1
|
Li F, Cai T, Yu L, Yu G, Zhang H, Geng Y, Kuang J, Wang Y, Cai Y, Xiao J, Wang X, Ding J, Xu H, Ni W, Zhou K. FGF-18 Protects the Injured Spinal cord in mice by Suppressing Pyroptosis and Promoting Autophagy via the AKT-mTOR-TRPML1 axis. Mol Neurobiol 2024; 61:55-73. [PMID: 37581847 DOI: 10.1007/s12035-023-03503-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 07/11/2023] [Indexed: 08/16/2023]
Abstract
Spinal cord injury (SCI) is a severe medical condition with lasting effects. The efficacy of numerous clinical treatments is hampered by the intricate pathophysiological mechanism of SCI. Fibroblast growth factor 18 (FGF-18) has been found to exert neuroprotective effects after brain ischaemia, but its effect after SCI has not been well explored. The aim of the present study was to explore the therapeutic effect of FGF-18 on SCI and the related mechanism. In the present study, a mouse model of SCI was used, and the results showed that FGF-18 may significantly affect functional recovery. The present findings demonstrated that FGF-18 directly promoted functional recovery by increasing autophagy and decreasing pyroptosis. In addition, FGF-18 increased autophagy, and the well-known autophagy inhibitor 3-methyladenine (3MA) reversed the therapeutic benefits of FGF-18 after SCI, suggesting that autophagy mediates the therapeutic effects of FGF-18 on SCI. A mechanistic study revealed that after stimulation of the protein kinase B (AKT)-transient receptor potential mucolipin 1 (TRPML1)-calcineurin signalling pathway, the FGF-18-induced increase in autophagy was mediated by the dephosphorylation and nuclear translocation of transcription factor E3 (TFE3). Together, these findings indicated that FGF-18 is a robust autophagy modulator capable of accelerating functional recovery after SCI, suggesting that it may be a promising treatment for SCI in the clinic.
Collapse
Affiliation(s)
- Feida Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, 325027, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, 325027, Wenzhou, China
| | - Tingwen Cai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, 325027, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, 325027, Wenzhou, China
| | - Letian Yu
- Renji College of Wenzhou Medical University, 325027, Wenzhou, China
| | - Gaoxiang Yu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, 325027, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, 325027, Wenzhou, China
| | - Haojie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, 325027, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, 325027, Wenzhou, China
| | - Yibo Geng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, 325027, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, 325027, Wenzhou, China
| | - Jiaxuan Kuang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, 325027, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, 325027, Wenzhou, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, 315300, Ningbo, China
| | - Yongli Wang
- Zhejiang Provincial Key Laboratory of Orthopaedics, 325027, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, 325027, Wenzhou, China
- Department of Orthopaedics, Huzhou Basic and Clinical Translation of Orthopaedics key Laboratory, Huzhou Central Hospital, 313300, Huzhou, China
| | - Yuepiao Cai
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, 325027, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, 325027, Wenzhou, China
| | - Jian Ding
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, 325027, Wenzhou, China.
- The Second Clinical Medical College of Wenzhou Medical University, 325027, Wenzhou, China.
| | - Hui Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, 325027, Wenzhou, China.
- The Second Clinical Medical College of Wenzhou Medical University, 325027, Wenzhou, China.
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, 325027, Wenzhou, China.
- The Second Clinical Medical College of Wenzhou Medical University, 325027, Wenzhou, China.
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, 325027, Wenzhou, China.
- The Second Clinical Medical College of Wenzhou Medical University, 325027, Wenzhou, China.
- Cixi Biomedical Research Institute, Wenzhou Medical University, 315300, Ningbo, China.
| |
Collapse
|
2
|
Dordoe C, Huang W, Bwalya C, Wang X, Shen B, Wang H, Wang J, Ye S, Wang P, Xiaoyan B, Li X, Lin L. The role of microglial activation on ischemic stroke: Modulation by fibroblast growth factors. Cytokine Growth Factor Rev 2023; 74:122-133. [PMID: 37573252 DOI: 10.1016/j.cytogfr.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/14/2023]
Abstract
Stroke is one of the devastating clinical conditions that causes death and permanent disability. Its occurrence causes the reduction of oxygen and glucose supply, resulting in events such as inflammatory response, oxidative stress, and apoptosis in the brain. Microglia are brain-resident immune cells in the central nervous system (CNS) that exert diverse roles and respond to pathological process after an ischemic insult. The discovery of fibroblast growth factors (FGFs) in mammals, resulted to the findings that they can treat experimental models of stroke in animals effectively. FGFs function as homeostatic factors that control cells and hormones involved in metabolism, and they also regulate the secretion of proinflammatory (M1) and anti-inflammatory (M2) cytokines after stroke. In this review, we outline current evidence of microglia activation in experimental models of stroke focusing on its ability to exacerbate damage or repair tissue. Also, our review sheds light on the pharmacological actions of FGFs on multiple targets to regulate microglial modulation and highlighted their theoretical molecular mechanisms to provide possible therapeutic targets, as well as their limitations for the treatment of stroke. DATA AVAILABILITY: Not applicable.
Collapse
Affiliation(s)
- Confidence Dordoe
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wenting Huang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Canol Bwalya
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xue Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Bixin Shen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hao Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jing Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shasha Ye
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Peng Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Bao Xiaoyan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaokun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Wenzhou, Zhejiang 325035, China.
| | - Li Lin
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
3
|
Ciltas AC, Karabulut S, Sahin B, Filiz AK, Yulak F, Ozkaraca M, Karatas O, Cetin A. FGF-18 alleviates memory impairments and neuropathological changes in a rat model of Alzheimer's disease. Neuropeptides 2023; 101:102367. [PMID: 37506425 DOI: 10.1016/j.npep.2023.102367] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/06/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023]
Abstract
Alzheimer's disease (AD) is a multifactorial pathology marked by amyloid beta (Aβ) accumulation, tau hyperphosphorylation, and progressive cognitive decline. Previous studies show that fibroblast growth factor 18 (FGF18) exerts a neuroprotective effect in experimental models of neurodegeneration; however, how it affects AD pathology remains unknown. This study aimed to ascertain the impact of FGF18 on the behavioral and neuropathological changes in the rat model of sporadic AD induced by intracerebroventricular (ICV) injection of streptozotocin (STZ). The rats were treated with FGF18 (0.94 and 1.88 pmol, ICV) on the 15th day after STZ injection. Their cognitive function was assessed in the Morris water maze and passive avoidance tests for 5 days from the 16th to the 21st days. Aβ levels and histological signs of neurotoxicity were detected using the enzyme-linked immunosorbent assay (ELISA) assay and histopathological analysis of the brain, respectively. FGF18 mildly ameliorated the STZ-induced cognitive impairment; the Aβ accumulation was reduced; and the neuronal damage including pyknosis and apoptosis was alleviated in the rat brain. This study highlights the promising therapeutic potential for FGF18 in managing AD.
Collapse
Affiliation(s)
- Arzuhan Cetindag Ciltas
- Department of Medical Services and Techniques, Vocational School of Health Services, Sivas Cumhuriyet University, Sivas, Turkey
| | - Sebahattin Karabulut
- Department of Medical Services and Techniques, Vocational School of Health Services, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Bilal Sahin
- Department of Medical Physiology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Ahmet Kemal Filiz
- Department of Medical Physiology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Fatih Yulak
- Department of Medical Physiology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Mustafa Ozkaraca
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Ozhan Karatas
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Ali Cetin
- Department of Obstetrics and Gynecology, Haseki Training and Research Hospital affiliated with the University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
4
|
Yu J, Zhu H, Taheri S, Lee JY, Diamond DM, Kirstein C, Kindy MS. Serum amyloid A-dependent inflammasome activation and acute injury in a mouse model of experimental stroke. RESEARCH SQUARE 2023:rs.3.rs-3258406. [PMID: 37720021 PMCID: PMC10503850 DOI: 10.21203/rs.3.rs-3258406/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Serum amyloid A (SAA) proteins increase dramatically in the blood following inflammation. Recently, SAAs are increased in humans following stroke and in ischemic animal models. However, the impact of SAAs on whether this signal is critical in the ischemic brain remains unknown. Therefore, we investigated the role of SAA and SAA signaling in the ischemic brain. Wildtype and SAA deficient mice were exposed to middle cerebral artery occlusion and reperfusion, examined for the impact of infarct volumes, behavioral changes, inflammatory markers, TUNEL staining, and BBB changes. The underlying mechanisms were investigated using SAA deficient mice, transgenic mice and viral vectors. SAA levels were significantly increase following MCAo and mice deficient in SAAs showed reduced infarct volumes and improved behavioral outcomes. SAA deficient mice showed a reduction in TUNEL staining, inflammation and decreased glial activation. Mice lacking acute phase SAAs demonstrated a reduction in expression of the NLRP3 inflammasome and SAA/NLRP3 KO mice showed improvement. Restoration of SAA expression via SAA tg mice or adenoviral expression reestablished the detrimental effects of SAA. A reduction in BBB permeability was seen in the SAA KO mice and anti-SAA antibody treatment reduced the effects on ischemic injury. SAA signaling plays a critical role in regulating NLRP3-induced inflammation and glial activation in the ischemic brain. Blocking this signal will be a promising approach for treating ischemic stroke.
