ≥0.5 mm should receive lipid lowering therapy irrespective of the presence of CV risk factors, family history and/or LDL-C levels Those children with FH and cIMT ≥0.4 mm should be carefully monitored to initiate lipid lowering management in the most suitable time. Likewise, all genetically confirmed children with FH and LDL-C levels ≥4.1 mmol/L (160 mg/dL), should be treated with lifestyle changes and LLT irrespective of the cIMT, presence of additional RF or family history of CHD.
Collapse
Affiliation(s)
- Bojko Bjelakovic
- Clinic of Pediatrics, Clinical Center, Medical Faculty, University of Nis, 18000 Nis, Serbia
| | - Claudia Stefanutti
- Extracorporeal Therapeutic Techniques Unit, Lipid Clinic and Atherosclerosis Prevention Centre, Immunohematology and Transfusion Medicine, Department of Molecular Medicine, “Umberto I” Hospital, “Sapienza” University of Rome, I-00161 Rome, Italy
| | - Željko Reiner
- Department of Internal Diseases, University Hospital Center Zagreb, 10000 Zagreb, Croatia;
- School of Medicine, Zagreb University, 10000 Zagreb, Croatia
| | - Gerald F. Watts
- Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, School of Medicine, University of Western Australia, Crawley 6009, Australia;
| | - Patrick Moriarty
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, MO 66104, USA;
| | - David Marais
- Division of Chemical Pathology, Department of Pathology, University of Cape Town Health Sciences, 6.33 Falmouth Building, Anzio Rd, Observatory, Cape Town 7925, South Africa;
| | - Kurt Widhalm
- Academic Institute for Clinical Nutrition, Alserstraße 14/4, 3100 Vienna, Austria;
- Department of Gastroenterology and Hepatology, Austria Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
| | - Hofit Cohen
- The Bert W. Strassburger Lipid Center, The Chaim Sheba Medical Center, Tel-Hashomer Israel, Sackler Faculty of Medicine, Tel Aviv University Israel, Tel Aviv 39040, Israel;
| | - Mariko Harada-Shiba
- Mariko Harada-Shiba Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shinmachi, Suita 564-8565, Japan;
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz, 93-338 Lodz, Poland
- Department of Cardiology and Congenital Diseases in Adults, Polish Mother’s Memorial Hospital Research Institute (PMMHRI), 93-338 Lodz, Poland
- Cardiovascular Research Centre, University of Zielona Gora, 65-038 Zielona Gora, Poland
| |
Collapse
|
3
|
Kolovou GD, Watts GF, Mikhailidis DP, Pérez-Martínez P, Mora S, Bilianou H, Panotopoulos G, Katsiki N, Ooi TC, Lopez-Miranda J, Tybjærg-Hansen A, Tentolouris N, Nordestgaard BG. Postprandial Hypertriglyceridaemia Revisited in the Era of Non-Fasting Lipid Profile Testing: A 2019 Expert Panel Statement, Narrative Review. Curr Vasc Pharmacol 2019; 17:515-537. [DOI: 10.2174/1570161117666190503123911] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/01/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022]
Abstract
Postprandial hypertriglyceridaemia, defined as an increase in plasma triglyceride-containing
lipoproteins following a fat meal, is a potential risk predictor of atherosclerotic cardiovascular disease
and other chronic diseases. Several non-modifiable factors (genetics, age, sex and menopausal status)
and lifestyle factors (diet, physical activity, smoking status, obesity, alcohol and medication use) may
influence postprandial hypertriglyceridaemia. This narrative review considers the studies published over
the last decade that evaluated postprandial hypertriglyceridaemia. Additionally, the genetic determinants
of postprandial plasma triglyceride levels, the types of meals for studying postprandial triglyceride response,
and underlying conditions (e.g. familial dyslipidaemias, diabetes mellitus, metabolic syndrome,
non-alcoholic fatty liver and chronic kidney disease) that are associated with postprandial hypertriglyceridaemia
are reviewed; therapeutic aspects are also considered.
