1
|
Wypych M, Domitrz I, Kochanowski J. Insulin-like growth factor 1 and its prognostic value in the course of acute ischemic cerebrovascular events. Arch Med Sci Atheroscler Dis 2023; 8:e146-e154. [PMID: 38283930 PMCID: PMC10811535 DOI: 10.5114/amsad/172970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 09/27/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction The aim of the study was to evaluate insulin-like growth factor 1 (IGF-1) as a predictor of the course of an acute cerebral ischemic event (AICE). This polypeptide, by activating receptors that are present in most tissues, including the brain, mediates the anabolic activity of growth hormone (GH) and its impact on growth and maturation processes, as well as organisms' survival time. AICE can occur in the form of a transient ischemic attack (TIA) or an ischemic stroke (IS). Material and methods The study included 86 participants. The correlation between serum IGF-1 concentration and the clinical status of 56 patients on days 1 and 9 of AICE, as well as risk factors and the course of the disease, were prospectively analyzed. The control group consisted of 30 healthy volunteers. Results Patients with a minor baseline neurological syndrome had higher serum IGF-1 concentrations than patients with severe baseline neurological dysfunctions. Multidimensional analyses showed that high IGF-1 values independently determined the worse course of the disease, especially in patients with a severe neurological deficit present on the first day of AICE. Conclusions Our results indicate that the high level of circulating IGF-1 on the first day of AICE is an independent factor determining the unfavorable course of the stroke, and this relationship is proportional to the severity of the baseline neurological deficit. The study also revealed a positive correlation between the decreased plasma IGF-1 concentration on the first day of AICE and the severity of neurological symptoms.
Collapse
Affiliation(s)
- Martyna Wypych
- Department of Neurology, Faculty of Medicine and Dentistry, Medical University of Warsaw, Warsaw, Poland
| | - Izabela Domitrz
- Department of Neurology, Faculty of Medicine and Dentistry, Medical University of Warsaw, Warsaw, Poland
| | - Jan Kochanowski
- Department of Neurology, Faculty of Medicine and Dentistry, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
2
|
Nuñez A, Zegarra-Valdivia J, Fernandez de Sevilla D, Pignatelli J, Torres Aleman I. The neurobiology of insulin-like growth factor I: From neuroprotection to modulation of brain states. Mol Psychiatry 2023; 28:3220-3230. [PMID: 37353586 DOI: 10.1038/s41380-023-02136-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/30/2023] [Accepted: 06/13/2023] [Indexed: 06/25/2023]
Abstract
After decades of research in the neurobiology of IGF-I, its role as a prototypical neurotrophic factor is undisputed. However, many of its actions in the adult brain indicate that this growth factor is not only involved in brain development or in the response to injury. Following a three-layer assessment of its role in the central nervous system, we consider that at the cellular level, IGF-I is indeed a bona fide neurotrophic factor, modulating along ontogeny the generation and function of all the major types of brain cells, contributing to sculpt brain architecture and adaptive responses to damage. At the circuit level, IGF-I modulates neuronal excitability and synaptic plasticity at multiple sites, whereas at the system level, IGF-I intervenes in energy allocation, proteostasis, circadian cycles, mood, and cognition. Local and peripheral sources of brain IGF-I input contribute to a spatially restricted, compartmentalized, and timed modulation of brain activity. To better define these variety of actions, we consider IGF-I a modulator of brain states. This definition aims to reconcile all aspects of IGF-I neurobiology, and may provide a new conceptual framework in the design of future research on the actions of this multitasking neuromodulator in the brain.
Collapse
Affiliation(s)
- A Nuñez
- Department of Anatomy, Histology and Neurosciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - J Zegarra-Valdivia
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- CIBERNED, Madrid, Spain
- Universidad Señor de Sipán, Chiclayo, Perú
| | - D Fernandez de Sevilla
- Department of Anatomy, Histology and Neurosciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - J Pignatelli
- CIBERNED, Madrid, Spain
- Cajal Institute (CSIC), Madrid, Spain
| | - I Torres Aleman
- Achucarro Basque Center for Neuroscience, Leioa, Spain.
- CIBERNED, Madrid, Spain.
- Ikerbasque Science Foundation, Bilbao, Spain.
| |
Collapse
|
3
|
Qiu L, Wang Y, Liu F, Deng S, He Z, Zheng W, Wang Y. Genetic polymorphisms of pri-let-7f, gene-environment and gene-gene interactions, and associations with ischemic stroke risk in Liaoning Province. J Int Med Res 2023; 51:3000605231173578. [PMID: 37170751 PMCID: PMC10184219 DOI: 10.1177/03000605231173578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/17/2023] [Indexed: 05/13/2023] Open
Abstract
OBJECTIVE The incidence of stroke has been rising annually and investigations into traditional risk factors have led to increased attention on genetic factors. In this study, we focused on the pri-let-7f gene, and investigated the association between pri-let-7f gene polymorphisms and ischemic stroke (IS). METHODS This case-control study included 1803 patients and 1456 healthy controls of Han ethnicity living in Liaoning Province. We carried out genotyping analysis of two loci, pri-let-7f-1 rs10739971 and pri-let-7f-2 rs17276588, and performed statistical analysis controlling for confounding factors by logistic regression. RESULTS The A alleles and AA genotypes of both loci were significantly associated with an increased risk of IS. Variant genotypes of rs17276588 may also increase the risk of IS in females with alcohol intake. Gene-gene interaction analysis showed combined effects of mutations in both these single nucleotide polymorphisms (SNPs). CONCLUSIONS This study demonstrated an association between pri-let-7f SNPs and IS, providing potential latent biomarkers for the risk of IS. However, more detailed studies are needed to clarify these results.
Collapse
Affiliation(s)
- Luying Qiu
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yuye Wang
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China
- Department of Neurology, China-Japan Friendship Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Fang Liu
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shumin Deng
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhiyi He
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wenxu Zheng
- Geriatric Department of Dalian Friendship Hospital, No. 8 Sanba Square, Dalian, China
| | - Yanzhe Wang
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Guan J, Li F, Kang D, Anderson T, Pitcher T, Dalrymple-Alford J, Shorten P, Singh-Mallah G. Cyclic Glycine-Proline (cGP) Normalises Insulin-Like Growth Factor-1 (IGF-1) Function: Clinical Significance in the Ageing Brain and in Age-Related Neurological Conditions. Molecules 2023; 28:molecules28031021. [PMID: 36770687 PMCID: PMC9919809 DOI: 10.3390/molecules28031021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Insulin-like growth factor-1 (IGF-1) function declines with age and is associated with brain ageing and the progression of age-related neurological conditions. The reversible binding of IGF-1 to IGF binding protein (IGFBP)-3 regulates the amount of bioavailable, functional IGF-1 in circulation. Cyclic glycine-proline (cGP), a metabolite from the binding site of IGF-1, retains its affinity for IGFBP-3 and competes against IGF-1 for IGFBP-3 binding. Thus, cGP and IGFBP-3 collectively regulate the bioavailability of IGF-1. The molar ratio of cGP/IGF-1 represents the amount of bioavailable and functional IGF-1 in circulation. The cGP/IGF-1 molar ratio is low in patients with age-related conditions, including hypertension, stroke, and neurological disorders with cognitive impairment. Stroke patients with a higher cGP/IGF-1 molar ratio have more favourable clinical outcomes. The elderly with more cGP have better memory retention. An increase in the cGP/IGF-1 molar ratio with age is associated with normal cognition, whereas a decrease in this ratio with age is associated with dementia in Parkinson disease. In addition, cGP administration reduces systolic blood pressure, improves memory, and aids in stroke recovery. These clinical and experimental observations demonstrate the role of cGP in regulating IGF-1 function and its potential clinical applications in age-related brain diseases as a plasma biomarker for-and an intervention to improve-IGF-1 function.
Collapse
Affiliation(s)
- Jian Guan
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, The University of Auckland, Auckland 1142, New Zealand
- Centre for Brain Research, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, The University of Auckland, Auckland 1142, New Zealand
- Brain Research New Zealand, The Centre for Research Excellent, Dunedin 9016, New Zealand
- The cGP Lab Limited New Zealand, Auckland 1021, New Zealand
- Correspondence: ; Tel.: +64-9-923-6134
| | - Fengxia Li
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, The University of Auckland, Auckland 1142, New Zealand
- Centre for Brain Research, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, The University of Auckland, Auckland 1142, New Zealand
- Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510075, China
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Dali Kang
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, The University of Auckland, Auckland 1142, New Zealand
- Centre for Brain Research, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, The University of Auckland, Auckland 1142, New Zealand
- Brain Research New Zealand, The Centre for Research Excellent, Dunedin 9016, New Zealand
- Shenyang Medical College, Shenyang 110034, China
| | - Tim Anderson
- New Zealand Brain Research Institute, Christchurch 4710, New Zealand
- Department of Medicine, University of Otago, Dunedin 9016, New Zealand
- Department of Neurology, Canterbury District Health Board, Christchurch 4710, New Zealand
| | - Toni Pitcher
- New Zealand Brain Research Institute, Christchurch 4710, New Zealand
- Department of Medicine, University of Otago, Dunedin 9016, New Zealand
- Department of Neurology, Canterbury District Health Board, Christchurch 4710, New Zealand
| | - John Dalrymple-Alford
- Department of Neurology, Canterbury District Health Board, Christchurch 4710, New Zealand
- Department of Psychology, University of Canterbury, Christchurch 4710, New Zealand
| | - Paul Shorten
- AgResearch Ltd., Ruakura Research Centre, Hamilton 3214, New Zealand
- Riddet Institute, Massey University, Palmerston North 4474, New Zealand
| | - Gagandeep Singh-Mallah
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| |
Collapse
|
5
|
Bake S, Hurst DA, Miranda RC, Sohrabji F. Prenatal alcohol exposure exacerbates acute sensorimotor deficits and impedes long-term behavioral recovery from the effects of an adult-onset cerebrovascular ischemic stroke. Alcohol Clin Exp Res 2022; 46:2267-2279. [PMID: 36203340 PMCID: PMC10100487 DOI: 10.1111/acer.14952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/18/2022] [Accepted: 09/24/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) is a significant risk factor for developmental disability, although its health consequences across the lifespan are poorly understood. Here, we hypothesized that latent brain and systemic consequences of PAE influence resiliency to adult-onset neurological disease, specifically, cerebrovascular ischemic stroke. METHODS Pregnant Sprague-Dawley rats were exposed episodically to ethanol during the fetal neurogenic period. Adult (5 months) male and female PAE and control offspring were subjected to endothelin-1-induced unilateral middle cerebral artery occlusion. In the acute injury phase outcomes including stroke volume and neurological, endocrine, and gut permeability markers were assessed. Because the effects of stroke in human populations evolve over months to years, we also assessed hippocampal- and amygdala-dependent memory function and social interaction preference up to 6 months following a stroke, in middle-aged offspring. RESULTS Prenatal alcohol exposure did not alter infarct volume, but significantly increased neurological deficits in both sexes, and impaired interhemispheric sensorimotor integration in PAE females. The IGF-1/IGFBP3 ratio, a measure of bioavailable IGF-1, was significantly reduced, while circulating levels of bacterial lipopolysaccharide, an inflammagen, were significantly increased in PAE males. In PAE females, the circulating IGF-1/IGFBP3 ratio was significantly increased and estradiol-17b levels were significantly reduced. The intestinal fatty acid binding protein, a surrogate marker of gut permeability was also significantly increased in PAE females. Longer-term deficits in hippocampal-associated memory and social interactions were observed in PAE males, while deficits in amygdala-dependent memory were observed in PAE females. CONCLUSIONS PAE contributes to adverse effects on brain health and decreased resiliency in response to a common adult-onset neurovascular disease, cerebrovascular ischemic stroke.
