1
|
Sidrak MMA, De Feo MS, Gorica J, Corica F, Conte M, Filippi L, De Vincentis G, Frantellizzi V. Medication and ECG Patterns That May Hinder SPECT Myocardial Perfusion Scans. Pharmaceuticals (Basel) 2023; 16:854. [PMID: 37375801 DOI: 10.3390/ph16060854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/24/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Coronary artery disease (CAD) is the leading cause of death followed by cancer, in men and women. With risk factors being endemic and the increasing costs of healthcare for management and treatment, myocardial perfusion imaging (MPI) finds a central role in risk stratification and prognosis for CAD patients, but it comes with its limitations in that the referring clinician and managing team must be aware of and use at their advantage. This narrative review examines the utility of myocardial perfusion scans in the diagnosis and management of patients with ECG alterations such as atrioventricular block (AVB), and medications including calcium channel blockers (CCB), beta blockers (BB), and nitroglycerin which may impact the interpretation of the exam. The review analyzes the current evidence and provides insights into the limitations, delving into the reasons behind some of the contraindications to MPI.
Collapse
Affiliation(s)
- Marko Magdi Abdou Sidrak
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00161 Rome, Italy
| | - Maria Silvia De Feo
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00161 Rome, Italy
| | - Joana Gorica
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00161 Rome, Italy
| | - Ferdinando Corica
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00161 Rome, Italy
| | - Miriam Conte
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00161 Rome, Italy
| | - Luca Filippi
- Department of Nuclear Medicine, Santa Maria Goretti Hospital, 04100 Latina, Italy
| | - Giuseppe De Vincentis
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00161 Rome, Italy
| | - Viviana Frantellizzi
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00161 Rome, Italy
| |
Collapse
|
2
|
Yao Y, Li YM, He ZX, Civelek AC, Li XF. Likely Common Role of Hypoxia in Driving 18F-FDG Uptake in Cancer, Myocardial Ischemia, Inflammation and Infection. Cancer Biother Radiopharm 2021; 36:624-631. [PMID: 34375126 DOI: 10.1089/cbr.2020.4716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
First introduced in 1976, 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) has become an indispensable tool for diagnosis and prognostic evaluation of tumors, heart disease, as well as other conditions, including inflammation and infection. Because 18F-FDG can accurately reflect the glucose metabolism level of organs and tissues, it is known as a "century molecule" and is currently the main agent for PET imaging. The degree of 18F-FDG uptake by cells is related to both the rate of glucose metabolism and glucose transporter expression. These, in turn, are strongly influenced by hypoxia, in which cells meet their energy needs through glycolysis, and 18F-FDG uptake increased due to hypoxia. 18F-FDG uptake is a complex process, and hypoxia may be one of the fundamental driving forces. The correct interpretation of 18F-FDG uptake in PET imaging can help clinics make treatment decisions more accurately and effectively. In this article, we review the application of 18F-FDG PET in tumors, myocardium, and inflammation. We discuss the relationship between 18F-FDG uptake and hypoxia, the possible mechanism of 18F-FDG uptake caused by hypoxia, and the associated clinical implications.
