Schwarte LA, Schwartges I, Thomas K, Schober P, Picker O. The effects of levosimendan and glibenclamide on circulatory and metabolic variables in a canine model of acute hypoxia.
Intensive Care Med 2011;
37:701-10. [PMID:
21380525 PMCID:
PMC3058361 DOI:
10.1007/s00134-011-2144-1]
[Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 01/23/2011] [Indexed: 11/24/2022]
Abstract
PURPOSE
To study the effects of pretreatment with levosimendan (LEVO, a Ca²(+)-sensitizer and K (ATP) (+) channel opener) and/or the K (ATP) (+) channel antagonist glibenclamide (GLIB) on systemic hemodynamics, metabolism, and regional gastromucosal oxygenation during hypoxic hypoxemia.
METHODS
Chronically instrumented, healthy dogs (24-32 kg, n = 6 per group, randomized cross-over design) were repeatedly sedated, mechanically ventilated (FiO₂ ~0.3) and subjected to the following interventions: no pretreatment, LEVO pretreatment, GLIB pretreatment, or combined LEVO + GLIB pretreatment, each followed by hypoxic hypoxemia (FiO₂ ~0.1). We measured cardiac output (CO, ultrasonic flow probes), oxygen consumption (VO₂, indirect calorimetry), and gastromucosal microvascular hemoglobin oxygenation (μHbO₂, spectrophotometry).
STATISTICS
data are presented as mean ± SEM and compared by one-way ANOVA (direct drug effects within group) and two-way ANOVA (between all hypoxic conditions) both with Bonferroni corrections; p < 0.05.
RESULTS
In LEVO-pretreated hypoxemia, CO was significantly higher compared to unpretreated hypoxemia. The increased CO was neither associated with an increased VO₂ nor with markers of aggravated anaerobiosis (pH, BE, lactate). In addition, LEVO pretreatment did not further compromise gastromucosal μHbO₂ in hypoxemia. After combined LEVO + GLIB pretreatment, systemic effects of GLIB were apparent, however, CO was significantly higher than during unpretreated and GLIB-pretreated hypoxemia, but equal to LEVO-pretreated hypoxemia, indicating that GLIB did not prevent the increased CO in LEVO-pretreated hypoxia.
CONCLUSIONS
LEVO pretreatment resulted in improved systemic circulation (CO) during hypoxemia without fueling systemic VO₂, without aggravating systemic anaerobiosis markers, and without further compromising microvascular gastromucosal oxygenation. Thus, LEVO pretreatment may be an option to support the systemic circulation during hypoxia.
Collapse