Collapse
Affiliation(s)
- Jin Yu
- University of South Florida
| | | | | | | | | | | | | |
Collapse
|
5
|
Fibroblast growth factor 18 alleviates stress-induced pathological cardiac hypertrophy in male mice. Nat Commun 2023; 14:1235. [PMID: 36871047 PMCID: PMC9985628 DOI: 10.1038/s41467-023-36895-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Fibroblast growth factor-18 (FGF18) has diverse organ development and damage repair roles. However, its role in cardiac homeostasis following hypertrophic stimulation remains unknown. Here we investigate the regulation and function of the FGF18 in pressure overload (PO)-induced pathological cardiac hypertrophy. FGF18 heterozygous (Fgf18+/-) and inducible cardiomyocyte-specific FGF18 knockout (Fgf18-CKO) male mice exposed to transverse aortic constriction (TAC) demonstrate exacerbated pathological cardiac hypertrophy with increased oxidative stress, cardiomyocyte death, fibrosis, and dysfunction. In contrast, cardiac-specific overexpression of FGF18 alleviates hypertrophy, decreased oxidative stress, attenuates cardiomyocyte apoptosis, and ameliorates fibrosis and cardiac function. Tyrosine-protein kinase FYN (FYN), the downstream factor of FGF18, was identified by bioinformatics analysis, LC-MS/MS and experiment validation. Mechanistic studies indicate that FGF18/FGFR3 promote FYN activity and expression and negatively regulate NADPH oxidase 4 (NOX4), thereby inhibiting reactive oxygen species (ROS) generation and alleviating pathological cardiac hypertrophy. This study uncovered the previously unknown cardioprotective effect of FGF18 mediated by the maintenance of redox homeostasis through the FYN/NOX4 signaling axis in male mice, suggesting a promising therapeutic target for the treatment of cardiac hypertrophy.
Collapse
|
6
|
Goraltchouk A, Mankovskaya S, Kuznetsova T, Hladkova Z, Hollander JM, Luppino F, Seregin A. Comparative evaluation of rhFGF18 and rhGDF11 treatment in a transient ischemia stroke model. Restor Neurol Neurosci 2023; 41:257-270. [PMID: 38363623 DOI: 10.3233/rnn-231347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Background Pharmacological treatments for ischemic stroke remain limited to thrombolysis, which is associated with increased risk of potentially fatal hemorrhage. Treatments with Recombinant Human Fibroblast Growth Factor 18 (rhFGF18) and Growth and Differentiation Factor 11 (rhGDF11) appear promising based on different preclinical models. The goal of this study was to compare the effects of rhFGF18 and rhGDF11 directly on survival, behavioral deficits, and histological fingerprint of cerebral ischemia in the Wistar rat middle cerebral artery occlusion (MCAO) model of stroke. Methods Ischemia-reperfusion injury was induced using a 2-hour transient MCAO. Animals were administered rhFGF18 (infusion), rhGDF11 (multi-injection), or Phosphate Buffered Saline (PBS) vehicle control and followed for 42 days. Motor-Cognitive deficits were evaluated using the Morris Water Maze at Days 0 (pre-MCAO), 7, 21, and 42. Histopathological assessments were performed on Days 21 and 42. Results Day 7 post-ischemia water maze performance times increased 38.3%, 2.1%, and 23.1% for PBS, rhFGF18, and rhGDF11-treated groups, respectively. Fraction of neurons with abnormal morphology (chromatolysis, pyknotic nuclei, somal degeneration) decreased in all groups toward Day 42 and was lowest for rhFGF18. AChE-positive fiber density and activity increased over time in the rhFGF18 group, remained unchanged in the rhGDF11 treatment arm, and declined in the PBS control. Metabolic increases were greatest in rhGDF11 treated animals, with both rhFGF18 and rhGDF11 achieving improvements over PBS, as evidenced by increased succinate dehydrogenase and lactate dehydrogenase activity. Finally, rhFGF18 treatment exhibited a trend for reduced mortality relative to PBS (5.6%, 95% CI [27.3%, 0.1% ] vs. 22.2%, 95% CI [47.6%, 6.4% ]). Conclusions rhFGF18 treatment appears promising in improving survival and promoting motor-cognitive recovery following cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
| | | | | | - Zhanna Hladkova
- Institute of Physiology, National Academy of Sciences, Minsk, Belarus
| | - Judith M Hollander
- Remedium Bio, Inc., Needham, MA, USA
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | | | | |
Collapse
|
7
|
Huang W, Qiu W, Chen K, Ye S, Wang D, Hu J, Xu H, Lin L, Li X. Research progress of fibroblast growth factor in nervous system diseases. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:738-749. [PMID: 36915973 PMCID: PMC10262007 DOI: 10.3724/zdxbyxb-2022-0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/25/2022] [Indexed: 06/17/2023]
Abstract
Fibroblast growth factors (FGF) are a group of structurally related polypeptides which constitute an elaborate signaling system with their receptors. Evidence accumulated in the years suggests that the FGF family plays a key role in the repair of central nervous system injury. The main protective mechanisms include activating the expression of PI3K-Akt, peroxisome proliferator-activated receptor (PPARγ) and other signals; inhibiting NF-κB-mediated inflammatory response, oxidative stress and apoptosis; regulating neuronal differentiation and neuronal excitability as well as participating in protection of neurovascular units and nerve function repair. This paper comprehensively summarizes the latest research progress in FGF signaling related to diseases of the central nervous system such as cerebral infarction, cerebral hemorrhage, traumatic brain injury, Alzheimer's disease, Parkinson's disease, epilepsy and depression, aiming to provide scientific basis and reference for the development of innovative FGF drugs for the prevention and treatment of neurological diseases.
Collapse
Affiliation(s)
- Wenting Huang
- 1. Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Wanhua Qiu
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Kun Chen
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Shasha Ye
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Dongxue Wang
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Jian Hu
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Huiqin Xu
- 1. Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Li Lin
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Xiaokun Li
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| |
Collapse
|
8
|
Dordoe C, Chen K, Huang W, Chen J, Hu J, Wang X, Lin L. Roles of Fibroblast Growth Factors and Their Therapeutic Potential in Treatment of Ischemic Stroke. Front Pharmacol 2021; 12:671131. [PMID: 33967812 PMCID: PMC8102031 DOI: 10.3389/fphar.2021.671131] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/31/2021] [Indexed: 11/13/2022] Open
Abstract
Stroke is the leading cause of death worldwide, and its treatment remains a challenge. Complex pathological processes are involved in stroke, which causes a reduction in the supply of oxygen and energy to the brain that triggers subsequent cascade events, such as oxidative stress, inflammatory responses and apoptosis, resulting in brain injury. Stroke is a devastating disease for which there are few treatments, but physical rehabilitation can help improve stroke recovery. Although there are very few treatments for stroke patients, the discovery of fibroblast growth factors (FGFs) in mammals has led to the finding that FGFs can effectively treat stroke in animal models. As presented in this review, FGFs play essential roles by functioning as homeostatic factors and controlling cells and hormones involved in metabolism. They could be used as effective therapeutic agents for stroke. In this review, we will discuss the pharmacological actions of FGFs on multiple targets, including their ability to directly promote neuron survival, enhance angiogenesis, protect against blood-brain barrier (BBB) disruption, and regulate microglial modulation, in the treatment of ischemic stroke and their theoretical mechanisms and actions, as well as the therapeutic potential and limitations of FGFs for the clinical treatment of stroke.