Collapse
Affiliation(s)
- Shameena Bake
- Women's Health in Neuroscience Program, and Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, Texas, USA
| | - David A Hurst
- Women's Health in Neuroscience Program, and Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, Texas, USA
| | - Rajesh C Miranda
- Women's Health in Neuroscience Program, and Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, Texas, USA
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, and Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, Texas, USA
| |
Collapse
|
6
|
Hoffmann CJ, Kuffner MTC, Lips J, Lorenz S, Endres M, Harms C. Zfp580 Regulates Paracrine and Endocrine Igf1 and Igfbp3 Differently in the Brain and Blood After a Murine Stroke. Front Physiol 2022; 13:887180. [PMID: 35557964 PMCID: PMC9089756 DOI: 10.3389/fphys.2022.887180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Insulin-like growth factor 1 (Igf1) and insulin-like growth factor binding protein 3 (Igfbp3) are endocrine and paracrine factors that influence stroke occurrence, severity, and recovery. Low levels of endocrine Igf1 and Igfbp3 were associated with larger infarct volumes and unfavorable outcomes. Paracrine Igf1 is brain cytoprotective and improves functional recovery after stroke. In this study, we evaluated the effects of zinc finger protein 580 (Zfp580) on endocrine and paracrine Igf1 and Igfbp3 after stroke. Zfp580 suppressed the expression of Igf1 and Igfbp3 in cerebral microvascular endothelial cells (bEnd.3) as determined by real-time RT-PCR. Zfp580 was suppressed by combined oxygen and glucose deprivation (OGD) and mediated the effect of OGD on Igf1 and Igfbp3. In vivo, we evaluated paracrine regulation by real-time RT-PCR of brain lysates and endocrine regulation by ELISA of blood samples. Genomic ablation of Zfp580 did not alter basal paracrine or endocrine Igf1 and Igfbp3 levels. After transient middle cerebral artery occlusion (MCAo), Zfp580 was globally elevated in the brain for up to 3 days. Paracrine Igf1 and Igfbp3 were selectively induced in the ischemic hemisphere from day 2 to day 3 or day 1 to day 7, respectively. In Zfp580 knockout mice, the paracrine regulations of Igf1 and Igfbp3 were attenuated while endocrine Igf1 and the molar Igf1/Igfbp3 ratio were increased. In conclusion, Zfp580 differentially controls paracrine and endocrine Igf1 and Igfbp3 after stroke. Inhibition of Zfp580 might be a new treatment target leading to increased activity of Igf1 to improve stroke outcome.
Collapse
Affiliation(s)
- Christian J Hoffmann
- Klinik und Hochschulambulanz Für Neurologie Mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany.,Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Melanie T C Kuffner
- Klinik und Hochschulambulanz Für Neurologie Mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Janet Lips
- Klinik und Hochschulambulanz Für Neurologie Mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Stephanie Lorenz
- Klinik und Hochschulambulanz Für Neurologie Mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Matthias Endres
- Klinik und Hochschulambulanz Für Neurologie Mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany.,Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Einstein Center for Neuroscience, Berlin, Germany
| | - Christoph Harms
- Klinik und Hochschulambulanz Für Neurologie Mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany.,Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Einstein Center for Neuroscience, Berlin, Germany
| |
Collapse
|
7
|
Duan R, Wang N, Shang Y, Li H, Liu Q, Li L, Zhao X. TNF-α (G-308A) Polymorphism, Circulating Levels of TNF-α and IGF-1: Risk Factors for Ischemic Stroke—An Updated Meta-Analysis. Front Aging Neurosci 2022; 14:831910. [PMID: 35370618 PMCID: PMC8966404 DOI: 10.3389/fnagi.2022.831910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/27/2022] [Indexed: 12/13/2022] Open
Abstract
Objective Accumulated studies have explored gene polymorphisms and circulating levels of tumor necrosis factor (TNF)-α and insulin-like growth factor (IGF)-1 in the etiology of ischemic stroke (IS). Of the numerous etiopathological factors for IS, a single-nucleotide polymorphism (SNP) rs1800629 located in the TNF-α gene promoter region and increased levels of TNF-α were found to be associated with IS in different ethnic backgrounds. However, the published results are inconsistent and inconclusive. The primary objective of this meta-analysis was to investigate the concordance between rs1800629 polymorphism and IS. A secondary aim was to explore circulating levels of TNF-α and IGF-1 with IS in different ethnic backgrounds and different sourced specimens. Methods In this study, we examined whether rs1800629 genetic variant and levels of TNF-α and IGF-1 were related to the etiology of IS by performing a meta-analysis. Relevant case-control studies were retrieved by database searching and systematically selected according to established inclusion criteria. Results A total of 47 articles were identified that explored the relationship between the rs1800629 polymorphism and levels of TNF-α and IGF-1 with IS risk susceptibility. Statistical analyses revealed a significant association between the rs1800629 polymorphism and levels of TNF-α and IGF-1 with IS pathogenesis. Conclusion Our findings demonstrated that the TNF-α rs1800629 polymorphism, the increased levels of TNF-α, and decreased levels of IGF-1 were involved in the etiology of IS.
Collapse
Affiliation(s)
- Ranran Duan
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Na Wang
- Department of Neurorehabilitation, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanan Shang
- Department of Psychiatry, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hengfen Li
- Department of Psychiatry, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qian Liu
- Department of Psychiatry, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Li
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Li Li,
| | - Xiaofeng Zhao
- Department of Psychiatry, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Xiaofeng Zhao,
| |
Collapse
|
8
|
Zhang H, Mo X, Wang A, Peng H, Guo D, Zhong C, Zhu Z, Xu T, Zhang Y. Association of DNA Methylation in Blood Pressure-Related Genes With Ischemic Stroke Risk and Prognosis. Front Cardiovasc Med 2022; 9:796245. [PMID: 35345488 PMCID: PMC8957103 DOI: 10.3389/fcvm.2022.796245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/31/2022] [Indexed: 12/16/2022] Open
Abstract
BackgroundA genome-wide association study identified 12 genetic loci influencing blood pressure and implicated a role of DNA methylation. However, the relationship between methylation and ischemic stroke has not yet been clarified. We conducted a large-sample sequencing study to identify blood leukocyte DNA methylations as novel biomarkers for ischemic stroke risk and prognosis based on previously identified genetic loci.MethodsMethylation levels of 17 genes were measured by sequencing in 271 ischemic stroke cases and 323 controls, and the significant associations were validated in another independent sample of 852 cases and 925 controls. The associations between methylation levels and ischemic stroke risk and prognosis were evaluated.ResultsMethylation of AMH, C17orf82, HDAC9, IGFBP3, LRRC10B, PDE3A, PRDM6, SYT7 and TBX2 was significantly associated with ischemic stroke. Compared to participants without any hypomethylated targets, the odds ratio (OR) (95% confidence interval, CI) for those with 9 hypomethylated genes was 1.41 (1.33–1.51) for ischemic stroke. Adding methylation levels of the 9 genes to the basic model of traditional risk factors significantly improved the risk stratification for ischemic stroke. Associations between AMH, HDAC9, IGFBP3, PDE3A and PRDM6 gene methylation and modified Rankin Scale scores were significant after adjustment for covariates. Lower methylation levels of AMH, C17orf82, PRDM6 and TBX2 were significantly associated with increased 3-month mortality. Compared to patients without any hypomethylated targets, the OR (95% CI) for those with 4 hypomethylated targets was 1.12 (1.08–1.15) for 3-month mortality (P = 2.28 × 10−10).ConclusionThe present study identified blood leukocyte DNA methylations as potential factors affecting ischemic stroke risk and prognosis among Han Chinese individuals.
Collapse
Affiliation(s)
- Huan Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Xingbo Mo
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Aili Wang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Hao Peng
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Daoxia Guo
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Chongke Zhong
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Zhengbao Zhu
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Tan Xu
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Yonghong Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
- *Correspondence: Yonghong Zhang
| |
Collapse
|
9
|
Morales T, Stearns-Yoder K, Hoffberg A, Khan T, Wortzel H, Brenner L. Interactions of Glutamate and Gamma Amino Butyric Acid with the Insulin-like growth factor system in Traumatic Brain Injury (TBI) and/or Cardiovascular Accidents (CVA or stroke): A systematic review. Heliyon 2022; 8:e09037. [PMID: 35309405 PMCID: PMC8928062 DOI: 10.1016/j.heliyon.2022.e09037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/28/2021] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
The brain maintains homeostasis of neural excitation in part through the receptor-mediated signaling of Glutamate (Glu) and Gamma Amino Butyric Acid (GABA), but localized injuries cause cellular release of excess Glu leading to neurotoxicity. The literature strongly supports the role of Insulin-like growth factor-1 (IGF-1) in adult brain neuroprotection and repair, and research supporting the existence of molecular interactions between Glu, GABA, and IGF-1 in vitro and in normal animals raises the question of whether and/or how the Glu/GABA system interacts with IGF-1 post-injury. This systematic review was undertaken to explore works addressing this question among adults with a history of traumatic brain injury (TBI) and/or cerebrovascular accident (CVA; stroke). The literature was searched for human and animal studies and only four animal papers met inclusion criteria. The SYRCLE criteria was used to evaluate risk of bias; results varied between categories and papers. All the included studies, one on TBI and three on stroke, supported the molecular relationship between the excitatory and IGF-1 systems; two studies provided direct, detailed molecular evidence. The results point to the importance of research on the role of this protective system in pathological brain injury; a hypothetical proposal for future studies is presented.
Collapse
Affiliation(s)
- T.I. Morales
- VA Rocky Mountain Mental Illness Research, Education and Clinical Center, University of Colorado, Anschutz School of Medicine, United States
- Department of Physical Medicine and Rehabilitation, University of Colorado, Anschutz School of Medicine, United States
- Corresponding author.
| | - K.A. Stearns-Yoder
- VA Rocky Mountain Mental Illness Research, Education and Clinical Center, University of Colorado, Anschutz School of Medicine, United States
- Department of Physical Medicine and Rehabilitation, University of Colorado, Anschutz School of Medicine, United States
| | - A.S. Hoffberg
- VA Rocky Mountain Mental Illness Research, Education and Clinical Center, University of Colorado, Anschutz School of Medicine, United States
| | - T.K. Khan
- VA Rocky Mountain Mental Illness Research, Education and Clinical Center, University of Colorado, Anschutz School of Medicine, United States
| | - H. Wortzel
- VA Rocky Mountain Mental Illness Research, Education and Clinical Center, University of Colorado, Anschutz School of Medicine, United States
- Department of Physical Medicine and Rehabilitation, University of Colorado, Anschutz School of Medicine, United States
- Department of Neurology, University of Colorado, Anschutz School of Medicine, United States
- Department of Psychiatry, University of Colorado, Anschutz School of Medicine, United States
| | - L.A. Brenner
- VA Rocky Mountain Mental Illness Research, Education and Clinical Center, University of Colorado, Anschutz School of Medicine, United States
- Department of Physical Medicine and Rehabilitation, University of Colorado, Anschutz School of Medicine, United States
- Department of Neurology, University of Colorado, Anschutz School of Medicine, United States
- Department of Psychiatry, University of Colorado, Anschutz School of Medicine, United States
| |
Collapse
|
10
|
Zhang H, Wang A, Xu T, Mo X, Zhang Y. Promoter DNA Methylation in GWAS-Identified Genes as Potential Functional Elements for Blood Pressure: An Observational and Mendelian Randomization Study. Front Genet 2022; 12:791146. [PMID: 35087571 PMCID: PMC8787193 DOI: 10.3389/fgene.2021.791146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/21/2021] [Indexed: 01/03/2023] Open
Abstract
Genome-wide association studies have identified numerous genetic loci for blood pressure (BP). However, the relationships of functional elements inside these loci with BP are not fully understood. This study represented an effort to determine if promoter DNA methylations inside BP-associated loci were associated with BP.We conducted a cross-sectional study investigating the association between promoter DNA methylations of 10 candidate genes and BP in 1,241 Chinese individuals. Twenty-one genomic fragments in the CpG Islands were sequenced. The associations of methylation levels with BP and hypertension were assessed in regression models. Mendelian randomization (MR) analysis was then applied to find supporting evidence for the identified associations.A total of 413 DNA methylation sites were examined in an observational study. Methylation levels of 24 sites in PRDM6, IGFBP3, SYT7, PDE3A, TBX2 and C17orf82 were significantly associated with BP. Methylation levels of PRDM6 and SYT7 were significantly associated with hypertension. Methylation levels of five sites (including cg06713098) in IGFBP3 were significantly associated with DBP. MR analysis found associations between the methylation levels of six CpG sites (cg06713098, cg14228300, cg23193639, cg21268650, cg10677697 and cg04812164) around the IGFBP3 promoter and DBP. Methylation levels of cg14228300 and cg04812164 were associated with SBP. By further applying several MR methods we showed that the associations may not be due to pleiotropy. Association between IGFBP3 mRNA levels in blood cells and BP was also found in MR analysis. This study identified promoter methylation as potential functional element for BP. The identified methylations may be involved in the regulatory pathway linking genetic variants to BP.