Collapse
Affiliation(s)
- Genovefa D. Kolovou
- Cardiology Department and LDL-Apheresis Unit, Onassis Cardiac Surgery Center, Athens, Greece
| | - Gerald F. Watts
- Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Crawley, Australia
| | - Dimitri P. Mikhailidis
- Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom
| | - Pablo Pérez-Martínez
- Lipid and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, and CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Samia Mora
- Center for Lipid Metabolomics, Divisions of Preventive and Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Helen Bilianou
- Department of Cardiology, Tzanio Hospital, Piraeus, Greece
| | | | - Niki Katsiki
- First Department of Internal Medicine, Division of Endocrinology-Metabolism, Diabetes Center, AHEPA University Hospital, Thessaloniki, Greece
| | - Teik C. Ooi
- Department of Medicine, Division of Endocrinology and Metabolism, University of Ottawa, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - José Lopez-Miranda
- Lipid and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, and CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicholas Tentolouris
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Børge G. Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Abstract
Heterozygous familial hypercholesterolemia affects one in every 500 persons and is the most common cause of markedly elevated cholesterol levels in children. Some male patients experience their first coronary event before the age of 30 years. Although dietary measures prevent atherosclerosis in adult populations, the effect of diet on children's lipid levels is limited and compliance is difficult. Trials lasting up to 2 years have shown that statins effectively lower low density lipoprotein (LDL)-cholesterol levels and in one study, restored endothelial dysfunction in children with no clinical adverse effects. To fully assess the effect of drugs on growth and development, especially in prepubertal children, longer trials are required. Gender, family history and LDL-cholesterol level can be used to stratify risk of coronary heart disease. Children that carry very high risk may benefit from starting statins after puberty.
Collapse
Affiliation(s)
- Serena Tonstad
- Department of Preventive Cardiology, Preventive Medicine Clinic, Ullevål University Hospital, Oslo, Norway.
| |
Collapse
|
5
|
Calandra S, Tarugi P, Speedy HE, Dean AF, Bertolini S, Shoulders CC. Mechanisms and genetic determinants regulating sterol absorption, circulating LDL levels, and sterol elimination: implications for classification and disease risk. J Lipid Res 2011; 52:1885-926. [PMID: 21862702 DOI: 10.1194/jlr.r017855] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This review integrates historical biochemical and modern genetic findings that underpin our understanding of the low-density lipoprotein (LDL) dyslipidemias that bear on human disease. These range from life-threatening conditions of infancy through severe coronary heart disease of young adulthood, to indolent disorders of middle- and old-age. We particularly focus on the biological aspects of those gene mutations and variants that impact on sterol absorption and hepatobiliary excretion via specific membrane transporter systems (NPC1L1, ABCG5/8); the incorporation of dietary sterols (MTP) and of de novo synthesized lipids (HMGCR, TRIB1) into apoB-containing lipoproteins (APOB) and their release into the circulation (ANGPTL3, SARA2, SORT1); and receptor-mediated uptake of LDL and of intestinal and hepatic-derived lipoprotein remnants (LDLR, APOB, APOE, LDLRAP1, PCSK9, IDOL). The insights gained from integrating the wealth of genetic data with biological processes have important implications for the classification of clinical and presymptomatic diagnoses of traditional LDL dyslipidemias, sitosterolemia, and newly emerging phenotypes, as well as their management through both nutritional and pharmaceutical means.
Collapse
Affiliation(s)
- Sebastiano Calandra
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | | | | | | | | | | |
Collapse
|
6
|
Muiya P, Wakil S, Al-Najai M, Meyer BF, Al-Mohanna F, Alshahid M, Dzimiri N. Identification of loci conferring risk for premature CAD and heterozygous familial hyperlipidemia in the LDLR, APOB and PCSK9 genes. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.ijdm.2009.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Varret M, Abifadel M, Rabès JP, Boileau C. Genetic heterogeneity of autosomal dominant hypercholesterolemia. Clin Genet 2007; 73:1-13. [DOI: 10.1111/j.1399-0004.2007.00915.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Pandey SN, Srivastava A, Dixit M, Choudhuri G, Mittal B. Haplotype analysis of signal peptide (insertion/deletion) and XbaI polymorphisms of the APOB gene in gallbladder cancer. Liver Int 2007; 27:1008-15. [PMID: 17696941 DOI: 10.1111/j.1478-3231.2007.01516.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE The incidence of gallbladder cancer (GBC) is usually paralleled by the prevalence of gallstone disease, and genes of cholesterol metabolism have been implicated in gallstone disease. The XbaI and insertion/deletion (ins/del) polymorphism of Apolipoprotein B (APOB) appears to influence cholesterol homoeostasis and possibly risk for gallstone disease. We examined the effect of these polymorphisms individually as well as their haplotypes on GBC and gallstone patients in North Indian population. METHODS The study comprises 123 consecutive cases of proven GBC, 172 cases of gallstone and 232 healthy subjects of similar age and sex. The genomic DNA was extracted from peripheral blood leucocytes and genotyping was performed using polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism. RESULTS In a case-control study, APOB XbaI and ins/del polymorphisms were not significantly associated with risk of GBC. Using the expectation maximization algorithm, four haplotypes were obtained, and haplotype X(+),D was found to be significantly higher in GBC patients without stone in comparison with healthy subjects [odds ratio (OR) 2.9, 95% confidence interval 1.2-6.6 P=0.012]. CONCLUSIONS The X(+),D haplotype of APOB is associated with increased risk for development of GBC and the risk is not modified in the presence of gallstones.