Collapse
Affiliation(s)
- Confidence Dordoe
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Keyang Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Department of Neurology, The Second Affiliated Hospital and Yuying Children' Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenting Huang
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jun Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jian Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xue Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Beijing, China
| |
Collapse
|
9
|
Ito K, Ohkawara B, Yagi H, Nakashima H, Tsushima M, Ota K, Konishi H, Masuda A, Imagama S, Kiyama H, Ishiguro N, Ohno K. Lack of Fgf18 causes abnormal clustering of motor nerve terminals at the neuromuscular junction with reduced acetylcholine receptor clusters. Sci Rep 2018; 8:434. [PMID: 29323161 PMCID: PMC5765005 DOI: 10.1038/s41598-017-18753-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/18/2017] [Indexed: 01/29/2023] Open
Abstract
FGF receptor 2 is involved in the formation of the neuromuscular junction (NMJ), but its in vivo ligand remains to be determined. Laser capture microdissection of the mouse spinal motor neurons (SMNs) revealed that Fgf18 mRNA is highly expressed in SMNs in adults. Expression of Fgf18 mRNA was the highest in the spinal cord at embryonic day (E) 15.5, which gradually decreased to postnatal day 7. FGF18 protein was localized at the NMJs of the tibialis anterior muscle at E18.5 and in adults. Fgf18−/− mice at E18.5 showed decreased expressions of the NMJ-specific Chrne and Colq genes in the diaphragm. In Fgf18−/− diaphragms, the synaptophysin-positive areas at the nerve terminals and the acetylcholine receptor (AChR)-positive areas at the motor endplates were both approximately one-third of those in wild-type embryos. Fgf18−/− diaphragms ultrastructurally showed abnormal aggregation of multiple nerve terminals making a gigantic presynapse with sparse synaptic vesicles, and simplified motor endplates. In Fgf18−/− diaphragms, miniature endplate potentials were low in amplitude with markedly reduced frequency. In C2C12 myotubes, FGF18 enhanced AChR clustering, which was blocked by inhibiting FGFRs or MEK1. We propose that FGF18 plays a pivotal role in AChR clustering and NMJ formation in mouse embryogenesis.
Collapse
Affiliation(s)
- Kenyu Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Departments of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideki Yagi
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Departments of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Nakashima
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Departments of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikito Tsushima
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Departments of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kyotaro Ota
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Departments of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Konishi
- Departments of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shiro Imagama
- Departments of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Kiyama
- Departments of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoki Ishiguro
- Departments of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
10
|
Estienne A, Price CA. The fibroblast growth factor 8 family in the female reproductive tract. Reproduction 2018; 155:R53-R62. [DOI: 10.1530/rep-17-0542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/12/2017] [Accepted: 11/06/2017] [Indexed: 12/12/2022]
Abstract
Several growth factor families have been shown to be involved in the function of the female reproductive tract. One subfamily of the fibroblast growth factor (FGF) superfamily, namely the FGF8 subfamily (including FGF17 and FGF18), has become important as Fgf8 has been described as an oocyte-derived factor essential for glycolysis in mouse cumulus cells and aberrant expression ofFGF18has been described in ovarian and endometrial cancers. In this review, we describe the pattern of expression of these factors in normal ovaries and uteri in rodents, ruminants and humans, as well as the expression of their receptors and intracellular negative feedback regulators. Expression of these molecules in gynaecological cancers is also reviewed. The role of FGF8 and FGF18 in ovarian and uterine function is described, and potential differences between rodents and ruminants have been highlighted especially with respect to FGF18 signalling within the ovarian follicle. Finally, we identify major questions about the reproductive biology of FGFs that remain to be answered, including (1) the physiological concentrations within the ovary and uterus, (2) which cell types within the endometrial stroma and theca layer express FGFs and (3) which receptors are activated by FGF8 subfamily members in reproductive tissues.
Collapse
|
11
|
Guo X, Liu T, Zhao D, Wang X, Liu D, He Y, Shan C, Kong Y, Hu W, Tao B, Sun L, Zhao H, Li S, Liu J. FGF18 protects against 6-hydroxydopamine-induced nigrostriatal damage in a rat model of Parkinson’s disease. Neuroscience 2017; 356:229-241. [DOI: 10.1016/j.neuroscience.2017.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/23/2017] [Accepted: 05/03/2017] [Indexed: 02/07/2023]
|
12
|
Song M, Lee JH, Bae J, Bu Y, Kim EC. Human Dental Pulp Stem Cells Are More Effective Than Human Bone Marrow-Derived Mesenchymal Stem Cells in Cerebral Ischemic Injury. Cell Transplant 2017; 26:1001-1016. [PMID: 28105979 DOI: 10.3727/096368916x694391] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We compared the therapeutic effects and mechanism of transplanted human dental pulp stem cells (hDPSCs) and human bone marrow-derived mesenchymal stem cells (hBM-MSCs) in a rat stroke model and an in vitro model of ischemia. Rats were intravenously injected with hDPSCs or hBM-MSCs 24 h after middle cerebral artery occlusion (MCAo), and both groups showed improved functional recovery and reduced infarct volume versus control rats, but the hDPSC group showed greater reduction in infarct volume than the hBM-MSC group. The positive area for the endothelial cell marker was greater in the lesion boundary areas in the hDPSC group than in the hBM-MSC group. Administration of hDPSCs to rats with stroke significantly decreased reactive gliosis, as evidenced by the attenuation of MCAo-induced GFAP+/nestin+ and GFAP+/Musashi-1+ cells, compared with hBM-MSCs. In vivo findings were confirmed by in vitro data illustrating that hDPSCs showed superior neuroprotective, migratory, and in vitro angiogenic effects in oxygen-glucose deprivation (OGD)-injured human astrocytes (hAs) versus hBM-MSCs. Comprehensive comparative bioinformatics analyses from hDPSC- and hBM-MSC-treated in vitro OGD-injured hAs were examined by RNA sequencing technology. In gene ontology and KEGG pathway analyses, significant pathways in the hDPSC-treated group were the MAPK and TGF-β signaling pathways. Thus, hDPSCs may be a better cell therapy source for ischemic stroke than hBM-MSCs.
Collapse
|
13
|
Yu J, Zhu H, Gattoni-Celli S, Taheri S, Kindy MS. Dietary supplementation of GrandFusion(®) mitigates cerebral ischemia-induced neuronal damage and attenuates inflammation. Nutr Neurosci 2015; 19:290-300. [PMID: 25879584 DOI: 10.1179/1476830515y.0000000021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Dietary supplementation of fruits and vegetables has been the main stay for nutritional benefit and overall well-being. GrandFusion(®) is a nutritional supplement that contains the natural nutrients from whole fruits and vegetables that include complex nutrients and phytonutrients that contain anti-oxidant, anti-inflammatory, and neuroprotective properties. METHODS In this study, C57BL/6 mice were fed a diet supplemented with GrandFusion(®) for 2 months prior to 1 hour of ischemia induced by occlusion of the middle cerebral artery (MCAo) followed by various times of reperfusion. Mice were subjected to MCAo for 1 hour and then at various times following reperfusion, animals were assessed for behavioral outcomes (open field testing, rotarod, and adhesive test removal), and infarct volumes (cresyl violet and triphenyltetrazolium chloride). In addition, to determine the potential mechanisms associated with treatment, the brain tissue was examined for changes in oxidative stress and inflammatory markers. RESULTS The GrandFusion(®) diet was able to show a significant protection from infarct damage in the brain and an improvement in neurological outcomes. The diet did not alter heart rate, blood pressure, pO2, pCO2, or pH. In addition, the diet mitigated inflammation by reducing microglial and astrocytic activation following ischemia and reperfusion and limiting oxidative stress. DISCUSSION The study demonstrates the neuroprotective effect of a diet rich in fruits and vegetables that contain anti-oxidant and anti-inflammatory against the impact of cerebral ischemia and reperfusion injury.