Collapse
Affiliation(s)
- Huan Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China.,Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Aili Wang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China.,Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Tan Xu
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China.,Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Xingbo Mo
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China.,Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China.,Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Yonghong Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China.,Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
11
|
Gong P, Zou Y, Zhang W, Tian Q, Han S, Xu Z, Chen Q, Wang X, Li M. The neuroprotective effects of Insulin-Like Growth Factor 1 via the Hippo/YAP signaling pathway are mediated by the PI3K/AKT cascade following cerebral ischemia/reperfusion injury. Brain Res Bull 2021; 177:373-387. [PMID: 34717965 DOI: 10.1016/j.brainresbull.2021.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 10/07/2021] [Accepted: 10/26/2021] [Indexed: 10/20/2022]
Abstract
Insulin-like growth factor 1 (IGF-1) has neuroprotective actions, including vasodilatory, anti-inflammatory, and antithrombotic effects, following ischemic stroke. However, the molecular mechanisms underlying the neuroprotective effects of IGF-1 following ischemic stroke remain unknown. Therefore, in the present study, we investigated whether IGF-1 exerted its neuroprotective effects by regulating the Hippo/YAP signaling pathway, potentially via activation of the PI3K/AKT cascade, following ischemic stroke. In the in vitro study, we exposed cultured PC12 and SH-5YSY cells, and cortical primary neurons, to oxygen-glucose deprivation. Cell viability was measured using CCK-8 assay. In the in vivo study, Sprague-Dawley rats were subjected to middle cerebral artery occlusion. Neurological function was assessed using a modified neurologic scoring system and the modified neurological severity score (mNSS) test, brain edema was detected by brain water content measurement, infarct volume was measured using triphenyltetrazolium chloride staining, and neuronal death and apoptosis were evaluated by TUNEL/NeuN double staining, HE and Nissl staining, and immunohistochemistry staining for NeuN. Finally, western blot analysis was used to measure the level of IGF-1 in vivo and levels of YAP/TAZ, PI3K and phosphorylated AKT (p-AKT) both in vitro and in vivo. IGF-1 induced activation of YAP/TAZ, which resulted in improved cell viability in vitro, and reduced neurological deficits, brain water content, neuronal death and apoptosis, and cerebral infarct volume in vivo. Notably, the neuroprotective effects of IGF-1 were blocked by an inhibitor of the PI3K/AKT cascade, LY294002. LY294002 treatment not only downregulated PI3K and p-AKT, but YAP/TAZ as well, leading to aggravation of neurological dysfunction and worsening of brain damage. Our findings indicate that the neuroprotective effects of IGF-1 are, at least in part mediated by upregulation of YAP/TAZ via activation of the PI3K/AKT cascade following cerebral ischemic stroke.
Collapse
Affiliation(s)
- Pian Gong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Yichun Zou
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, PR China
| | - Wei Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Qi Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Shoumeng Han
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Zhou Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China.
| |
Collapse
|
12
|
Thiebaut AM, Buendia I, Ginet V, Lemarchand E, Boudjadja MB, Hommet Y, Lebouvier L, Lechevallier C, Maillasson M, Hedou E, Déglon N, Oury F, Rubio M, Montaner J, Puyal J, Vivien D, Roussel BD. Thrombolysis by PLAT/tPA increases serum free IGF1 leading to a decrease of deleterious autophagy following brain ischemia. Autophagy 2021; 18:1297-1317. [PMID: 34520334 DOI: 10.1080/15548627.2021.1973339] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cerebral ischemia is a pathology involving a cascade of cellular mechanisms, leading to the deregulation of proteostasis, including macroautophagy/autophagy, and finally to neuronal death. If it is now accepted that cerebral ischemia induces autophagy, the effect of thrombolysis/energy recovery on proteostasis remains unknown. Here, we investigated the effect of thrombolysis by PLAT/tPA (plasminogen activator, tissue) on autophagy and neuronal death. In two in vitro models of hypoxia reperfusion and an in vivo model of thromboembolic stroke with thrombolysis by PLAT/tPA, we found that ischemia enhances neuronal deleterious autophagy. Interestingly, PLAT/tPA decreases autophagy to mediate neuroprotection by modulating the PI3K-AKT-MTOR pathways both in vitro and in vivo. We identified IGF1R (insulin-like growth factor I receptor; a tyrosine kinase receptor) as the effective receptor and showed in vitro, in vivo and in human stroke patients and that PLAT/tPA is able to degrade IGFBP3 (insulin-like growth factor binding protein 3) to increase IGF1 (insulin-like growth factor 1) bioavailability and thus IGF1R activation.Abbreviations: AKT/protein kinase B: thymoma viral proto-oncogene 1; EGFR: epidermal growth factor receptor; Hx: hypoxia; IGF1: insulin-like growth factor 1; IGF1R: insulin-like growth factor I receptor; IGFBP3: insulin-like growth factor binding protein 3; Ka: Kainate; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAPK/ERK: mitogen-activated protein kinase; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; OGD: oxygen and glucose deprivation; OGDreox: oxygen and glucose deprivation + reoxygentation; PepA: pepstatin A1; PI3K: phosphoinositide 3-kinase; PLAT/tPA: plasminogen activator, tissue; PPP: picropodophyllin; SCH77: SCH772984; ULK1: unc-51 like kinase 1; Wort: wortmannin.
Collapse
Affiliation(s)
- Audrey M Thiebaut
- Physiopathology and Imaging of Neurological Disorders (PhIND), Institute Blood and Brain @Caen-Normandie (BB@C), GIP Cyceron, Normandy University, UNICAEN, INSERM, UMR-S U1237, Caen, France
| | - Izaskun Buendia
- Physiopathology and Imaging of Neurological Disorders (PhIND), Institute Blood and Brain @Caen-Normandie (BB@C), GIP Cyceron, Normandy University, UNICAEN, INSERM, UMR-S U1237, Caen, France
| | - Vanessa Ginet
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Clinic of Neonatology, Department of Women, Mother and Child, University Hospital Center of Vaud, Lausanne, Switzerland
| | - Eloise Lemarchand
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | - Yannick Hommet
- Physiopathology and Imaging of Neurological Disorders (PhIND), Institute Blood and Brain @Caen-Normandie (BB@C), GIP Cyceron, Normandy University, UNICAEN, INSERM, UMR-S U1237, Caen, France
| | - Laurent Lebouvier
- Physiopathology and Imaging of Neurological Disorders (PhIND), Institute Blood and Brain @Caen-Normandie (BB@C), GIP Cyceron, Normandy University, UNICAEN, INSERM, UMR-S U1237, Caen, France
| | - Charlotte Lechevallier
- Physiopathology and Imaging of Neurological Disorders (PhIND), Institute Blood and Brain @Caen-Normandie (BB@C), GIP Cyceron, Normandy University, UNICAEN, INSERM, UMR-S U1237, Caen, France
| | - Mike Maillasson
- Université de Nantes, CNRS, Inserm, CRCINA, F-44000 Nantes, France; LabEx IGO, Immunotherapy, Graft, Oncology, Nantes, France; Université de Nantes, Inserm, CNRS, CHU Nantes, SFR Santé, FED 4203Inserm UMS 016, CNRS, UMS 3556, IMPACT Platform, Nantes, France
| | - Elodie Hedou
- Physiopathology and Imaging of Neurological Disorders (PhIND), Institute Blood and Brain @Caen-Normandie (BB@C), GIP Cyceron, Normandy University, UNICAEN, INSERM, UMR-S U1237, Caen, France
| | - Nicole Déglon
- Department of Clinical Neurosciences, Laboratory of Neurotherapies and Neuromodulation, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Franck Oury
- INSERM U1151, Institut Necker Enfants-Malades (INEM), Team 14, Université Paris Descartes-Sorbonne-Paris Cité, Paris, France
| | - Marina Rubio
- Physiopathology and Imaging of Neurological Disorders (PhIND), Institute Blood and Brain @Caen-Normandie (BB@C), GIP Cyceron, Normandy University, UNICAEN, INSERM, UMR-S U1237, Caen, France
| | - Joan Montaner
- Department of Neurology, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - Julien Puyal
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,CURML, University Center of Legal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Denis Vivien
- Physiopathology and Imaging of Neurological Disorders (PhIND), Institute Blood and Brain @Caen-Normandie (BB@C), GIP Cyceron, Normandy University, UNICAEN, INSERM, UMR-S U1237, Caen, France.,Department of Clinical Research, CHU Caen, Caen University Hospital, Caen, France
| | - Benoit D Roussel
- Physiopathology and Imaging of Neurological Disorders (PhIND), Institute Blood and Brain @Caen-Normandie (BB@C), GIP Cyceron, Normandy University, UNICAEN, INSERM, UMR-S U1237, Caen, France
| |
Collapse
|
13
|
Li S, Zhao Y, Zhao J, Mou L. Expression and clinical value of miR-128 and IGF-1 in patients with acute ischemic stroke. Minerva Med 2020; 111:544-550. [PMID: 32406219 DOI: 10.23736/s0026-4806.20.06532-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND The aim of this study is to investigate the expression and clinical value of miRNA-128 (miR-128) and insulin-like growth factor-1 (IGF-1) in patients with acute ischemic stroke (AIS). METHODS Eighty patients with acute ischemic stroke hospitalized in Rizhao Hospital of TCM from August 2016 to August 2018 were selected as the experimental group. Sixty healthy patients with normal physical examination during the same period were selected as the control group. The expression levels of miR-128 and IGF-1 were compared between the two groups and between AIS patients with different levels of nervous functional defects, different infarct size and different prognosis. ROC curve of serum miR-128 and IGF-1 expressions for AIS diagnosis alone and in combination was analyzed. RESULTS The expression level of miR-128 in the serum of patients in the experimental group was higher than that of the control group, and the expression level of IGF-1 was lower than that of the control group (P<0.001). The serum miR-128 expression of patients in the ineffective group was higher than that of the effective group, and the expression of IGF-1 was lower than that of the effective group (P<0.001). The expression level of serum miR-128 in AIS patients was higher than that in healthy subjects and increased with the aggravation of the disease. The expression level of IGF-1 of AIS patients was lower than that of healthy subjects and decreased with the aggravation of the disease. The two factors were involved in the formation and deterioration of the disease. CONCLUSIONS The expression levels can reflect the severity of the disease to a certain extent and provide references for the early diagnosis and prognostic treatment in patients with acute ischemic stroke.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Encephalopathy II, Rizhao Hospital of Traditional Chinese Medicine, Rizhao, China
| | - Youxu Zhao
- Ju County Hospital of Traditional Chinese Medicine, Rizhao, China -
| | | | - Lei Mou
- Department of Neurology, Rizhao Hospital of Traditional Chinese Medicine, Rizhao, China
| |
Collapse
|
14
|
Chai Z, Gong J, Zheng P, Zheng J. Inhibition of miR-19a-3p decreases cerebral ischemia/reperfusion injury by targeting IGFBP3 in vivo and in vitro. Biol Res 2020; 53:17. [PMID: 32312329 PMCID: PMC7171820 DOI: 10.1186/s40659-020-00280-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 03/19/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Inflammation and apoptosis are considered to be two main factors affecting ischemic brain injury and the subsequent reperfusion damage. MiR-19a-3p has been reported to be a possible novel biomarker in ischemic stroke. However, the function and molecular mechanisms of miR-19a-3p remain unclear in cerebral ischemia/reperfusion (I/R) injury. METHODS The I/R injury model was established in vivo by middle cerebral artery occlusion/reperfusion (MCAO/R) in rats and in vitro by oxygen-glucose deprivation and reperfusion (OGD/R) induced SH-SY5Y cells. The expression of miR-19a-3p was determined by reverse transcription quantitative PCR. The infarction volumes, Neurological deficit scores, apoptosis, cell viability, pro-inflammatory cytokines and apoptosis were evaluated using Longa score, Bederson score, TTC, TUNEL staining, CCK-8, ELISA, flow cytometry assays. Luciferase reporter assay was utilized to validate the target gene of miR-19a-3p. RESULTS We first found miR-19a-3p was significantly up-regulated in rat I/R brain tissues and OGD/R induced SH-SY5Y cells. Using the in vivo and in vitro I/R injury model, we further demonstrated that miR-19a-3p inhibitor exerted protective role against injury to cerebral I/R, which was reflected by reduced infarct volume, improved neurological outcomes, increased cell viability, inhibited inflammation and apoptosis. Mechanistically, miR-19a-3p binds to 3'UTR region of IGFBP3 mRNA. Inhibition of miR-19a-3p caused the increased expression of IGFBP3 in OGD/R induced SH-SY5Y cells. Furthermore, we showed that IGFBP3 overexpression imitated, while knockdown reversed the protective effects of miR-19a-3p inhibitor against OGD/R-induced injury. CONCLUSIONS In summary, our findings showed miR-19a-3p regulated I/R-induced inflammation and apoptosis through targeting IGFBP3, which might provide a potential therapeutic target for cerebral I/R injury.