Collapse
Affiliation(s)
- Sachchida Nand Pandey
- Department of Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | | | | | | | | |
Collapse
|
9
|
|
10
|
Mozas P, Castillo S, Reyes G, Tejedor D, Civeira F, García-Alvarez I, Puzo J, Cenarro A, Alonso R, Mata P, Pocoví M. Apolipoprotein E genotype is not associated with cardiovascular disease in heterozygous subjects with familial hypercholesterolemia. Am Heart J 2003; 145:999-1005. [PMID: 12796755 DOI: 10.1016/s0002-8703(02)94788-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Familial hypercholesterolemia (FH) is a genetic disorder characterized by high low-density lipoprotein cholesterol levels and premature cardiovascular disease (CVD). There are important differences in the presence of CVD among heterozygous subjects with FH. Some of this variability can be explained by genetic factors, and the apolipoprotein (apo) E genotype has been proposed as a useful marker. METHODS We analyzed the apo E genotype in 706 non-related subjects who were heterozygous for FH from Spain. CVD was present in 198 subjects (28%), 132 men (41%) and 66 women (17%). RESULTS Apo E allele frequencies for the epsilon 3, epsilon 4, and epsilon 2 alleles were 0.89, 0.09, and 0.02 respectively. Age, body mass index, smoking status, high blood pressure, diabetes mellitus, presence of tendon xanthomas, total cholesterol level, triglyceride levels, high-density lipoprotein cholesterol level, low-density lipoprotein cholesterol level, and Lp(a) did not differ among genotypes. The incidence of CVD and the age of onset of CVD did not differ among genotypes either. In the multivariant analysis, apo E genotype did not contribute significantly to CVD. CONCLUSIONS Heterozygous men with FH have a very high risk of coronary disease in a Mediterranean country, and the apo E genotype in this large group of adults with FH is not associated either with CVD or lipid values, in contrast with the established effect in the general population.
Collapse
Affiliation(s)
- P Mozas
- Departamento Bioquímica, Biología Molecular-Celular, Universidad de Zaragoza, Zaragoza, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Vergopoulos A, Knoblauch H, Schuster H. DNA testing for familial hypercholesterolemia: improving disease recognition and patient care. AMERICAN JOURNAL OF PHARMACOGENOMICS : GENOMICS-RELATED RESEARCH IN DRUG DEVELOPMENT AND CLINICAL PRACTICE 2003; 2:253-62. [PMID: 12421096 DOI: 10.2165/00129785-200202040-00005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cardiovascular disease is the leading cause of death worldwide and, like most chronic diseases, it has major genetic and environmental components. Among patients with coronary heart disease onset before the age of 55, about 5% of cases are attributable to heterozygous familial hypercholesterolemia (FH), a disease following autosomal dominant inheritance. About 50% of individuals with FH die before the age of 60 due to myocardial infarction. The frequency of FH is estimated to be 1 : 500. FH is related to mutations in the low-density lipoprotein (LDL)-cholesterol LDL-receptor gene and apolipoprotein B (apoB) gene. The identification of individuals with FH has been based on lipid levels and segregation of lipid levels within the family. However, phenotypes are overlapping and family history is not always informative. Therefore, a DNA-based genetic test for FH appears to offer the best alternative. The DNA test gives a simple yes/no answer. The FH test is a definitive tool for the identification of affected family members. The approach of targeted family genetic screening to find new patients is faster and more reliable compared with a biochemical form of screening. Early identification and efficient treatment of such patients is important and highly cost effective. There is evidence to suggest that the nature of the LDL-receptor (LDLR) mutation influences the degree of cholesterol lowering achieved by HMG-CoA reductase inhibitors (statins). The observed differences in the LDL-cholesterol (LDL-C) responses to these drugs among the various LDLR gene mutations are not yet completely understood. The relationships shown between LDLR mutation types and lipid levels, and the response of lipid levels to HMG-CoA reductase inhibitor treatment, will have to be investigated within the framework of pharmacogenetic studies. The variables, which are important in determining the overall atherosclerosis risk, are the result of combined activity in a dynamic network of numerous genes and environment. Candidate genes for atherosclerosis need to be further tested and validated. Future research should be directed at determining the significance of such targets, which patients with FH are at particularly high risk of premature cardiovascular disease, and which environmental factors are effective in modulating this risk. Genetics-based diagnostics will complement identification of FH while improving cardiovascular risk prediction, prevention of disease and treatment efficacy.
Collapse
Affiliation(s)
- Athanasios Vergopoulos
- Max Delbruck Center for Molecular Medicine, University Hospital Charité, Humboldt University of Berlin, Berlin, Germany
| | | | | |
Collapse
|