Collapse
Affiliation(s)
- Jin Yu
- a Department of Regenerative Medicine and Cell Biology , Medical University of South Carolina , Charleston , SC , USA
| | - Hong Zhu
- a Department of Regenerative Medicine and Cell Biology , Medical University of South Carolina , Charleston , SC , USA
| | - Sebastiano Gattoni-Celli
- b Department of Radiation Oncology , Medical University of South Carolina , Charleston , SC , USA.,c Ralph H. Johnson VA Medical Center , Charleston , SC , USA
| | - Saeid Taheri
- a Department of Regenerative Medicine and Cell Biology , Medical University of South Carolina , Charleston , SC , USA
| | - Mark Stephen Kindy
- a Department of Regenerative Medicine and Cell Biology , Medical University of South Carolina , Charleston , SC , USA.,c Ralph H. Johnson VA Medical Center , Charleston , SC , USA
| |
Collapse
|
14
|
Detante O, Jaillard A, Moisan A, Barbieux M, Favre I, Garambois K, Hommel M, Remy C. Biotherapies in stroke. Rev Neurol (Paris) 2014; 170:779-98. [DOI: 10.1016/j.neurol.2014.10.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 09/29/2014] [Accepted: 10/08/2014] [Indexed: 12/31/2022]
|
15
|
Fibroblast growth factor 10 protects neuron against oxygen-glucose deprivation injury through inducing heme oxygenase-1. Biochem Biophys Res Commun 2014; 456:225-31. [PMID: 25446127 DOI: 10.1016/j.bbrc.2014.11.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 11/14/2014] [Indexed: 01/04/2023]
Abstract
Fibroblast growth factors (FGFs) are a family of structurally related heparin-binding proteins with diverse biological functions. FGFs participate in mitogenesis, angiogenesis, cell proliferation, development, differentiation and cell migration. Here, we investigated the potential effect of FGF10, a member of FGFs, on neuron survival in oxygen-glucose deprivation (OGD) model. In primary cultured mouse cortical neurons upon OGD, FGF10 treatment (100 and 1000 ng/ml) attenuated the decrease of cell viability and rescued the LDH release. Tuj-1 immunocytochemistry assay showed that FGF10 promoted neuronal survival. Apoptosis assay with Annexin V+PI by flow cytometry demonstrated that FGF10 treatment reduced apoptotic cell proportion. Moreover, immunoblotting showed that FGF10 alleviated the cleaved caspase-3 upregulation caused by OGD. FGF10 treatment also depressed the OGD-induced increase of caspase-3, -8 and -9 activities. At last, we found FGF10 triggered heme oxygenase-1 (HO-1) protein expression rather than hypoxia-inducible factor-1 (HIF-1), AMP-activated protein kinase (AMPK) signaling and extracellular signal-regulated kinases 1/2 (ERK1/2) signaling. Knockdown of HO-1 by siRNA partly abolished the neuroprotection of FGF10 in OGD model. In summary, our observations provide the first evidence for the neuroprotective function of FGF10 against ischemic neuronal injury and suggest that FGF10 may be a promising agent for treatment of ischemic stroke.
Collapse
|
16
|
Getgood A, Henson F, Skelton C, Brooks R, Guehring H, Fortier LA, Rushton N. Osteochondral tissue engineering using a biphasic collagen/GAG scaffold containing rhFGF18 or BMP-7 in an ovine model. J Exp Orthop 2014; 1:13. [PMID: 26914758 PMCID: PMC4545804 DOI: 10.1186/s40634-014-0013-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 08/20/2014] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the effect of combining rhFGF18 or BMP-7 with a biphasic collagen/GAG osteochondral scaffold (Chondromimetic) on the repair of osteochondral defects in sheep. METHODS Osteochondral defects (5.8x6mm) were created in the medial femoral condyle (MFC) and the lateral trochlea sulcus (LTS) of the stifle joint of 24 female sheep. Sheep were randomly assigned to four groups (n = 6); 1) empty defect, 2) scaffold only, 3) scaffold + rhFGF-18 (30 μg) and 4) scaffold + BMP-7 (100 μg). At 6 months the defects underwent non-destructive mechanical testing, gross assessment of repair tissue (ICRS score) and histological analysis (Modified O'Driscoll score). RESULTS ICRS repair score: Defects treated with scaffold + rhFGF18 (mean 9.83, 95% CI 8.43-11.23) and scaffold + BMP-7 (10, 9.06-10.94) in the MFC had significantly improved ICRS scores compared to empty defects (4.2, 0-8.80) (p = 0.002). Mechanical properties: BMP-7 treated defects (mean 64.35, 95% CI 56.88-71.82) were significantly less stiff than both the rhFGF18 (mean 84.1, 95% CI 76.8-91.4) and empty defects in the LTS, compared to both contralateral limb (p = 0.003), and the perilesional articular cartilage (p < 0.001). HISTOLOGY A statistically significant improvement in the modified O'Driscoll score was observed in the rhFGF18 treated group (mean 16.83, 95% CI 13.65-20.61) compared to the empty defects (mean 9, 95% CI 4.88-13.12) (p = 0.039) in the MFC. Excellent tissue fill, lateral integration and proteoglycan staining was observed. Only the rhFGF18 defects showed pericellular type VI collagen staining with positive type II collagen and reduced positive type I collagen staining. The majority of defects in the control and BMP-7 groups demonstrated fibrocartilagenous repair tissue. CONCLUSION Statistically significant improvements in gross repair, mechanical properties and histological score were found over empty defects when Chondromimetic was combined with rhFGF18. These results suggest that rhFGF18 may play a significant role in articular cartilage repair applications.
Collapse
Affiliation(s)
- Alan Getgood
- The Fowler Kennedy Sport Medicine Clinic 3M Centre, The University of Western Ontario, London, N6A 3K7, Ontario, Canada.
| | - Frances Henson
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| | - Carrie Skelton
- The University of Cambridge Orthopaedic Research Unit, Cambridge, UK.
| | - Roger Brooks
- The University of Cambridge Orthopaedic Research Unit, Cambridge, UK.
| | | | - Lisa A Fortier
- Department of Clinical Sciences, Cornell University, Ithaca, USA.
| | - Neil Rushton
- The University of Cambridge Orthopaedic Research Unit, Cambridge, UK.
| |
Collapse
|
17
|
Hyperphosphorylation of tau protein in the ipsilateral thalamus after focal cortical infarction in rats. Brain Res 2014; 1543:280-9. [DOI: 10.1016/j.brainres.2013.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/29/2013] [Accepted: 11/01/2013] [Indexed: 11/24/2022]
|
18
|
Yang JP, Liu HJ, Liu RC. A modified rabbit model of stroke: evaluation using clinical MRI scanner. Neurol Res 2013; 31:1092-6. [DOI: 10.1179/174313209x405100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
19
|
Huang B, Krafft PR, Ma Q, Rolland WB, Caner B, Lekic T, Manaenko A, Le M, Tang J, Zhang JH. Fibroblast growth factors preserve blood-brain barrier integrity through RhoA inhibition after intracerebral hemorrhage in mice. Neurobiol Dis 2012; 46:204-14. [PMID: 22300708 DOI: 10.1016/j.nbd.2012.01.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/04/2012] [Accepted: 01/14/2012] [Indexed: 12/16/2022] Open
Abstract
Fibroblast growth factors (FGFs) maintain and promote vascular integrity; however whether FGFs protect the blood-brain barrier (BBB) after intracerebral hemorrhage (ICH) remains unexplored. In this present study, we hypothesized that exogenous FGF administration attenuates brain injury after ICH, specifically by preserving endothelial adherens junctions, therefore reducing vasogenic brain edema and attenuating neurofunctional deficits in mice subjected to experimental ICH. Acid fibroblast growth factor (FGF1) or basic fibroblast growth factor (FGF2) was administered intracerebroventricularly (ICV) at 0.5 h after intrastriatal injection of bacterial collagenase (cICH) or autologous whole blood (bICH). Fibroblast growth factor receptor (FGFR) inhibitor PD173074 and phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 were additionally administered with FGF2. The selective Rho-associated coiled-coil forming protein serine/threonine kinase (ROCK) inhibitor Y27632 was independently administered at 0.5 h after cICH. Brain water content and neurofunctional deficits were evaluated at 24 and 72h after ICH induction. Evans blue extravasation as well as Western blot analysis for the quantification of activated FGFR, Akt, Ras-related C3 botulinum toxin substrate 1 (Rac1), Ras homolog gene family member A (RhoA) and adherens junction proteins (p120-catenin, β-catenin and VE-cadherin) were conducted at 72 h post-cICH. FGF treatment reduced perihematomal brain edema and improved neurofunctional deficits at 72 h after experimental ICH (p<0.05, compared to vehicle); however, FGFR and PI3K inhibition reversed these neuroprotective effects. Exogenous FGF2 increased activated FGFR, Akt, and Rac1 but reduced activated RhoA protein expression at 72 h after cICH (p<0.05, compared to vehicle), which was reversed by FGFR and PI3K inhibition. Y27632 treatment reduced brain injury at 72 h after cICH (p<0.05, compared to vehicle) and increased the expression of catenins (p120-catenin, β-catenin). In conclusion, our findings suggest that exogenous FGF treatment reduced RhoA activity via FGFR-induced activation of the PI3K-Akt-Rac1 signaling pathway, thus preserving BBB integrity, and therefore attenuating secondary brain injury after experimental ICH in mice.