Collapse
Affiliation(s)
- Zhaohui Chai
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, China
| | - Jiangbiao Gong
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, China
| | - Peidong Zheng
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, China
| | - Jiesheng Zheng
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, China.
| |
Collapse
|
15
|
Åberg ND, Gadd G, Åberg D, Hällgren P, Blomstrand C, Jood K, Nilsson M, Walker FR, Svensson J, Jern C, Isgaard J. Relationship between Levels of Pre-Stroke Physical Activity and Post-Stroke Serum Insulin-Like Growth Factor I. Biomedicines 2020; 8:biomedicines8030052. [PMID: 32143318 PMCID: PMC7148508 DOI: 10.3390/biomedicines8030052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 11/18/2022] Open
Abstract
Physical activity (PA) and insulin-like growth factor I (IGF-I) have beneficial effects for patients who have suffered an ischemic stroke (stroke). However, the relationship between the levels of PA and IGF-I after stroke has not been explored in detail. We investigated the pre-stroke PA level in relation to the post-stroke serum IGF-I (s-IGF-I) level, at baseline and at 3 months after the index stroke, and calculated the change that occurred between these two time-points (ΔIGF-I). Patients (N = 380; 63.4% males; mean age, 54.7 years) with data on 1-year leisure-time pre-stroke PA and post-stroke s-IGF-I levels were included from the Sahlgrenska Academy Study on Ischemic Stroke (SAHLSIS). Stroke severity was assessed using the National Institutes of Health Stroke Scale (NIHSS). Pre-stroke, leisure-time PA was self-reported as PA1–4, with PA1 representing sedentary and PA2–4 indicating progressively higher PA levels. Associations between s-IGF-I and PA were evaluated by multiple linear regressions with PA1 as the reference and adjustments being made for sex, age, history of previous stroke or myocardial infarctions, cardiovascular risk factors, and stroke severity. PA correlated with baseline s-IGF-I and ΔIGF-I, but not with the 3-month s-IGF-I. In the linear regressions, there were corresponding associations that remained as a tendency (baseline s-IGF-I, p = 0.06) or as a significant effect (ΔIGF-I, p = 0.03) after all the adjustments. Specifically, for each unit of PA, ΔIGF-I increased by 9.7 (95% CI 1,1−18.4) ng/mL after full adjustment. This supports the notion that pre-stroke PA is independently related to ΔIGF-I.
Collapse
Affiliation(s)
- N. David Åberg
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, SE-41345 Gothenburg, Sweden; (G.G.); (D.Å.); (J.S.); (J.I.)
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg SE-41345, Sweden;
- Correspondence: ; Tel.: +46-31-342-8422
| | - Gustaf Gadd
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, SE-41345 Gothenburg, Sweden; (G.G.); (D.Å.); (J.S.); (J.I.)
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg SE-41345, Sweden;
| | - Daniel Åberg
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, SE-41345 Gothenburg, Sweden; (G.G.); (D.Å.); (J.S.); (J.I.)
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg SE-41345, Sweden;
| | - Peter Hällgren
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg SE-41345, Sweden;
| | - Christian Blomstrand
- Department for Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; (C.B.); (K.J.)
| | - Katarina Jood
- Department for Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; (C.B.); (K.J.)
| | - Michael Nilsson
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, the University of Newcastle, University Dr, Callaghan, NSW 2308, Australia; (M.N.); (F.R.W.)
- Hunter Medical Research Institute, Lot 1, Kookaburra Cct, New Lambton Heights, NSW 2305, Australia
| | - Fredrick R. Walker
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, the University of Newcastle, University Dr, Callaghan, NSW 2308, Australia; (M.N.); (F.R.W.)
- Hunter Medical Research Institute, Lot 1, Kookaburra Cct, New Lambton Heights, NSW 2305, Australia
| | - Johan Svensson
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, SE-41345 Gothenburg, Sweden; (G.G.); (D.Å.); (J.S.); (J.I.)
| | - Christina Jern
- Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, SE-41345 Gothenburg, Sweden;
- Department of Clinical genetics and genomics, Sahlgrenska University Hospital, SE-41345 Gothenburg, Sweden
| | - Jörgen Isgaard
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, SE-41345 Gothenburg, Sweden; (G.G.); (D.Å.); (J.S.); (J.I.)
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, the University of Newcastle, University Dr, Callaghan, NSW 2308, Australia; (M.N.); (F.R.W.)
| |
Collapse
|
16
|
Hirose-Ikeda M, Chu B, Zhao P, Akil O, Escalante E, Vergnes L, Cepeda C, Espinosa-Jeffrey A. Trophic factors are essential for the survival of grafted oligodendrocyte progenitors and for neuroprotection after perinatal excitotoxicity. Neural Regen Res 2020; 15:557-568. [PMID: 31571668 PMCID: PMC6921341 DOI: 10.4103/1673-5374.266066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/26/2019] [Indexed: 12/29/2022] Open
Abstract
The consequences of neonatal white matter injury are devastating and represent a major societal problem as currently there is no cure. Prematurity, low weight birth and maternal pre-natal infection are the most frequent causes of acquired myelin deficiency in the human neonate leading to cerebral palsy and cognitive impairment. In the developing brain, oligodendrocyte (OL) maturation occurs perinatally, and immature OLs are particularly vulnerable. Cell replacement therapy is often considered a viable option to replace progenitors that die due to glutamate excitotoxicity. We previously reported directed specification and mobilization of endogenous committed and uncommitted neural progenitors by the combination of transferrin and insulin growth factor 1 (TSC1). Here, considering cell replacement and integration as therapeutic goals, we examined if OL progenitors (OLPs) grafted into the brain parenchyma of mice that were subjected to an excitotoxic insult could rescue white matter injury. For that purpose, we used a well-established model of glutamate excitotoxic injury. Four-day-old mice received a single intraparenchymal injection of the glutamate receptor agonist N-methyl-D-aspartate alone or in conjunction with TSC1 in the presence or absence of OLPs grafted into the brain parenchyma. Energetics and expression of stress proteins and OL developmental specific markers were examined. A comparison of the proteomic profile per treatment was also ascertained. We found that OLPs did not survive in the excitotoxic environment when grafted alone. In contrast, when combined with TSC1, survival and integration of grafted OLPs was observed. Further, energy metabolism in OLPs was significantly increased by N-methyl-D-aspartate and modulated by TSC1. The proteomic profile after the various treatments showed elevated ubiquitination and stress/heat shock protein 90 in response to N-methyl-D-aspartate. These changes were reversed in the presence of TSC1 and ubiquitination was decreased. The results obtained in this pre-clinical study indicate that the use of a combinatorial intervention including both trophic support and healthy OLPs constitutes a promising approach for long-term survival and successful graft integration. We established optimal conditioning of the host brain environment to promote long-term survival and integration of grafted OLPs into an inflamed neonate host brain. Experimental procedures were performed under the United States Public Health Service Guide for the Care and Use of Laboratory Animals and were approved by the Institutional Animal Care Committee at (UCLA) (ARC #1992-034-61) on July 1, 2010.
Collapse
Affiliation(s)
- Megumi Hirose-Ikeda
- Intellectual and Developmental Disabilities Research Center, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Neurobiology, Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Brian Chu
- Intellectual and Developmental Disabilities Research Center, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Neurobiology, Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Paul Zhao
- Intellectual and Developmental Disabilities Research Center, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Neurobiology, Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Omar Akil
- Intellectual and Developmental Disabilities Research Center, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Neurobiology, Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Elida Escalante
- Intellectual and Developmental Disabilities Research Center, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Neurobiology, Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Laurent Vergnes
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Neurobiology, Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Araceli Espinosa-Jeffrey
- Intellectual and Developmental Disabilities Research Center, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Neurobiology, Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
17
|
Yao Y, Zhu H, Zhu L, Fang Z, Fan Y, Liu C, Tian Y, Chen Y, Tang W, Ren Z, Li J, Yang S, Chen Y, Zhao X, Shen C. A comprehensive contribution of genetic variations of the insulin-like growth factor 1 signalling pathway to stroke susceptibility. Atherosclerosis 2020; 296:59-65. [DOI: 10.1016/j.atherosclerosis.2020.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 12/06/2019] [Accepted: 01/14/2020] [Indexed: 12/20/2022]
|
18
|
Abstract
Non-communicable diseases, such as cardiovascular diseases, are the leading cause of mortality worldwide. For this reason, a tremendous effort is being made worldwide to effectively circumvent these afflictions, where insulin-like growth factor 1 (IGF1) is being proposed both as a marker and as a central cornerstone in these diseases, making it an interesting molecule to focus on. Firstly, at the initiation of metabolic deregulation by overfeeding, IGF1 is decreased/inhibited. Secondly, such deficiency seems to be intimately related to the onset of MetS and establishment of vascular derangements leading to atherosclerosis and finally playing a definitive part in cerebrovascular and myocardial accidents, where IGF1 deficiency seems to render these organs vulnerable to oxidative and apoptotic/necrotic damage. Several human cohort correlations together with basic/translational experimental data seem to confirm deep IGF1 implication, albeit with controversy, which might, in part, be given by experimental design leading to blurred result interpretation.
Collapse
|
19
|
Fan D, Krishnamurthi R, Harris P, Barber PA, Guan J. Plasma cyclic glycine proline/IGF-1 ratio predicts clinical outcome and recovery in stroke patients. Ann Clin Transl Neurol 2019; 6:669-677. [PMID: 31019991 PMCID: PMC6469247 DOI: 10.1002/acn3.743] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/28/2019] [Accepted: 02/01/2019] [Indexed: 12/14/2022] Open
Abstract
Objective Many stroke patients make a partial recovery in function during the first 3 months, partially through promoting insulin‐like growth factor‐1 (IGF‐1) function. A prognostic biomarker that associates with IGF‐1 function may predict clinical outcome and recovery of stroke. This study evaluated plasma concentrations of IGF‐1, IGF binding protein (IGFBP)‐3 and cyclic‐glycine‐proline (cGP) and their associations with clinical outcome in stroke patients. Methods Thirty‐four patients were recruited within 3 days of stroke. Clinical assessments included the National Institutes of Health Stroke Scale (NIHSS) within 3 days (baseline), and at days 7 and 90; the modified Rankin Scale (mRS) and Fugl‐Meyer Upper‐Limb Assessment Scale (FM‐UL) at days 7 and 90. Plasma samples were collected from the patients at the baseline, days 7 and 90. Fifty age‐matched control participants with no history of stroke were also recruited and provided plasma samples. IGF‐1, IGFBP‐3, and cGP concentrations were analyzed using ELISA or HPLC‐MS. Results Baseline concentrations of IGFBP‐3, cGP, and cGP/IGF‐1 ratio were lower in stroke patients than the control group. The neurological scores of stroke patients were improved and plasma cGP and cGP/IGF‐1 ratio increased over time. Baseline cGP/IGF‐1 ratio was correlated with the NIHSS scores at day 90 and the changes in NIHSS scores from the baseline to 90 days. Interpretation Low cGP concentrations and cGP/IGF‐1 ratio in stroke patients suggest an impaired IGF‐1 function. The cGP/IGF‐1 ratio at admission maybe further developed as a prognostic biomarker for stroke recovery.
Collapse
Affiliation(s)
- Dawei Fan
- Department of Pharmacology and Clinical Pharmacology School of Medical Sciences Faculty of Medical and Health Sciences University of Auckland Auckland New Zealand.,Centre for Brain Research School of Medical Sciences Faculty of Medical and Health Sciences University of Auckland Auckland New Zealand.,Brain Research New Zealand - A Centre of Research Excellence Auckland New Zealand
| | - Rita Krishnamurthi
- Brain Research New Zealand - A Centre of Research Excellence Auckland New Zealand.,National Institute for Stroke and Applied Neurosciences Auckland University of Technology Auckland New Zealand
| | - Paul Harris
- School of Chemical Sciences School of Biological Sciences University of Auckland Auckland New Zealand
| | - P Alan Barber
- Centre for Brain Research School of Medical Sciences Faculty of Medical and Health Sciences University of Auckland Auckland New Zealand.,Brain Research New Zealand - A Centre of Research Excellence Auckland New Zealand.,Department of Neurology School of Medicine University of Auckland Auckland New Zealand
| | - Jian Guan
- Department of Pharmacology and Clinical Pharmacology School of Medical Sciences Faculty of Medical and Health Sciences University of Auckland Auckland New Zealand.,Centre for Brain Research School of Medical Sciences Faculty of Medical and Health Sciences University of Auckland Auckland New Zealand.,Brain Research New Zealand - A Centre of Research Excellence Auckland New Zealand
| |
Collapse
|
20
|
Song F, Liu T, Meng S, Li F, Zhang Y, Jiang L. Insulin-Like Growth Factor-1 Alleviates Expression of Aβ 1-40 and α-, β-, and γ-Secretases in the Cortex and Hippocampus of APP/PS1 Double Transgenic Mice. J Mol Neurosci 2018; 66:595-603. [PMID: 30414017 DOI: 10.1007/s12031-018-1201-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 10/30/2018] [Indexed: 01/20/2023]
Abstract
To examine the effect of subcutaneous injection of insulin-like growth factor-1 (IGF-1) on the expression of the amyloid protein (Aβ1-40), α-secretase (ADAM10), β-secretase (BACE1), and γ-secretase (PS1) in APP/PS1 double transgenic mice. APP/PS1 double transgenic mice and wild-type mice were divided into wild-type group, wild-type therapy group, transgenome group, and transgenic therapy group. Subcutaneous injection of IGF-1 (50 μg/kg day) was administered once daily to the wild-type therapy group and transgenic therapy group for 8 weeks, respectively. The expression of the Aβ1-40 in the cortex and hippocampus was detected by immunohistochemistry 8 weeks after administration. The levels of Aβ1-40, DAM10, BACE1, and PS1 were analysed by Western blot. The expression of the Aβ1-40 in the cortex of the gene therapy group was significantly lower than that of the transgenome group (p < 0.05). In APP/PS1 double transgenic mice, BACE1 expression was markedly higher in both the hippocampus (p < 0.001, p = 0.00009) and the cortex (p = 0.001), compared to that of the wild-type mice. The treatment of IGF-1 markedly reduced ADAM10 expression in the hippocampus in both transgenic mice and wild-type mice (p < 0.05), whereas the treatment mainly decreased BACE1 expression in transgenic mice but not in the wild-type mice (p < 0.05). No significant differences in PS1 levels were detected in all groups. IGF decreased Aβ1-40 over-expression in the cortex and hippocampus and might inhibit the damage induced by Aβ1-40 in APP/PS1 double transgenic mice. Our study suggests that IGF-1 should inhibit Aβ production through α-secretase and β-secretase but not γ-secretase.