Collapse
Affiliation(s)
- Yong Yao
- Department of Nuclear Medicine, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China.,Department of Nuclear Medicine, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China.,Clinical Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Ya-Ming Li
- Department of Nuclear Medicine, the First Hospital of China Medical University, Shenyang, China
| | - Zuo-Xiang He
- Department of Nuclear Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - A Cahid Civelek
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Xiao-Feng Li
- Department of Nuclear Medicine, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China.,Department of Nuclear Medicine, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
3
|
Dou KF, Gao XJ, Xie BQ, Li Y, He ZX, Yang MF. Dual-time-point myocardial 18F-FDG imaging in the detection of coronary artery disease. BMC Cardiovasc Disord 2017; 17:120. [PMID: 28490354 PMCID: PMC5424402 DOI: 10.1186/s12872-017-0554-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/04/2017] [Indexed: 11/21/2022] Open
Abstract
Background Myocardial 18F-deoxyglucose (18F-FDG) uptake has been observed to be enhanced in patients with coronary artery disease (CAD) under fasting conditions. However, whether the increased 18F-FDG is induced by myocardial ischemia and how to discriminate ischemic from physiological 18F-FDG uptake have rarely been investigated. Methods Under fasting conditions, 18F-FDG PET imaging was performed in 52 patients with suspected CAD. Two 18F-FDG imaging sessions were conducted within two hours after a single administration of 18F-FDG (dual-time-point imaging), and with an intervention of an exercise test after the first imaging. Abnormal 18F-FDG uptake was determined by the classification of the 18F-FDG distribution pattern, and the changes of the 18F-FDG distribution between the two PET imaging sessions were analyzed. 99mTc-sestamibi was injected at peak exercise and myocardial perfusion imaging (MPI) was conducted after 18F-FDG imaging. Coronary angiography was considered the reference for diagnosing CAD. Results Overall, 54.8% (17/31) of CAD patients and 36.2% (21/58) of stenotic coronaries showed exercise-induced abnormal uptake of 18F-FDG. Based on the classification of the 18F-FDG distribution pattern, the sensitivity and specificity of exercise 18F-FDG imaging to diagnose CAD was 80.6% and 95.2% by patient analysis, 56.9% and 98.0% by vascular analysis, respectively. Compared with MPI, 18F-FDG imaging had a tendency to have higher sensitivity (80.6% vs 64.5%, P = 0.06) on the patient level. Conclusion Myocardial ischemia can induce 18F-FDG uptake. With the classification of the 18F-FDG distribution pattern, dual-time-point 18F-FDG imaging under fasting conditions is efficient in diagnosing CAD.
Collapse
Affiliation(s)
- Ke-Fei Dou
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Cardiovascular Institute, Fuwai Hospital and National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Xiao-Jin Gao
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Cardiovascular Institute, Fuwai Hospital and National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, A 167, Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Bo-Qia Xie
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yan Li
- Department of Nuclear Medicine, Cardiovascular Institute, Fuwai Hospital and National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zuo-Xiang He
- Department of Nuclear Medicine, Cardiovascular Institute, Fuwai Hospital and National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min-Fu Yang
- Department of Nuclear Medicine, Beijing Chaoyang Hospital, Capital Medical University, 8th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
4
|
Affiliation(s)
- Diwakar Jain
- Cardiovascular Nuclear Imaging Laboratory, New York Medical College, Westchester Medical Center, Macy Pavilion 111, 100 Woods Road, Valhalla, NY, 10595, USA,
| | | |
Collapse
|
5
|
Jain D, He ZX, Lele V, Aronow WS. Direct myocardial ischemia imaging: a new cardiovascular nuclear imaging paradigm. Clin Cardiol 2014; 38:124-30. [PMID: 25487883 DOI: 10.1002/clc.22346] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 09/21/2014] [Indexed: 01/02/2023] Open
Abstract
Myocardial perfusion imaging (MPI), using radiotracers, has been in routine clinical use for over 40 years. This modality is used for the detection of coronary artery disease (CAD), risk stratification, optimizing therapy, and follow-up of patients with CAD. Molecular cardiovascular imaging using targeted radiotracers provides a unique opportunity for imaging biochemical and metabolic processes, and cell membrane transporter and receptor functions at a cellular and molecular level in experimental animal models as well as in humans. Cardiac imaging using radiolabeled free fatty acid analogues and glucose analogues enable us to image myocardial ischemia directly as an alternative to stress-rest MPI. Direct ischemia imaging techniques can avoid and overcome some of the limitations of standard stress-rest MPI. This article describes recent studies using (18) F-fluorodeoxyglucose ((18) FDG) for myocardial ischemia imaging.
Collapse
Affiliation(s)
- Diwakar Jain
- Cardiovascular Nuclear Imaging Laboratory, New York Medical College, Westchester Medical Center, Valhalla, New York
| | | | | | | |
Collapse
|
6
|
|
7
|
|