Collapse
Affiliation(s)
- Bin Huang
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Moussaieff A, Yu J, Zhu H, Gattoni-Celli S, Shohami E, Kindy MS. Protective effects of incensole acetate on cerebral ischemic injury. Brain Res 2012; 1443:89-97. [PMID: 22284622 DOI: 10.1016/j.brainres.2012.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 12/31/2011] [Accepted: 01/03/2012] [Indexed: 02/05/2023]
Abstract
The resin of Boswellia species is a major anti-inflammatory agent that has been used for centuries to treat various conditions including injuries and inflammatory conditions. Incensole acetate (IA), a major constituent of this resin, has been shown to inhibit NF-κB activation and concomitant inflammation, as well as the neurological deficit following head trauma. Here, we show that IA protects against ischemic neuronal damage and reperfusion injury in mice, attenuating the inflammatory nature of ischemic damage. IA given post-ischemia, reduced infarct volumes and improved neurological activities in the mouse model of ischemic injury in a dose dependent fashion. The protection from damage was accompanied by inhibition of TNF-α, IL-1β and TGF-β expression, as well as NF-κB activation following injury. In addition, IA is shown to have a therapeutic window of treatment up to 6h after ischemic injury. Finally, the protective effects of IA were partially mediated by TRPV3 channels as determined by the TRPV3 deficient mice and channel blocker studies. This study suggests that the anti-inflammatory and neuroprotective activities of IA may serve as a novel therapeutic treatment for ischemic and reperfusion injury, and as a tool in the ongoing research of mechanisms for neurological damage.
Collapse
|
21
|
Noh SJ, Lee JM, Lee KS, Hong HS, Lee CK, Cho IH, Kim HS, Suh YH. SP-8203 shows neuroprotective effects and improves cognitive impairment in ischemic brain injury through NMDA receptor. Pharmacol Biochem Behav 2011; 100:73-80. [PMID: 21835192 DOI: 10.1016/j.pbb.2011.07.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 07/20/2011] [Accepted: 07/26/2011] [Indexed: 11/15/2022]
Abstract
The extracts of earth worms, Eisenia andrei, have been used as a therapeutic agent for stroke in the traditional medicine. It is also reported that the protease fraction separated from the extracts has strong anti-thrombotic activity. Besides anti-thrombotic actions, we found that SP-8203, N-[3-(2,4-dioxo-1,4-dihydro-2H-quinazolin-3-yl)propyl]-N-{4-[3-(2,4-dioxo-1,4-dihydro-2H-quinazolin-3-yl)propylamino]butyl}acetamide, derived from the extracts of earth worms blocked N-methyl-(D)-aspartate (NMDA) receptor-mediated excitotoxicity in a competitive manner. The neuroprotective effects of SP-8203 were attributable to prevention of Ca(2+) influx through NMDA receptors. The systemic administration of SP-8203 markedly reduced neuronal death following middle cerebral artery occlusion in rats. SP-8203 significantly improved spatial learning and memory in the water maze test. These results provided strong pharmacological basis for its potential therapeutic roles in cerebral ischemia.
Collapse
Affiliation(s)
- Su-Jin Noh
- Department of Pharmacology, College of Medicine, National Creative Research Initiative Center for Alzheimer's Dementia and Neuroscience Research Institute, MRC, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kuo LT, Tsai SY, Groves MJ, An SF, Scaravilli F. Gene expression profile in rat dorsal root ganglion following sciatic nerve injury and systemic neurotrophin-3 administration. J Mol Neurosci 2011; 43:503-15. [PMID: 21061088 DOI: 10.1007/s12031-010-9473-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 10/28/2010] [Indexed: 12/14/2022]
Abstract
Following sciatic nerve transection in adult rats, a proportion of injured dorsal root ganglion (DRG) neurons die, through apoptosis, over the following 6 months. Previous studies showed that axotomy and neurotrophin-3 administration may have effects on expression of neurotrophins and their receptors in DRG. In the current study, the fourth and fifth lumbar DRGs of rats were examined 2 weeks after right sciatic nerve transection and ligation. The effects of axotomy and systemic NT-3 treatment on neuronal genes were investigated by microarray. The results demonstrated that bone morphogenetic protein (BMP) and Janus protein tyrosine kinase signaling pathways are induced in axotomized DRG, and PI-3 kinase and BMP pathways and genes controlling various cellular functions were induced after axotomy and NT-3 administration.
Collapse
Affiliation(s)
- Lu-Ting Kuo
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Yun-lin branch, No.579, Sec. 2, Yun-lin Rd., Dou-liou City, Yun-lin County, 640, Taiwan.
| | | | | | | | | |
Collapse
|
23
|
Induction of striatal neurogenesis enhances functional recovery in an adult animal model of neonatal hypoxic-ischemic brain injury. Neuroscience 2011; 169:259-68. [PMID: 20610036 DOI: 10.1016/j.neuroscience.2010.04.038] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 04/03/2010] [Accepted: 04/19/2010] [Indexed: 11/24/2022]
Abstract
While intraventricular administration of epidermal growth factor (EGF) expands the proliferation of neural stem/progenitor cells in the subventricular zone (SVZ), overexpression of brain-derived neurotrophic factor (BDNF) is particularly effective in enhancing striatal neurogenesis. We assessed the induction of striatal neurogenesis and consequent functional recovery after chronic infusion of BDNF and EGF in an adult animal model of neonatal hypoxic-ischemic (HI) brain injury. Permanent brain damage was induced in CD-1 (ICR) mice (P7) by applying the ligation of unilateral carotid artery and hypoxic condition. At 6 weeks of age, the mice were randomly assigned to groups receiving a continuous 2-week infusion of one of the following treatments into the ventricle: BDNF, EGF, BDNF/EGF, or phosphate buffered saline (PBS). Two weeks after treatment, immunohistochemical analysis revealed an increase in the number of BrdU(+) cells in the SVZ and striata of BDNF/EGF-treated mice. The number of new neurons co-stained with BrdU and betaIII-tubulin was also significantly increased in the neostriata of BDNF/EGF-treated mice, compared with PBS group. In addition, the newly generated cells were expressed as migrating neuroblasts labeled with PSA-NCAM or doublecortin in the SVZ and the ventricular side of neostriata. The new striatal neurons were also differentiated as mature neurons co-labeled with BrdU(+)/NeuN(+). When evaluated post-surgical 8 weeks, BDNF/EGF-treated mice exhibited significantly longer rotarod latencies at constant speed (48 rpm) and under accelerating condition (4-80 rpm), relative to PBS and untreated controls. In the forelimb-use asymmetry test, BDNF/EGF-treated mice showed significant improvement in the use of the contralateral forelimb. In contrast, this BDNF/EGF-associated functional recovery was abolished in mice receiving a co-infusion of 2% cytosine-b-d-arabinofuranoside (Ara-C), a mitotic inhibitor. Induction of striatal neurogenesis by the intraventricular administration of BDNF and EGF promoted functional recovery in an adult animal model of neonatal HI brain injury. The effect of Ara-C to completely block functional recovery indicates that the effect may be the result of newly generated neurons. Therefore, this treatment may offer a promising strategy for the restoration of motor function for adults with cerebral palsy (CP).
Collapse
|
24
|
Abstract
A large association study by O'Donovan et al recently suggested that genetic variation in fibroblast growth factor receptor (FGFR) 2 increases the risk for developing schizophrenia. Fibroblast growth factors (FGFs) are part of the family of glial growth factors; they control the growth and patterning of specific brain structures and regulate the maintenance and repair of neuronal tissues. In addition, a direct interaction was recently found between FGFRs and adenosine A(2A) receptors, leading to corticostriatal plasticity and antagonizing the signaling pathway of dopamine D(2) receptors. These findings make FGFs plausible candidate genes for schizophrenia. Here, we review the role of FGFs in schizophrenia and combine evidence from studies on variations in FGF genes, RNA expression, protein levels, and FGF administration, as well as the effects of medication and environmental risk factors for schizophrenia. These data suggest that changes in the FGF system contribute to schizophrenia and possibly to a wider range of psychiatric disorders. The role of FGFs in schizophrenia and related disorders needs to be studied in more detail.