Collapse
Affiliation(s)
- Fangfang Song
- Department of Geriatric, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang, People's Republic of China
| | - Tingting Liu
- Department of Geriatric, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang, People's Republic of China
| | - Songyan Meng
- Department of Geriatric, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang, People's Republic of China
| | - Fengqing Li
- Department of Geriatric, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang, People's Republic of China
| | - Yina Zhang
- Department of Geriatric, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang, People's Republic of China.
| | - Lihong Jiang
- Department of General Practice, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang, People's Republic of China.
| |
Collapse
|
21
|
Jafari E, Gheysarzadeh A, Mahnam K, Shahmohammadi R, Ansari A, Bakhtyari H, Mofid MR. In silico interaction of insulin-like growth factor binding protein 3 with insulin-like growth factor 1. Res Pharm Sci 2018; 13:332-342. [PMID: 30065766 PMCID: PMC6040160 DOI: 10.4103/1735-5362.235160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Insulin-like growth factor binding protein-3 (IGFBP-3) is a vital protein exist in circulation which interacts with high affinity to insulin-like growth factor (IGFs) altering their activities. Therefore, the interaction between IGFs and IGFBP-3 has a key role altering large spectrum of activities such as cell cycle progression, proliferation and apoptosis. Despite decades of research, the crystal structure of IGFBP-3 has not been identified possibly due to some technical challenge in its crystallizing. The three-dimensional (3D) structure of IGFBP-3 was predicted using homology modeling, Phyre2, and molecular dynamic. Its interaction with IGF-1 was also identified by HADDOCK software. IGFBP-3 has the most identity with other IGFBPs in N and C-domain; however, its linker domain has lower identity. Our data predicted that IGF-1 structurally interacts with N-domain and linker domain of IGFBP-3. Some conserved residues of IGFBP-3 such as Glu33, Arg36, Gly39, Arg60, Arg66, Asn109, and Ile146 interacts with Glu3, Asp12, Phe16, Gly19, Asp20, Arg21, and Glu58 of IGF-1. In addition, our data predict that the linker domain has a loop structure which covers post translational modification and interacts with IGF-1. The phosphorylation of Ser111 in linker domain, which previously has been shown to induce apoptosis make a repulsive force interrupting this interaction to IGF-1, which enables IGFBP-3 to induce apoptosis. The present study suggests that the linker domain has a key role in recognition of IGFBP-3 with IGF-1.
Collapse
Affiliation(s)
- Elham Jafari
- Department of Medicinal Chemistry, Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Ali Gheysarzadeh
- Department of Biochemistry and Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Karim Mahnam
- Biology Department, Faculty of Sciences, Shahrekord University, Shahrekord, I.R. Iran
| | | | - Amir Ansari
- Department of Biochemistry and Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Hadi Bakhtyari
- Department of Biochemistry and Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mohammad Reza Mofid
- Department of Biochemistry and Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
22
|
Gubbi S, Quipildor GF, Barzilai N, Huffman DM, Milman S. 40 YEARS of IGF1: IGF1: the Jekyll and Hyde of the aging brain. J Mol Endocrinol 2018; 61:T171-T185. [PMID: 29739805 PMCID: PMC5988994 DOI: 10.1530/jme-18-0093] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 12/30/2022]
Abstract
The insulin-like growth factor 1 (IGF1) signaling pathway has emerged as a major regulator of the aging process, from rodents to humans. However, given the pleiotropic actions of IGF1, its role in the aging brain remains complex and controversial. While IGF1 is clearly essential for normal development of the central nervous system, conflicting evidence has emerged from preclinical and human studies regarding its relationship to cognitive function, as well as cerebrovascular and neurodegenerative disorders. This review delves into the current state of the evidence examining the role of IGF1 in the aging brain, encompassing preclinical and clinical studies. A broad examination of the data indicates that IGF1 may indeed play opposing roles in the aging brain, depending on the underlying pathology and context. Some evidence suggests that in the setting of neurodegenerative diseases that manifest with abnormal protein deposition in the brain, such as Alzheimer's disease, reducing IGF1 signaling may serve a protective role by slowing disease progression and augmenting clearance of pathologic proteins to maintain cellular homeostasis. In contrast, inducing IGF1 deficiency has also been implicated in dysregulated function of cognition and the neurovascular system, suggesting that some IGF1 signaling may be necessary for normal brain function. Furthermore, states of acute neuronal injury, which necessitate growth, repair and survival signals to persevere, typically demonstrate salutary effects of IGF1 in that context. Appreciating the dual, at times opposing 'Dr Jekyll' and 'Mr Hyde' characteristics of IGF1 in the aging brain, will bring us closer to understanding its impact and devising more targeted IGF1-related interventions.
Collapse
Affiliation(s)
- Sriram Gubbi
- Institute for Aging ResearchAlbert Einstein College of Medicine, Bronx, New York, USA
- Department of Internal MedicineJacobi Medical Center, Bronx, New York, USA
| | - Gabriela Farias Quipildor
- Institute for Aging ResearchAlbert Einstein College of Medicine, Bronx, New York, USA
- Department of Molecular PharmacologyAlbert Einstein College of Medicine, Bronx, New York, USA
- Division of EndocrinologyDepartment of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Nir Barzilai
- Institute for Aging ResearchAlbert Einstein College of Medicine, Bronx, New York, USA
- Division of EndocrinologyDepartment of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
- Division of GeriatricsDepartment of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of GeneticsAlbert Einstein College of Medicine, Bronx, New York, USA
| | - Derek M Huffman
- Institute for Aging ResearchAlbert Einstein College of Medicine, Bronx, New York, USA
- Department of Molecular PharmacologyAlbert Einstein College of Medicine, Bronx, New York, USA
- Division of EndocrinologyDepartment of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Sofiya Milman
- Institute for Aging ResearchAlbert Einstein College of Medicine, Bronx, New York, USA
- Division of EndocrinologyDepartment of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
- Division of GeriatricsDepartment of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
23
|
Penn AM, Bibok MB, Saly VK, Coutts SB, Lesperance ML, Balshaw RF, Votova K, Croteau NS, Trivedi A, Jackson AM, Hegedus J, Klourfeld E, Yu AYX, Zerna C, Borchers CH. Verification of a proteomic biomarker panel to diagnose minor stroke and transient ischaemic attack: phase 1 of SpecTRA, a large scale translational study. Biomarkers 2018; 23:392-405. [PMID: 29385837 DOI: 10.1080/1354750x.2018.1434681] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To derive a plasma biomarker protein panel from a list of 141 candidate proteins which can differentiate transient ischaemic attack (TIA)/minor stroke from non-cerebrovascular (mimic) conditions in emergency department (ED) settings. DESIGN Prospective clinical study (#NCT03050099) with up to three timed blood draws no more than 36 h following symptom onset. Plasma samples analysed by multiple reaction monitoring-mass spectrometry (MRM-MS). PARTICIPANTS Totally 545 participants suspected of TIA enrolled in the EDs of two urban medical centres. OUTCOMES 90-day, neurologist-adjudicated diagnosis of TIA informed by clinical and radiological investigations. RESULTS The final protein panel consists of 16 proteins whose patterns show differential abundance between TIA and mimic patients. Nine of the proteins were significant univariate predictors of TIA [odds ratio (95% confidence interval)]: L-selectin [0.726 (0.596-0.883)]; Insulin-like growth factor-binding protein 3 [0.727 (0.594-0.889)]; Coagulation factor X [0.740 (0.603-0.908)]; Serum paraoxonase/lactonase 3 [0.763 (0.630-0.924)]; Thrombospondin-1 [1.313 (1.081-1.595)]; Hyaluronan-binding protein 2 [0.776 (0.637-0.945)]; Heparin cofactor 2 [0.775 (0.634-0.947)]; Apolipoprotein B-100 [1.249 (1.037-1.503)]; and von Willebrand factor [1.256 (1.034-1.527)]. The scientific plausibility of the panel proteins is discussed. CONCLUSIONS Our panel has the potential to assist ED physicians in distinguishing TIA from mimic patients.
Collapse
Affiliation(s)
- Andrew M Penn
- a Neurosciences, Stroke Rapid Assessment Clinic , Island Health Authority , Victoria , BC , Canada
| | - Maximilian B Bibok
- b Department of Research and Capacity Building , Island Health Authority , Victoria , BC , Canada
| | - Viera K Saly
- a Neurosciences, Stroke Rapid Assessment Clinic , Island Health Authority , Victoria , BC , Canada
| | - Shelagh B Coutts
- c Departments of Clinical Neurosciences, Radiology, and Community Health Services , University of Calgary, Hotchkiss Brain Institute, C1242, Foothills Medical Centre , Calgary , AB , Canada
| | - Mary L Lesperance
- d Department of Mathematics and Statistics , University of Victoria , Victoria , BC , Canada
| | - Robert F Balshaw
- e British Columbia Centre for Disease Control , Vancouver , BC , Canada
| | - Kristine Votova
- b Department of Research and Capacity Building , Island Health Authority , Victoria , BC , Canada.,f Division of Medical Sciences , University of Victoria , Victoria , BC , Canada
| | - Nicole S Croteau
- b Department of Research and Capacity Building , Island Health Authority , Victoria , BC , Canada.,d Department of Mathematics and Statistics , University of Victoria , Victoria , BC , Canada
| | - Anurag Trivedi
- a Neurosciences, Stroke Rapid Assessment Clinic , Island Health Authority , Victoria , BC , Canada
| | - Angela M Jackson
- g University of Victoria - Genome British Columbia Proteomics Centre, Vancouver Island Technology Park , Victoria , BC , Canada
| | - Janka Hegedus
- c Departments of Clinical Neurosciences, Radiology, and Community Health Services , University of Calgary, Hotchkiss Brain Institute, C1242, Foothills Medical Centre , Calgary , AB , Canada
| | - Evgenia Klourfeld
- c Departments of Clinical Neurosciences, Radiology, and Community Health Services , University of Calgary, Hotchkiss Brain Institute, C1242, Foothills Medical Centre , Calgary , AB , Canada
| | - Amy Y X Yu
- h Department of Medicine , University of Toronto Sunnybrook Health Sciences Centre , Toronto , ON , Canada
| | - Charlotte Zerna
- c Departments of Clinical Neurosciences, Radiology, and Community Health Services , University of Calgary, Hotchkiss Brain Institute, C1242, Foothills Medical Centre , Calgary , AB , Canada
| | - Christoph H Borchers
- i Department of Biochemistry and Microbiology , University of Victoria , Victoria , BC , Canada.,j Gerald Bronfman Department of Oncology , Jewish General Hospital McGill University , Montreal , QC , Canada.,k Proteomics Centre, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University , Montreal , QC , Canada
| | | |
Collapse
|
24
|
Earnest DJ, Neuendorff N, Coffman J, Selvamani A, Sohrabji F. Sex Differences in the Impact of Shift Work Schedules on Pathological Outcomes in an Animal Model of Ischemic Stroke. Endocrinology 2016; 157:2836-43. [PMID: 27254002 PMCID: PMC4929545 DOI: 10.1210/en.2016-1130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Circadian clock desynchronization has been implicated in the pathophysiology of cardiovascular disease and related risk factors (eg, obesity, diabetes). Thus, we examined the extent to which circadian desynchronization exacerbates ischemic stroke outcomes and whether its detrimental effects on stroke severity and functional impairments are further modified by biological sex. Circadian entrainment of activity rhythms in all male and female rats was observed during exposure to a fixed light-dark (LD) 12:12 cycle but was severely disrupted when this LD cycle was routinely shifted (12 h advance/5 d) for approximately 7 weeks. In contrast to the regular estrous cycles in fixed LD animals, cyclicity was abolished and persistent estrus was evident in all shifted LD females. The disruption of estrous cyclicity in shifted LD females was associated with a significant increase in serum estradiol levels relative to that observed in fixed LD controls. Circadian rhythm disruption exacerbated stroke outcomes in both shifted LD male and female rats and further amplified sex differences in stroke impairments. In males, but not females, circadian disruption after exposure to the shifted LD cycle was marked by high rates of mortality. In surviving females, circadian desynchronization after exposure to shifted LD cycles produced significant increases in stroke-induced infarct volume and sensorimotor deficits with corresponding decreases in serum IGF-1 levels. These results suggest that circadian rhythm disruption associated with shift work schedules or the irregular nature of our everyday work and/or social environments may interact with other nonmodifiable risk factors such as biological sex to modulate the pathological effects of stroke.
Collapse
Affiliation(s)
- David J Earnest
- Department of Neuroscience and Experimental Therapeutics (D.J.E., N.N., J.C., A.S., F.S.) and Women's Health in Neuroscience Program (A.S., F.S.), Texas A&M Health Science Center, College of Medicine, Bryan, Texas 77807-3260; and Department of Biology (D.J.E.) and Center for Biological Clocks Research (D.J.E.), Texas A&M University, College Station, Texas 77843-3258
| | - Nichole Neuendorff
- Department of Neuroscience and Experimental Therapeutics (D.J.E., N.N., J.C., A.S., F.S.) and Women's Health in Neuroscience Program (A.S., F.S.), Texas A&M Health Science Center, College of Medicine, Bryan, Texas 77807-3260; and Department of Biology (D.J.E.) and Center for Biological Clocks Research (D.J.E.), Texas A&M University, College Station, Texas 77843-3258
| | - Jason Coffman
- Department of Neuroscience and Experimental Therapeutics (D.J.E., N.N., J.C., A.S., F.S.) and Women's Health in Neuroscience Program (A.S., F.S.), Texas A&M Health Science Center, College of Medicine, Bryan, Texas 77807-3260; and Department of Biology (D.J.E.) and Center for Biological Clocks Research (D.J.E.), Texas A&M University, College Station, Texas 77843-3258
| | - Amutha Selvamani
- Department of Neuroscience and Experimental Therapeutics (D.J.E., N.N., J.C., A.S., F.S.) and Women's Health in Neuroscience Program (A.S., F.S.), Texas A&M Health Science Center, College of Medicine, Bryan, Texas 77807-3260; and Department of Biology (D.J.E.) and Center for Biological Clocks Research (D.J.E.), Texas A&M University, College Station, Texas 77843-3258
| | - Farida Sohrabji
- Department of Neuroscience and Experimental Therapeutics (D.J.E., N.N., J.C., A.S., F.S.) and Women's Health in Neuroscience Program (A.S., F.S.), Texas A&M Health Science Center, College of Medicine, Bryan, Texas 77807-3260; and Department of Biology (D.J.E.) and Center for Biological Clocks Research (D.J.E.), Texas A&M University, College Station, Texas 77843-3258
| |
Collapse
|
25
|
Role and Importance of IGF-1 in Traumatic Brain Injuries. BIOMED RESEARCH INTERNATIONAL 2015; 2015:736104. [PMID: 26417600 PMCID: PMC4568328 DOI: 10.1155/2015/736104] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 12/24/2014] [Indexed: 01/02/2023]
Abstract
It is increasingly affirmed that most of the long-term consequences of TBI are due to molecular and cellular changes occurring during the acute phase of the injury and which may, afterwards, persist or progress. Understanding how to prevent secondary damage and improve outcome in trauma patients, has been always a target of scientific interest. Plans of studies focused their attention on the posttraumatic neuroendocrine dysfunction in order to achieve a correlation between hormone blood level and TBI outcomes. The somatotropic axis (GH and IGF-1) seems to be the most affected, with different alterations between the acute and late phases. IGF-1 plays an important role in brain growth and development, and it is related to repair responses to damage for both the central and peripheral nervous system. The IGF-1 blood levels result prone to decrease during both the early and late phases after TBI. Despite this, experimental studies on animals have shown that the CNS responds to the injury upregulating the expression of IGF-1; thus it appears to be related to the secondary mechanisms of response to posttraumatic damage. We review the mechanisms involving IGF-1 in TBI, analyzing how its expression and metabolism may affect prognosis and outcome in head trauma patients.
Collapse
|
26
|
Sohrabji F. Estrogen-IGF-1 interactions in neuroprotection: ischemic stroke as a case study. Front Neuroendocrinol 2015; 36:1-14. [PMID: 24882635 PMCID: PMC4247812 DOI: 10.1016/j.yfrne.2014.05.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 12/25/2022]
Abstract
The steroid hormone 17b-estradiol and the peptide hormone insulin-like growth factor (IGF)-1 independently exert neuroprotective actions in neurologic diseases such as stroke. Only a few studies have directly addressed the interaction between the two hormone systems, however, there is a large literature that indicates potentially greater interactions between the 17b-estradiol and IGF-1 systems. The present review focuses on key issues related to this interaction including IGF-1 and sex differences and common activation of second messenger systems. Using ischemic stroke as a case study, this review also focuses on independent and cooperative actions of estrogen and IGF-1 on neuroprotection, blood brain barrier integrity, angiogenesis, inflammation and post-stroke epilepsy. Finally, the review also focuses on the astrocyte, a key mediator of post stroke repair, as a local source of 17b-estradiol and IGF-1. This review thus highlights areas where significant new research is needed to clarify the interactions between these two neuroprotectants.
Collapse
Affiliation(s)
- Farida Sohrabji
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, TAMHSC College of Medicine, Bryan, TX 77807, United States.
| |
Collapse
|
27
|
Yan H, Mitschelen M, Toth P, Ashpole NM, Farley JA, Hodges EL, Warrington JP, Han S, Fung KM, Csiszar A, Ungvari Z, Sonntag WE. Endothelin-1-induced focal cerebral ischemia in the growth hormone/IGF-1 deficient Lewis Dwarf rat. J Gerontol A Biol Sci Med Sci 2014; 69:1353-62. [PMID: 25098324 DOI: 10.1093/gerona/glu118] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Aging is a major risk factor for cerebrovascular disease. Growth hormone (GH) and its anabolic mediator, insulin-like growth factor (IGF)-1, decrease with advancing age and this decline has been shown to promote vascular dysfunction. In addition, lower GH/IGF-1 levels are associated with higher stroke mortality in humans. These results suggest that decreased GH/IGF-1 level is an important factor in increased risk of cerebrovascular diseases. This study was designed to assess whether GH/IGF-1-deficiency influences the outcome of cerebral ischemia. We found that endothelin-1-induced middle cerebral artery occlusion resulted in a modest but nonsignificant decrease in cerebral infarct size in GH/IGF-1 deficient dw/dw rats compared with control heterozygous littermates and dw/dw rats with early-life GH treatment. Expression of endothelin receptors and endothelin-1-induced constriction of the middle cerebral arteries were similar in the three experimental groups. Interestingly, dw/dw rats exhibited reduced brain edema and less astrocytic infiltration compared with their heterozygous littermates and this effect was reversed by GH-treatment. Because reactive astrocytes are critical for the regulation of poststroke inflammatory processes, maintenance of the blood-brain barrier and neural repair, further studies are warranted to determine the long-term functional consequences of decreased astrocytic activation in GH/IGF-1 deficient animals after cerebral ischemia.
Collapse
Affiliation(s)
- Han Yan
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Matthew Mitschelen
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Peter Toth
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Nicole M Ashpole
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Julie A Farley
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Erik L Hodges
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Junie P Warrington
- Present address: Department of Physiology & Biophysics, University of Mississippi Medical Center, Jackson, MS 39216
| | - Song Han
- Present address: Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Kar-Ming Fung
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Anna Csiszar
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - William E Sonntag
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City.
| |
Collapse
|
28
|
El Husseini N, Laskowitz DT. The role of neuroendocrine pathways in prognosis after stroke. Expert Rev Neurother 2014; 14:217-32. [PMID: 24428141 DOI: 10.1586/14737175.2014.877841] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A number of neuroendocrine changes have been described after stroke, which may serve adaptive or deleterious functions. The neuroendocrine changes include activation of the hypothalamo-pituitary-adrenal axis, sympathetic nervous system and alterations of several hormonal levels. Alterations of the HPA axis, increased catecholamines, natriuretic peptides and, decreased melatonin and IGF-1 levels are associated with poor post-stroke outcome, although there is no definitive proof of causality. Therefore, it remains to be established whether alteration of neuroendocrine responses could be used as a potential therapeutic target to improve stroke outcome. This article gives an overview of the major neuroendocrine pathways altered by stroke and highlights their potential for clinical use and further neurotherapeutic development by summarizing the evidence for their association with stroke outcome including functional outcome, post-stroke infection, delirium, depression and stroke-related myocardial injury.
Collapse
Affiliation(s)
- Nada El Husseini
- Department of Neurology, Duke University Medical Center, Bryan Research Building, Office 201F, Research Drive, Durham, NC 27710, USA
| | | |
Collapse
|
29
|
Dynkevich Y, Rother KI, Whitford I, Qureshi S, Galiveeti S, Szulc AL, Danoff A, Breen TL, Kaviani N, Shanik MH, Leroith D, Vigneri R, Koch CA, Roth J. Tumors, IGF-2, and hypoglycemia: insights from the clinic, the laboratory, and the historical archive. Endocr Rev 2013; 34:798-826. [PMID: 23671155 DOI: 10.1210/er.2012-1033] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tumors of mesenchymal and epithelial origin produce IGF-2, which activates pathways in the tumors. In a minority of patients, the tumors (hepatomas, fibromas, and fibrosarcomas are the most common among many) release into the circulation enough IGF-2-related peptides to mimic the fasting hypoglycemia characteristic of patients with insulin-producing islet-cell tumors. Rarely, markedly elevated IGF-2 levels produce somatic changes suggestive of acromegaly. Typically, the elevated IGF-2 levels are associated with suppressed plasma levels of insulin, IGF-1, and GH. Complicating the pathophysiology are the IGF binding proteins (IGFBPs) that can bind IGF-2 and IGF-1, modifying hormone metabolism and action. IGFBP concentrations are often altered in the presence of these tumors. At the cellular level, the 3 hormone-related ligands, IGF-2, IGF-1, and insulin, all bind to 4 (or more) types of IGF-1 receptor (IGF-1R) and insulin receptor (IR). Each receptor has its own characteristic affinity for each ligand, a tyrosine kinase, and overlapping profiles of action in the target cells. The IGF-2R, in addition to binding mannose-6-phosphate-containing proteins, provides an IGF-2 degradation pathway. Recent evidence suggests IGF-2R involvement also in signal transduction. Surgery, the treatment of choice, can produce a cure. For patients not cured by surgery, multiple therapies exist, for the tumor and for hypoglycemia. Potential future therapeutic approaches are sketched. From 1910 to 1930, hypoglycemia, insulin, insulinomas, and non-islet-cell tumors were recognized. The latter third of the century witnessed the emergence of the immunoassay for insulin; the IGFs, their binding proteins, and assays to measure them; and receptors for the insulin-related peptides as well as the intracellular pathways beyond the receptor. In closing, we replace non-islet-cell tumor hypoglycemia, an outdated and misleading label, with IGF-2-oma, self-explanatory and consistent with names of other hormone-secreting tumors.
Collapse
Affiliation(s)
- Yevgeniya Dynkevich
- MD, FACP, Investigator, Feinstein Institute for Medical Research, Laboratory of Diabetes and Diabetes-Related Research, 350 Community Drive, Manhasset, NY 11030.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sohrabji F, Selvamani A, Balden R. Revisiting the timing hypothesis: biomarkers that define the therapeutic window of estrogen for stroke. Horm Behav 2013; 63:222-30. [PMID: 22728278 PMCID: PMC3483414 DOI: 10.1016/j.yhbeh.2012.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 06/11/2012] [Accepted: 06/12/2012] [Indexed: 02/06/2023]
Abstract
Significantly extended life expectancy coupled with contemporary sedentary lifestyles and poor nutrition has created a global epidemic of cardiovascular disease and stroke. For women, this issue is complicated by the discrepant outcomes of hormone therapy (HT) for stroke incidence and severity as well as the therapeutic complications for stroke associated with advancing age. Here we propose that the impact of estrogen therapy cannot be considered in isolation, but should include age-related changes in endocrine, immune, and nucleic acid mediators that collaborate with estrogen to produce neuroprotective effects commonly seen in younger, healthier demographics. Due to their role as modulators of ischemic cell death, the post-stroke inflammatory response, and neuronal survival and regeneration, this review proposes that Insulin-like Growth Factor (IGF)-1, Vitamin D, and discrete members of the family of non-coding RNA peptides called microRNAs (miRNAs) may be crucial biochemical markers that help determine the neuroprotective "window" of HT. Specifically, IGF-1 confers neuroprotection in concert with, and independently of, estrogen and failure of the insulin/IGF-1 axis is associated with metabolic disturbances that increase the risk for stroke. Vitamin D and miRNAs regulate and complement IGF-1 mediated function and neuroprotective efficacy via modulation of IGF-1 availability and neural stem cell and immune cell proliferation, differentiation and secretions. Together, age-related decline of these factors differentially affects stroke risk, severity, and outcome, and may provide a novel therapeutic adjunct to traditional HT practices.