Collapse
Affiliation(s)
- Afke F. Terwisscha van Scheltinga
- Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Centre Utrecht, Utrecht, The Netherlands,To whom correspondence should be addressed; Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; tel: +31-0-88-755-5555, fax: +31-0-88-7555466, e-mail:
| | - Steven C. Bakker
- Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - René S. Kahn
- Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
25
|
Chuang CY, Lord MS, Melrose J, Rees MD, Knox SM, Freeman C, Iozzo RV, Whitelock JM. Heparan sulfate-dependent signaling of fibroblast growth factor 18 by chondrocyte-derived perlecan. Biochemistry 2010; 49:5524-32. [PMID: 20507176 DOI: 10.1021/bi1005199] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Perlecan is a large multidomain proteoglycan that is essential for normal cartilage development. In this study, perlecan was localized in the pericellular matrix of hypertrophic chondrocytes in developing human cartilage rudiments. Perlecan immunopurified from medium conditioned by cultured human fetal chondrocytes was found to be substituted with heparan sulfate (HS), chondroitin sulfate (CS), and keratan sulfate (KS). Ligand and carbohydrate engagement (LACE) assays demonstrated that immunopurified chondrocyte-derived perlecan formed HS-dependent ternary complexes with fibroblast growth factor (FGF) 2 and either FGF receptors (FGFRs) 1 or 3; however, these complexes were not biologically active in the BaF32 cell system. Chondrocyte-derived perlecan also formed HS-dependent ternary complexes with FGF18 and FGFR3. The proliferation of BaF32 cells expressing FGFR3 was promoted by chondrocyte-derived perlecan in the presence of FGF18, and this activity was reduced by digestion of the HS with either heparinase III or mammalian heparanase. These data suggest that FGF2 and -18 bind to discrete structures on the HS chains attached to chondrocyte-derived perlecan which modulate the growth factor activities. The presence and activity of mammalian heparanase may be important in the turnover of HS and subsequent signaling required for the establishment and maintenance of functional osteo-chondral junctions in long bone growth.
Collapse
Affiliation(s)
- Christine Y Chuang
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Sawada N, Liao JK. Targeting eNOS and beyond: emerging heterogeneity of the role of endothelial Rho proteins in stroke protection. Expert Rev Neurother 2009; 9:1171-86. [PMID: 19673606 DOI: 10.1586/ern.09.70] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Currently available modalities for the treatment of acute ischemic stroke are aimed at preserving or augmenting cerebral blood flow. Experimental evidence suggests that statins, which show 25-30% reduction of stroke incidence in clinical trials, confer stroke protection by upregulation of eNOS and increasing cerebral blood flow. The upregulation of eNOS by statins is mediated by inhibition of small GTP-binding protein RhoA. Our recent study uncovered a unique role for a Rho-family member Rac1 in stroke protection. Rac1 in endothelium does not affect cerebral blood flow. Instead, inhibition of endothelial Rac1 leads to broad upregulation of the genes relevant to neurovascular protection. Intriguingly, inhibition of endothelial Rac1 enhances neuronal cell survival through endothelium-derived neurotrophic factors, including artemin. This review discusses the emerging therapeutic opportunities to target neurovascular signaling beyond the BBB, with special emphasis on the novel role of endothelial Rac1 in stroke protection.
Collapse
Affiliation(s)
- Naoki Sawada
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Center for Life Sciences, Boston, MA 02115, USA.
| | | |
Collapse
|
27
|
Yu J, Zhu H, Ko D, Kindy MS. Motoneuronotrophic factor analog GM6 reduces infarct volume and behavioral deficits following transient ischemia in the mouse. Brain Res 2008; 1238:143-53. [PMID: 18789909 PMCID: PMC3275905 DOI: 10.1016/j.brainres.2008.08.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 08/12/2008] [Accepted: 08/12/2008] [Indexed: 11/24/2022]
Abstract
Motoneuronotrophic factor (MNTF) is an endogenous neurotrophin that is highly specific for the human nervous system, and some of the observed effects of MNTF include motoneuron differentiation, maintenance, survival, and reinnervation of target muscles and organs. MNTF is a neuro-signaling molecule that binds to specific receptors. Using In Silico Analysis, one of the active sites of MNTF was identified as an analog of six amino acids (GM6). The effect of chemically synthesized GM6 on ischemic stroke was studied in the middle cerebral artery occlusion (MCAo) mouse model. Mice were subjected to 1 hur of ischemia followed by 24 h of reperfusion. Mice were injected intravenously with a bolus of GM6, at various doses (1 and 5 mg/kg) immediately after the start of reperfusion and examined for changes in physiological parameters, neurological deficits and infarct volume. GM6 was able to penetrate the blood brain barrier, and at both 1 and 5 mg/kg showed a significant protection from infarct damage, which translated to improvement of neurological deficits. Administration of GM6 demonstrated no changes in HR, BP, pO(2), pCO(2), or pH. A significant increase over the control group in CBF after reperfusion was observed with GM6 administration, which helped to mitigate the ischemic effect caused by the blockage of blood flow. The time window of treatment was assessed at various times following cerebral ischemia with GM6 demonstrating a significant protective effect up to 6-12 h post ischemia. In addition, GM6 increased neurogenesis, and decreased apoptosis and inflammation in the mouse brain following cerebral ischemic injury. These data suggest that GM6 is neuroprotective to the brain following IV injection in the mouse model of MCAo.
Collapse
Affiliation(s)
- Jin Yu
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425
| | - Hong Zhu
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425
| | - Dorothy Ko
- Genervon Biopharmaceuticals, Montebello, CA
| | - Mark S. Kindy
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425
- Ralph H. Johnson VA Medical Center, Charleston, SC, 29401
- Neurological Testing Service, Inc, Charleston, SC 29425
| |
Collapse
|
28
|
Benzamide protects delayed neuronal death and behavioural impairment in a mouse model of global cerebral ischemia. Behav Brain Res 2008; 192:178-84. [PMID: 18501976 DOI: 10.1016/j.bbr.2008.03.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 03/28/2008] [Accepted: 03/31/2008] [Indexed: 12/21/2022]
Abstract
The present study is aimed at evaluating the functional and neuroprotective effect of benzamide, a poly-(ADP-ribose) polymerase (PARP) inhibitor on delayed neuronal death (DND) in hippocampus CA1 region and memory impairment following global cerebral ischemia (GCI) in a mouse model. GCI was induced by bilateral common carotid artery occlusion (BCAo) for 20 min followed by reperfusion for 9 days. Postischemic continuous treatment with benzamide (160 mg/kg b w i.p. for 9 days) significantly reversed the GCI-induced anterograde memory impairment in passive avoidance step through and elevated plus maze tasks. The observed memory impairment in vehicle treated ischemia group was found to be well correlated with DND and downregulation of cholinergic muscarinic receptor-1 expression, which was possibly mediated by inflammation and apoptosis, as revealed from inducible nitric oxide synthase (iNOS) expression and number of TUNEL positive neurons in hippocampus CA1 region. It is clear from the present experiment that benzamide treatment significantly decreases the iNOS expression and number of apoptotic neurons and thereby improves the neuronal survival and memory during GCI. Our present findings provide compelling evidence that multiple doses of benzamide treatment is a promising therapeutic approach for cerebrovascular and neurodegenerative diseases, which deserves further clinical evaluation.
Collapse
|
29
|
Govindaswami M, Brown SA, Yu J, Zhu H, Bishop PD, Kindy MS, Oeltgen PR. Delta 2-specific opioid receptor agonist and hibernating woodchuck plasma fraction provide ischemic neuroprotection. Acad Emerg Med 2008; 15:250-7. [PMID: 18304055 DOI: 10.1111/j.1553-2712.2008.00048.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVES The authors present evidence that the delta opioid receptor agonist Deltorphin-D(variant) (Delt-D(var)) and hibernating woodchuck plasma (HWP), but not summer-active woodchuck plasma (SAWP), can provide significant neuroprotection from focal ischemia in mice by a mechanism that relies in part on reducing nitric oxide (NO) release in ischemic tissue. METHODS Cerebral ischemia was produced in wild-type and NO synthase-deficient (NOS(-/-)) mice by transient, 1-hour middle cerebral artery occlusion (MCAO). Behavioral deficits were determined at 22 hours and infarct volume was assessed at 24 hours after MCAO. Mice were treated with saline or Delt-D(var) at 2.0 and 4.0 mg/kg, or 200 microL of HWP or SAWP. NOS(-/-) mice were treated with either saline or Delt-D(var) at 4.0 mg/kg. NO release was determined using an N9 microglial cell line pretreated with delta- or mu-specific opioids and HWP or SAWP prior to activation with lipopolysaccharide and interferon-gamma. Nitrate in the medium was measured as an indicator of NO production. RESULTS Infusion of Delt-D(var) or HWP (but not SAWP) decreased infarct volume and improved behavioral deficits following 1 hour of MCAO and 24 hours of reperfusion. In NOS(-/-) mice, endothelial NOS(+/+) is required to provide Delt-D(var)-induced neuroprotection. Delt-D(var) and HWP dose-dependently decreased NO release in cell culture, while SAWP and other delta- and mu-specific opioids did not. CONCLUSIONS Delt-D(var) and HWP, but not SAWP, are effective neuroprotectant agents in a mouse model of transient MCAO. In cell culture, the mechanism of this ischemic neuroprotection may rely in part on their ability to block NO release.
Collapse
Affiliation(s)
- Meera Govindaswami
- Department of Pathology, University of Kentucky College of Medicine and Veterans Affairs Medical Center, Lexington, KY 40536, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Green AR. Pharmacological approaches to acute ischaemic stroke: reperfusion certainly, neuroprotection possibly. Br J Pharmacol 2008; 153 Suppl 1:S325-38. [PMID: 18059324 PMCID: PMC2268079 DOI: 10.1038/sj.bjp.0707594] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 10/24/2007] [Accepted: 10/30/2007] [Indexed: 12/27/2022] Open
Abstract
Stroke is a major cause of both death and disability. However, there are no pharmacological treatments used in most countries other than recombinant tissue plasminogen activator, a thrombolytic, and this is only used in about 4% of patients presenting after an acute ischaemic stroke. One novel thrombolytic (desmoteplase) has just been reported to have failed in a Phase IIb/III trial, but other thrombolytics and reperfusion agents remain in development. The picture with neuroprotectant agents, that is compounds that act to preserve neurones following an acute cerebral ischaemic insult, is even more bleak. Despite the development of over 1,000 compounds, many proving effective in animal models of stroke, none has demonstrated efficacy in patients in the over 100 clinical trials conducted. This includes NXY-059, which was developed in accordance with the guidelines proposed by an academic-industry roundtable group (STAIR). This review examines the available data on compounds currently in development. It also proposes that the failure of translation between efficacy in preclinical models and patients is likely to terminate most current neuroprotective drug development. It is suggested that animal models must be made more representative of the patient condition (with other co-morbid conditions) and suggests that since stroke is primarily a cardiovascular disease with a neurological outcome, more research on the neurovascular unit would be valuable. New approaches on neuroinflammation, neurorestoration and neurorepair are also likely to gain prominence in the search for new drugs to treat this major clinical problem.
Collapse
Affiliation(s)
- A R Green
- Institute of Neuroscience, School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK.
| |
Collapse
|
31
|
Lo ACY, Cheung AKH, Hung VKL, Yeung CM, He QY, Chiu JF, Chung SSM, Chung SK. Deletion of aldose reductase leads to protection against cerebral ischemic injury. J Cereb Blood Flow Metab 2007; 27:1496-509. [PMID: 17293845 DOI: 10.1038/sj.jcbfm.9600452] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Previously, we reported that transgenic mice overexpressing endothelin-1 in astrocytes showed more severe neurological deficits and increased infarct after transient focal ischemia. In those studies, we also observed increased level of aldose reductase (AR), the first and rate-limiting enzyme of the polyol pathway, which has been implicated in osmotic and oxidative stress. To further understand the involvement of the polyol pathway, the mice with deletion of enzymes in the polyol pathway, AR, and sorbitol dehydrogenase (SD), which is the second enzyme in this pathway, were challenged with similar cerebral ischemic injury. Deletion of AR-protected animals from severe neurological deficits and large infarct, whereas similar protection was not observed in mice with SD deficiency. Most interestingly, AR(-/-) brains showed lowered expression of transferrin and transferrin receptor with less iron deposition and nitrotyrosine accumulation. The protection against oxidative stress in AR(-/-) brain was also associated with less poly(adenosine diphosphate-ribose) polymerase (PARP) and caspase-3 activation. Pharmacological inhibition of AR by Fidarestat also protected animals against cerebral ischemic injury. These findings are the first to show that AR contributes to iron- and transferrin-related oxidative stress associated with cerebral ischemic injury, suggesting that inhibition of AR but not SD may have therapeutic potential against cerebral ischemic injury.
Collapse
Affiliation(s)
- Amy C Y Lo
- Department of Anatomy, The University of Hong Kong, Hong Kong SAR, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Whitaker VR, Cui L, Miller S, Yu SP, Wei L. Whisker stimulation enhances angiogenesis in the barrel cortex following focal ischemia in mice. J Cereb Blood Flow Metab 2007; 27:57-68. [PMID: 16670699 DOI: 10.1038/sj.jcbfm.9600318] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Post-ischemia angiogenesis and vascular plasticity help to restore blood flow to ischemic tissue and likely benefit long-term functional recovery. Physical activity has been shown to cause morphologic and functional effects, including promoting angiogenesis in normal or injured animals. A therapeutic effect of peripheral activity on central angiogenesis after cerebral ischemia, however, has not been studied. In the present study of whisker-barrel cortex ischemia in the mouse model, we tested the hypothesis that enhancing whisker activity and sensory input to the ischemic barrel cortex might promote post-ischemia cerebral angiogenesis. Three days after focal ischemia in adult mice, the whiskers corresponding to the ischemic barrel cortex were stimulated by two methods: (1) whiskers on the right side of the mouse face were trimmed away, so the left whiskers were overused by the animals, (2) left whiskers were manually stimulated to enhance input signals to the ischemic barrel cortex. Western blot analysis showed that whisker stimulation increased expression of the angiogenic factors vascular endothelial growth factor, basic fibroblast growth factor, Tie-1, angiopoietin-2 (Ang-2), and possibly Ang-1. Co-immunostaining with markers for proliferation (5-bromo-2'-deoxyuridine (BrdU)) and vascular endothelial cells (Glut-1/CD-31) identified vessel proliferation in the penumbra region. Whisker stimulation increased BrdU-positive endothelial cells and vessels in this region 7 and 14 days after ischemia. Whisker stimulation also attenuated endothelial cell death and increased local cerebral blood flow. Our data suggest that appropriately enhanced peripheral activity and afferent signals to the ischemic cortex can promote post-ischemic angiogenesis, which may imply beneficial effects of specific physical therapy on long-term recovery from ischemic stroke.
Collapse
Affiliation(s)
- Vivian R Whitaker
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | |
Collapse
|
33
|
Prolotherapy: Regenerative Injection Therapy. Pain Manag 2007. [DOI: 10.1016/b978-0-7216-0334-6.50135-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
34
|
Mojsilovic-Petrovic J, Arneja A, Kalb RG. Enprofylline protects motor neurons from in vitro excitotoxic challenge. NEURODEGENER DIS 2006; 2:160-5. [PMID: 16909021 DOI: 10.1159/000089621] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The death of motor neurons in amyotrophic lateral sclerosis (ALS) is believed to result, in part, from unrestrained activation of glutamate receptors (excitotoxicity). In some in vitro models, excitotoxic death only occurs if motor neurons develop in the presence of the growth factor, brain-derived neurotrophic factor (BDNF). OBJECTIVE Since the increased vulnerability of motor neurons evoked by BDNF is mediated by activation of TrkB, we sought to identify pharmacological agents that can block this pathway. Adenosine receptors are known to transactivate Trk receptors, leading us to examine the effects of manipulating of adenosine receptor signaling on Trk signaling and excitotoxic sensitivity. METHODS Spinal cord cultures were treated with adenosine receptor agonists and antagonists. The biochemical effects on Trk signaling and excitotoxic motor neuron death were examined. RESULTS We show here that adenosine A(2a) antagonists can reduce activation of Trk receptors and are neuroprotective. Conversely, activating adenosine A(2a) receptors in the absence of BDNF signaling makes motor neurons vulnerable to excitotoxic challenge. CONCLUSION Selective, high-affinity adenosine A(2a) antagonists merit consideration as therapeutic agents for the treatment of ALS.