Collapse
Affiliation(s)
- Farida Sohrabji
- Department of Neuroscience and Experimental Therapeutics, Women's Health in Neuroscience Program, Texas A&M Health Science Center, College Station, TX 77843-1114, USA.
| | | | | |
Collapse
|
31
|
Torres Aleman I. Insulin-like growth factor-1 and central neurodegenerative diseases. Endocrinol Metab Clin North Am 2012; 41:395-408, vii. [PMID: 22682637 DOI: 10.1016/j.ecl.2012.04.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The previously undisputed neuroprotective role of insulin-like growth factor 1 (IGF-1) has been challenged by recent observations in IGF-1 receptor (IGF-1R) defective mutants. As new ligand-dependent and ligand-independent roles for IGF-1R are now emerging, new insights into the biologic role of brain IGF-1R and its connection with serum and brain IGF-1 function are urgently required. In the meantime, treatment of specific neurodegenerative diseases with IGF-1 may still be explored using adequate preclinical procedures.
Collapse
Affiliation(s)
- Ignacio Torres Aleman
- Department of Functional and Systems Neuroscience, Cajal Institute, Avda Doctor Arce 37, Madrid 28002, Spain.
| |
Collapse
|
32
|
Balden R, Selvamani A, Sohrabji F. Vitamin D deficiency exacerbates experimental stroke injury and dysregulates ischemia-induced inflammation in adult rats. Endocrinology 2012; 153:2420-35. [PMID: 22408173 PMCID: PMC3339639 DOI: 10.1210/en.2011-1783] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Vitamin D deficiency (VDD) is widespread and considered a risk factor for cardiovascular disease and stroke. Low vitamin D levels are predictive for stroke and more fatal strokes in humans, whereas vitamin D supplements are associated with decreased risk of all-cause mortality. Because VDD occurs with other comorbid conditions that are also independent risk factors for stroke, this study examined the specific effect of VDD on stroke severity in rats. Adult female rats were fed control or VDD diet for 8 wk and were subject to middle cerebral artery occlusion thereafter. The VDD diet reduced circulating vitamin D levels to one fifth (22%) of that observed in rats fed control chow. Cortical and striatal infarct volumes in animals fed VDD diet were significantly larger, and sensorimotor behavioral testing indicated that VDD animals had more severe poststroke behavioral impairment than controls. VDD animals were also found to have significantly lower levels of the neuroprotective hormone IGF-I in plasma and the ischemic hemisphere. Cytokine analysis indicated that VDD significantly reduced IL-1α, IL-1β, IL-2, IL-4, IFN-γ, and IL-10 expression in ischemic brain tissue. However, ischemia-induced IL-6 up-regulation was significantly higher in VDD animals. In a separate experiment, the therapeutic potential of acute vitamin D treatments was evaluated, where animals received vitamin D injections 4 h after stroke and every 24 h thereafter. Acute vitamin D treatment did not improve infarct volume or behavioral performance. Our data indicate that VDD exacerbates stroke severity, involving both a dysregulation of the inflammatory response as well as suppression of known neuroprotectants such as IGF-I.
Collapse
Affiliation(s)
- Robyn Balden
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, 228 Reynolds Medical Building, College Station, Texas 77843-1114, USA
| | | | | |
Collapse
|
33
|
Selvamani A, Sathyan P, Miranda RC, Sohrabji F. An antagomir to microRNA Let7f promotes neuroprotection in an ischemic stroke model. PLoS One 2012; 7:e32662. [PMID: 22393433 PMCID: PMC3290559 DOI: 10.1371/journal.pone.0032662] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 01/28/2012] [Indexed: 11/23/2022] Open
Abstract
We previously showed that middle-aged female rats sustain a larger infarct following experimental stroke as compared to younger female rats, and paradoxically, estrogen treatment to the older group is neurotoxic. Plasma and brain insulin-like growth factor-1 (IGF-1) levels decrease with age. However, IGF-1 infusion following stroke, prevents estrogen neurotoxicity in middle-aged female rats. IGF1 is neuroprotective and well tolerated, but also has potentially undesirable side effects. We hypothesized that microRNAs (miRNAs) that target the IGF-1 signaling family for translation repression could be alternatively suppressed to promote IGF-1-like neuroprotection. Here, we report that two conserved IGF pathway regulatory microRNAs, Let7f and miR1, can be inhibited to mimic and even extend the neuroprotection afforded by IGF-1. Anti-mir1 treatment, as late as 4 hours following ischemia, significantly reduced cortical infarct volume in adult female rats, while anti-Let7 robustly reduced both cortical and striatal infarcts, and preserved sensorimotor function and interhemispheric neural integration. No neuroprotection was observed in animals treated with a brain specific miRNA unrelated to IGF-1 (anti-miR124). Remarkably, anti-Let7f was only effective in intact females but not males or ovariectomized females indicating that the gonadal steroid environment critically modifies miRNA action. Let7f is preferentially expressed in microglia in the ischemic hemisphere and confirmed in ex vivo cultures of microglia obtained from the cortex. While IGF-1 was undetectable in microglia harvested from the non-ischemic hemisphere, IGF-1 was expressed by microglia obtained from the ischemic cortex and was further elevated by anti-Let7f treatment. Collectively these data support a novel miRNA-based therapeutic strategy for neuroprotection following stroke.
Collapse
Affiliation(s)
| | | | | | - Farida Sohrabji
- Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
34
|
Lanfranconi S, Locatelli F, Corti S, Candelise L, Comi GP, Baron PL, Strazzer S, Bresolin N, Bersano A. Growth factors in ischemic stroke. J Cell Mol Med 2011; 15:1645-87. [PMID: 20015202 PMCID: PMC4373358 DOI: 10.1111/j.1582-4934.2009.00987.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 11/26/2009] [Indexed: 12/31/2022] Open
Abstract
Data from pre-clinical and clinical studies provide evidence that colony-stimulating factors (CSFs) and other growth factors (GFs) can improve stroke outcome by reducing stroke damage through their anti-apoptotic and anti-inflammatory effects, and by promoting angiogenesis and neurogenesis. This review provides a critical and up-to-date literature review on CSF use in stroke. We searched for experimental and clinical studies on haemopoietic GFs such as granulocyte CSF, erythropoietin, granulocyte-macrophage colony-stimulating factor, stem cell factor (SCF), vascular endothelial GF, stromal cell-derived factor-1α and SCF in ischemic stroke. We also considered studies on insulin-like growth factor-1 and neurotrophins. Despite promising results from animal models, the lack of data in human beings hampers efficacy assessments of GFs on stroke outcome. We provide a comprehensive and critical view of the present knowledge about GFs and stroke, and an overview of ongoing and future prospects.
Collapse
Affiliation(s)
- S Lanfranconi
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
| | - F Locatelli
- Istituto E. Medea, Fondazione La Nostra FamigliaBosisio Parini, Lecco, Italy
| | - S Corti
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
| | - L Candelise
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
| | - G P Comi
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
| | - P L Baron
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
| | - S Strazzer
- Istituto E. Medea, Fondazione La Nostra FamigliaBosisio Parini, Lecco, Italy
| | - N Bresolin
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
- Istituto E. Medea, Fondazione La Nostra FamigliaBosisio Parini, Lecco, Italy
| | - A Bersano
- Dipartimento di Scienze Neurologiche, Dino Ferrari Centre, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di MilanoMilan, Italy
| |
Collapse
|
35
|
Spilcke-Liss E, Friedrich N, Dörr M, Schminke U, Völzke H, Brabant G, Nauck M, Wallaschofski H. Serum insulin-like growth factor I and its binding protein 3 in their relation to intima-media thickness: results of the study of health in Pomerania (SHIP). Clin Endocrinol (Oxf) 2011; 75:70-5. [PMID: 21521279 DOI: 10.1111/j.1365-2265.2011.04010.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Previous studies detected associations between lower insulin-like growth factor I (IGF-I) levels and increased risk of congestive heart failure or ischaemic heart disease. The aim of the present study was to assess the association of IGF-I and its binding protein 3 (IGFBP-3) with the carotid intima-media thickness (IMT) as marker of asymptomatic cardiovascular disease. DESIGN AND POPULATION From the population-based Study of Health in Pomerania (SHIP), a total of 2286 participants aged 45 years or older with readable ultrasound of the carotid arteries were available for the present analyses. METHODS AND MEASUREMENTS Serum IGF-I and IGFBP-3 levels were categorized into three groups (low, moderate, high) according to the sex-specific 10th and 90th percentile. Analyses of variance (anova) and logistic regression analyses adjusted for age, waist circumference, diabetes, hypertension and creatinine clearance were performed. RESULTS After adjusting for confounding factors, IGF-I and the IGF-I/IGFBP-3 ratio were positively related to IMT in anova. Logistic regression analyses confirmed these findings and showed that high IGF-I levels, a high IGF-I/IGFBP-3 ratio and low IGFBP-3 levels were associated to higher odds of increased IMT. CONCLUSION In conclusion, high IGF-I or high IGF-I/IGFBP-3 ratio values and low IGFBP-3 levels are associated with increased IMT. Therefore, systemic levels of the IGF axis or alterations in the balance of its components are associated with subclinical atherosclerotic disease.
Collapse
Affiliation(s)
- Elisabeth Spilcke-Liss
- Institute of Clinical Chemistry and Laboratory MedicineDepartment of CardiologyDepartment of NeurologyInstitute for Community Medicine University of Greifswald, GermanyDepartment of Endocrinology, Christie Hospital, Manchester, UK
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Yibo T, Huiling T, Wei Z, Runjun W, Yangyang Y, Liwei X, Pengtao L. Effects of Tongluo-Jiunao Injection on Cerebral Ischemia–Reperfusion Injury Rats. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/s1876-3553(12)60016-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Petcu EB, Smith RA, Miroiu RI, Opris MM. Angiogenesis in old-aged subjects after ischemic stroke: a cautionary note for investigators. JOURNAL OF ANGIOGENESIS RESEARCH 2010; 2:26. [PMID: 21110846 PMCID: PMC3000373 DOI: 10.1186/2040-2384-2-26] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 11/26/2010] [Indexed: 12/12/2022]
Abstract
Angiogenesis represents a form of neovascularisation of exceptional importance in numerous pathological conditions including stroke. In this context it is directly related to neuroregeneration which is seen in close proximity. However, numerous experimental data have been drawn from studies that have ignored the age criterion. This is extremely important as angiogenesis is different in young versus old subjects. Extrapolating data obtained from studies performed in young subjects or "in vitro" to old-age patients could lead to inexact conclusions since the dynamics of angiogenesis is age-dependent. The current review covers the key features of brain senescence including morphological and functional changes related to the brain parenchyma, its vascular network and blood flow which could possibly influence the process of angiogenesis. This is followed by a description of post-stroke angiogenesis and its relationship to neuroregeneration and its modulation by vascular endothelial growth factor (VEGF) and insulin-like growth factor 1 (IGF 1), the most important factors active in old brain after ischemic injury.
Collapse
Affiliation(s)
- Eugen B Petcu
- Griffith University School of Medicine, Gold Coast Campus, Griffith University, QLD 4222, Australia.
| | | | | | | |
Collapse
|
38
|
The neurotoxic effects of estrogen on ischemic stroke in older female rats is associated with age-dependent loss of insulin-like growth factor-1. J Neurosci 2010; 30:6852-61. [PMID: 20484627 DOI: 10.1523/jneurosci.0761-10.2010] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Hormone therapy to postmenopausal females increases the risk and severity of ischemic stroke. Our previous work using an animal model of menopause (reproductive senescence) shows that middle cerebral artery occlusion (MCAo) causes a larger cortical-striatal infarct in this older acyclic group compared with younger females. Moreover, although estrogen treatment is neuroprotective in younger females, estrogen paradoxically increases infarct volume in acyclic females. We hypothesized that the neurotoxic effects of estrogen in older females occurs because of decreased availability of IGF-1, a neuroprotectant that decreases with advancing age and is downregulated by estrogen treatment. Our data show that plasma IGF-1 levels are significantly reduced in reproductive senescent females and further reduced by estrogen at all ages. The neuroprotective effect of estrogen on MCAo-induced cortical infarct volume in mature adult female is reversed by intracerebroventricular injections of IGF-1 receptor antagonist JB-1. Similarly, estrogens neurotoxic effects on cortical infarct volume in senescent females is attenuated by concurrent IGF-1 treatment, and reversed when IGF-1 is infused 4 h after the onset of ischemia (delayed IGF-1 treatment). Delayed IGF-1/estrogen treatment also suppressed ischemia-induced ERK1 phosphorylation, reduced protein oxidation, and stimulated an early increase in prostaglandin E(2) at the infarct site. IGF-1 treatment was only protective in senescent females that received estrogen, indicating that the neuroprotective actions of this peptide require interaction with the steroid hormone receptor. These data support the hypothesis that stroke severity in older females is associated with decreased IGF-1 and further indicate that short-term postischemic IGF-1 therapy may be beneficial for stroke.