Collapse
|
35
|
Green AR, Shuaib A. Therapeutic strategies for the treatment of stroke. Drug Discov Today 2006; 11:681-93. [PMID: 16846795 DOI: 10.1016/j.drudis.2006.06.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 04/21/2006] [Accepted: 06/05/2006] [Indexed: 10/24/2022]
Abstract
Acute ischaemic stroke is a major health problem with no effective treatments apart from the thrombolytic recombinant tissue plasminogen activator (rt-PA), which must be given within 3h of stroke onset. However, rt-PA increases the risk of symptomatic intracranial haemorrhage and is administered to <5% of stroke patients. New perfusion-enhancing compounds are in development but the risk:benefit ratio remains to be determined. Many neuroprotective drugs have been studied but all those that reached clinical development have failed to demonstrate efficacy. However, adherence to recently published guidelines on preclinical development has resulted in one novel compound (NXY-059) demonstrating efficacy in a Phase III trial, providing encouragement for the validity of the concept of neuroprotection. There are a variety of new neuroprotective compounds in the early stages of investigation and some could prove clinically effective, provided appropriate preclinical development guidelines are observed.
Collapse
Affiliation(s)
- A Richard Green
- Global Discovery CNS & Pain Control, AstraZeneca R&D Charnwood, Bakewell Road, Loughborough, LE11 5RH, UK.
| | | |
Collapse
|
36
|
Skibo GG, Lushnikova IV, Voronin KY, Dmitrieva O, Novikova T, Klementiev B, Vaudano E, Berezin VA, Bock E. A synthetic NCAM-derived peptide, FGL, protects hippocampal neurons from ischemic insult both in vitro and in vivo. Eur J Neurosci 2006; 22:1589-96. [PMID: 16197499 DOI: 10.1111/j.1460-9568.2005.04345.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is a major unmet need for development of innovative strategies for neuroprotection against ischemic brain injury. Here we show that FGL, a neural cell adhesion molecule (NCAM)-derived peptide binding to and inducing phosphorylation of the fibroblast growth factor receptor (FGFR), acts neuroprotectively after an ischemic insult both in vitro and in vivo. The neuroprotective activity of FGL was tested in vitro on dissociated rat hippocampal neurons and hippocampal slice cultures, using a protocol of oxygen-glucose deprivation (OGD). FGL protected hippocampal neurons from damage and maintained or restored their metabolic and presynaptic activity, both if employed as a pretreatment alone to OGD, and if only applied after the insult. In vivo 24 h pretreatment with a single suboccipital injection of FGL significantly protected hippocampal CA1 neurons from death in a transient global ischemia model in the gerbil. We conclude that FGL promotes neuronal survival after ischemic brain injury.
Collapse
Affiliation(s)
- Galina G Skibo
- Protein Laboratory, Institute of Molecular Pathology, Panum Institute, University of Copenhagen, Blegdamsvej 3C, bld. 6.2, DK-2200 Copenhagen N, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lo ACY, Chen AYS, Hung VKL, Yaw LP, Fung MKL, Ho MCY, Tsang MCS, Chung SSM, Chung SK. Endothelin-1 overexpression leads to further water accumulation and brain edema after middle cerebral artery occlusion via aquaporin 4 expression in astrocytic end-feet. J Cereb Blood Flow Metab 2005; 25:998-1011. [PMID: 15815585 DOI: 10.1038/sj.jcbfm.9600108] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Stroke patients have increased levels of endothelin-1 (ET-1), a strong vasoconstrictor, in their plasma or cerebrospinal fluid. Previously, we showed high level of ET-1 mRNA expression in astrocytes after hypoxia/ischemia. It is unclear whether the contribution of ET-1 induction in astrocytes is protective or destructive in cerebral ischemia. Here, we generated a transgenic mouse model that overexpress ET-1 in astrocytes (GET-1) using the glial fibrillary acidic protein promoter to examine the role of astrocytic ET-1 in ischemic stroke by challenging these mice with transient middle cerebral artery occlusion (MCAO). Under normal condition, GET-1 mice showed no abnormality in brain morphology, cerebrovasculature, absolute cerebral blood flow, blood-brain barrier (BBB) integrity, and mean arterial blood pressure. Yet, GET-1 mice subjected to transient MCAO showed more severe neurologic deficits and increased infarct, which were partially normalized by administration of ABT-627 (ET(A) antagonist) 5 mins after MCAO. In addition, GET-1 brains exhibited more Evans blue extravasation and showed decreased endothelial occludin expression after MCAO, correlating with higher brain water content and increased cerebral edema. Aquaporin 4 expression was also more pronounced in astrocytic end-feet on blood vessels in GET-1 ipsilateral brains. Our current data suggest that astrocytic ET-1 has deleterious effects on water homeostasis, cerebral edema and BBB integrity, which contribute to more severe ischemic brain injury.
Collapse
Affiliation(s)
- Amy C Y Lo
- Institute of Molecular Biology, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Priorities for clinical research in intracerebral hemorrhage: report from a National Institute of Neurological Disorders and Stroke workshop. Stroke 2005; 36:e23-41. [PMID: 15692109 DOI: 10.1161/01.str.0000155685.77775.4c] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND PURPOSE Spontaneous intracerebral hemorrhage (ICH) is one of the most lethal stroke types. In December 2003, a National Institute of Neurological Disorders and Stroke (NINDS) workshop was convened to develop a consensus for ICH research priorities. The focus was clinical research aimed at acute ICH in patients. METHODS Workshop participants were divided into 6 groups: (1) current state of ICH research; (2) basic science; and (3) imaging, (4) medical, (5) surgical, and (6) clinical methodology. Each group formulated research priorities before the workshop. At the workshop, these were discussed and refined. RESULTS Recent progress in management of hemorrhage growth, intraventricular hemorrhage, and limitations in the benefit of open craniotomy were noted. The workshop identified the importance of developing animal models to reflect human ICH, as well as the phenomena of rebleeding. More human ICH pathology is needed. Real-time, high-field magnets and 3-dimensional imaging, as well as high-resolution tissue probes, are ICH imaging priorities. Trials of acute blood pressure-lowering in ICH and coagulopathy reversal are medical priorities. The exact role of edema in human ICH pathology and its treatment requires intensive study. Trials of minimally invasive surgical techniques including mechanical and chemical surgical adjuncts are critically important. The methodologic challenges include establishing research networks and a multi-specialty approach. Waiver of consent issues and standardizing care in trials are important issues. Encouragement of young investigators from varied backgrounds to enter the ICH research field is critical. CONCLUSIONS Increasing ICH research is crucial. A collaborative approach is likely to yield therapies for this devastating form of brain injury.
Collapse
|
39
|
Ellsworth JL, Garcia R, Yu J, Kindy MS. Time window of fibroblast growth factor-18-mediated neuroprotection after occlusion of the middle cerebral artery in rats. J Cereb Blood Flow Metab 2004; 24:114-23. [PMID: 14688623 DOI: 10.1097/01.wcb.0000100063.36077.cd] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To assess the time window for fibroblast growth factor-18 (FGF18)-mediated neuroprotection, FGF18 was administered by intravenous infusion at various times after transient occlusion of the middle cerebral artery (MCAO) in rats. Vehicle or FGF18 (100 microg x kg(-1) x h(-1)) was infused at 0.25, 0.5, 1.0, 2.0, 4.0, or 8.0 hours after MCAO with infarct volumes and behavioral deficits measured at 24.0 hours after MCAO. A separate group of animals received the infusions 24 hours after MCAO with endpoints measured at 48 hours after MCAO. Infusion of FGF18 reduced infarct volumes and improved scores in tests of reference and working memory, motor ability, and exploratory behavior. FGF18 was most efficacious when infused within 2 hours after MCAO. Significant reductions in infarct volumes and reductions in deficits of reference memory and motor activity were also observed with FGF18 infused 24 hours after MCAO. Measurements taken at infusion times before 2 hours after MCAO showed that regional cerebral blood flow was increased by FGF18. Administration of vehicle or FGF18 had no significant effect on mean arterial blood pressure, heart rate, brain temperature, blood pH, Pco2, or Po2. These results demonstrate that FGF18 is an effective neuroprotective agent when administered early after transient MCAO in rats. Efficacy observed with infusions at later times suggests an expanded time window for FGF18-mediated neuroprotection.
Collapse
|