Collapse
|
39
|
Lu XCM, Chen RW, Yao C, Wei H, Yang X, Liao Z, Dave JR, Tortella FC. NNZ-2566, a glypromate analog, improves functional recovery and attenuates apoptosis and inflammation in a rat model of penetrating ballistic-type brain injury. J Neurotrauma 2009; 26:141-54. [PMID: 19119917 DOI: 10.1089/neu.2008.0629] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glycine-proline-glutamate (GPE) is an N-terminal tripeptide endogenously cleaved from insulin-like growth factor-1 in the brain and is neuroprotective against hypoxic-ischemic brain injury and neurodegeneration. NNZ-2566 is an analog of GPE designed to have improved bioavailability. In this study, we tested NNZ-2566 in a rat model of penetrating ballistic-type brain injury (PBBI) and assessed its effects on injury-induced histopathology, behavioral deficits, and molecular and cellular events associated with inflammation and apoptosis. In the initial dose-response experiments, NNZ-2566 (0.01-3 mg/kg/h x 12 h intravenous infusion) was given at 30 min post-injury and the therapeutic time window was established by delaying treatments 2-4 h post-injury, but with the addition of a 10- or 30-mg/kg bolus dose. All animals survived 72 h. Neuroprotection was evaluated by balance beam testing and histopathology. The effects of NNZ-2566 on injury-induced changes in Bax and Bcl-2 proteins, activated microgliosis, neutrophil infiltration, and astrocyte reactivity were also examined. Behavioral results demonstrated that NNZ-2566 dose-dependently reduced foot faults by 19-66% after acute treatments, and 35-55% after delayed treatments. Although gross lesion volume was not affected, NNZ-2566 treatment significantly attenuated neutrophil infiltration and reduced the number of activated microglial cells in the peri-lesion regions of the PBBI. PBBI induced a significant upregulation in Bax expression (36%) and a concomitant downregulation in Bcl-2 expression (33%), both of which were significantly reversed by NNZ-2566. Collectively, these results demonstrated that NNZ-2566 treatment promoted functional recovery following PBBI, an effect related to the modulation of injury-induced neural inflammatory and apoptotic mechanisms.
Collapse
Affiliation(s)
- Xi-Chun May Lu
- Department of Applied Neurobiology, Division of Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, MD 20910, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Benton RL, Maddie MA, Dincman TA, Hagg T, Whittemore SR. Transcriptional activation of endothelial cells by TGFβ coincides with acute microvascular plasticity following focal spinal cord ischaemia/reperfusion injury. ASN Neuro 2009; 1:e00015. [PMID: 19663807 PMCID: PMC2810814 DOI: 10.1042/an20090008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 08/07/2009] [Accepted: 08/10/2009] [Indexed: 11/17/2022] Open
Abstract
Microvascular dysfunction, loss of vascular support, ischaemia and sub-acute vascular instability in surviving blood vessels contribute to secondary injury following SCI (spinal cord injury). Neither the precise temporal profile of the cellular dynamics of spinal microvasculature nor the potential molecular effectors regulating this plasticity are well understood. TGFβ (transforming growth factor β) isoforms have been shown to be rapidly increased in response to SCI and CNS (central nervous system) ischaemia, but no data exist regarding their contribution to microvascular dysfunction following SCI. To examine these issues, in the present study we used a model of focal spinal cord ischaemia/reperfusion SCI to examine the cellular response(s) of affected microvessels from 30 min to 14 days post-ischaemia. Spinal endothelial cells were isolated from affected tissue and subjected to focused microarray analysis of TGFβ-responsive/related mRNAs 6 and 24 h post-SCI. Immunohistochemical analyses of histopathology show neuronal disruption/loss and astroglial regression from spinal microvessels by 3 h post-ischaemia, with complete dissolution of functional endfeet (loss of aquaporin-4) by 12 h post-ischaemia. Coincident with this microvascular plasticity, results from microarray analyses show 9 out of 22 TGFβ-responsive mRNAs significantly up-regulated by 6 h post-ischaemia. Of these, serpine 1/PAI-1 (plasminogen-activator inhibitor 1) demonstrated the greatest increase (>40-fold). Furthermore, uPA (urokinase-type plasminogen activator), another member of the PAS (plasminogen activator system), was also significantly increased (>7.5-fold). These results, along with other select up-regulated mRNAs, were confirmed biochemically or immunohistochemically. Taken together, these results implicate TGFβ as a potential molecular effector of the anatomical and functional plasticity of microvessels following SCI.
Collapse
Key Words
- endothelin
- insulin-like growth factor binding protein 3 (igfbp-3)
- interleukin-6 (il-6)
- matrix metalloproteinase 9 (mmp-9)
- plasminogen-activator inhibitor 1 (pai-1)
- urokinase-type plasminogen activator (upa)
- aqp-4, aquaporin-4
- bmp, bone morphogenetic protein
- bscb, blood-spinal cord-barrier
- cns, central nervous system
- ec, endothelial cell
- et, endothelin
- gfap, glial fibrillary acidic protein
- huvec, human umbilical vein endothelial cell
- igf, insulin-like growth factor
- igfbp-3, igf-binding protein 3
- il, interleukin
- lea, lycopersicon esculentum agglutinin
- llc, large latent complex
- map2, microtubule-associated protein 2
- mcao, middle cerebral artery occlusion
- mmp, matrix metalloproteinase
- nvu, neurovascular unit
- pa, plasminogen activator
- pai, pa inhibitor
- pas, pa system
- sci, spinal cord injury
- smvec, spinal microvascular ec
- tbs, tris-buffered saline
- tgfβ, transforming growth factor β
- tpa, tissue-type pa
- tsp-1, thrombospondin-1
- upa, urokinase-type pa
- upar, upa receptor
- vegf, vascular endothelial growth factor
Collapse
Affiliation(s)
- Richard L Benton
- daggerKentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| | | | | | | | | |
Collapse
|
41
|
Brevetti G, Colao A, Schiano V, Pivonello R, Laurenzano E, Di Somma C, Lombardi G, Chiariello M. IGF system and peripheral arterial disease: relationship with disease severity and inflammatory status of the affected limb. Clin Endocrinol (Oxf) 2008; 69:894-900. [PMID: 18410545 DOI: 10.1111/j.1365-2265.2008.03269.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVES IGF-1 and its binding proteins are involved in the pathogenesis of atherosclerosis. We designed this study to unravel the relationship of the IGF system with peripheral arterial disease (PAD). DESIGN Case-control, cross-sectional study. MEASUREMENTS Serum levels of IGF-1, IGFBP-3 and acid labile subunit (ALS) were measured in 96 PAD patients and 89 controls. In 28 patients who underwent peripheral angiography, C-reactive protein (CRP), IGF-1, IGFBP-3 and ALS were measured in blood from femoral vein of the affected limb and aorta. RESULTS Compared to controls, PAD patients showed lower levels of IGFBP-3 (3569 +/- 115 vs. 3106 +/- 107 microg/l, P < 0.01), and ALS (12.2 +/- 0.5 vs. 8.3 +/- 0.5 mg/l, P < 0.01). In PAD, concentrations of IGFBP-3 and ALS were significantly lower in patients with ankle/brachial index less than median than in those with a less severe PAD. In the affected limb, CRP venous-arterial difference correlated negatively with that of IGF-1 (rho = -0.57, P < 0.01), and positively with that of IGFBP-3 (rho = 0.63, P < 0.01). At multivariate analysis, a high transfemoral gradient of CRP was independently associated with a low transfemoral gradient of IGF-1 (beta coefficient = -0.48, P < 0.01), and a high transfemoral gradient of IGFBP-3 (beta coefficient = 0.22, P < 0.05). CONCLUSIONS This study is the first to demonstrate that the systemic levels of IGF axis components are associated with the presence and severity of PAD, and that the inflammatory status of the ischaemic limb affects the transfemoral concentrations of IGF-1 and IGFBP-3. Due to the importance of IGF axis in modulating atherosclerotic plaque progression, our data may contribute to a better understanding of PAD pathophysiology.
Collapse
Affiliation(s)
- Gregorio Brevetti
- Department of Clinical Medicine and Cardiovascular and Immunological Sciences, University of Naples Federico II, Naples, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Cheng J, Liu J, Li X, Peng J, Han S, Zhang R, Xu Y, Nie S. Insulin-like growth factor-1 receptor polymorphism and ischemic stroke: a case-control study in Chinese population. Acta Neurol Scand 2008; 118:333-8. [PMID: 18477064 DOI: 10.1111/j.1600-0404.2008.01040.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Low levels of insulin-like growth factor 1 (IGF-1) are associated with atherosclerosis, and insulin-like growth factor-1 receptor (IGF-1R) polymorphisms can change plasma levels of IGF-1 and may alter the function of the receptor. Whether there is any association of genetic variation in IGF-1R gene with ischemic stroke (IS) is presently unknown. MATERIALS AND METHOD A 1:1 case-control study was conducted. The G --> A polymorphism of IGF-1R gene (rs2229765) were analyzed by TaqMan SNP genotyping technique in Chinese patients with IS (n = 309) and old subjects without IS (n = 309). RESULTS The frequency of A allele in the patients and controls was 45.79% and 39.64%, respectively. The AA genotype distribution of IGF-1R gene was significantly higher in the patients (27.51%) than controls (18.23%; P = 0.022). Conditional logistic regression revealed that the AA genotype of IGF-1R was associated with IS (OR = 1.641, P = 0.022). After adjustment for smoking, alcohol drinking, history of hypertension, and body mass index, IGF-1R AA genotype was still significantly associated with an increased risk of IS (OR = 1.787, P = 0.029), compared with IGF-1R GG. CONCLUSIONS The G --> A polymorphism in IGF-1R gene may affect the susceptibility to IS in Chinese population.
Collapse
Affiliation(s)
- J Cheng
- Department of Molecular Biology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Nelson TJ, Sun MK, Hongpaisan J, Alkon DL. Insulin, PKC signaling pathways and synaptic remodeling during memory storage and neuronal repair. Eur J Pharmacol 2008; 585:76-87. [PMID: 18402935 DOI: 10.1016/j.ejphar.2008.01.051] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 11/29/2007] [Accepted: 01/21/2008] [Indexed: 01/04/2023]
Abstract
Protein kinase C (PKC) is involved in synaptic remodeling, induction of protein synthesis, and many other processes important in learning and memory. Activation of neuronal protein kinase C correlates with, and may be essential for, all phases of learning, including acquisition, consolidation, and reconsolidation. Protein kinase C activation is closely tied to hydrolysis of membrane lipids. Phospholipases C and A2 produce 1,2-diacylglycerol and arachidonic acid, which are direct activators of protein kinase C. Phospholipase C also produces inositol triphosphate, which releases calcium from internal stores. Protein kinase C interacts with many of the same pathways as insulin; therefore, it should not be surprising that insulin signaling and protein kinase C activation can both have powerful effects on memory storage and synaptic remodeling. However, investigating the possible roles of insulin in memory storage can be challenging, due to the powerful peripheral effects of insulin on glucose and the low concentration of insulin in the brain. Although peripheral for insulin, synthesized in the beta-cells of the pancreas, is primarily involved in regulating glucose, small amounts of insulin are also present in the brain. The functions of this brain insulin are inadequately understood. Protein kinase C may also contribute to insulin resistance by phosphorylating the insulin receptor substrates required for insulin signaling. Insulin is also responsible insulin-long term depression, a type of synaptic plasticity that is also dependent on protein kinase C. However, insulin can also activate PKC signaling pathways via PLC gamma, Erk 1/2 MAP kinase, and src stimulation. Taken together, the available evidence suggests that the major impact of protein kinase C and its interaction with insulin in the mature, fully differentiated nervous system appears to be to induce synaptogenesis, enhance memory, reduce Alzheimer's pathophysiology, and stimulate neurorepair.
Collapse
Affiliation(s)
- Thomas J Nelson
- Blanchette Rockefeller Neurosciences Institute, 9601 Medical Center Drive, Rockville, Maryland 20850 USA
| | | | | | | |
Collapse
|
44
|
Hosback S, Hardiman O, Nolan CM, Doyle MAC, Gorman G, Lynch C, O'Toole O, Jakeman P. Circulating insulin-like growth factors and related binding proteins are selectively altered in amyotrophic lateral sclerosis and multiple sclerosis. Growth Horm IGF Res 2007; 17:472-479. [PMID: 17697791 DOI: 10.1016/j.ghir.2007.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 05/04/2007] [Accepted: 06/15/2007] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To provide a detailed profile of the peripheral IGF system in the neurological conditions; amyotrophic lateral sclerosis (ALS), post polio syndrome (PPS) and multiple sclerosis (MS). To determine whether subsets of patients within the disease groups could be identified in whom one or more components of the IGF regulatory system are altered compared to healthy control subjects matched for age, sex and BMI. DESIGN Three cohorts of patients were recruited, 28 with ALS, 18 with PPS and 23 with MS. Patients were individually matched to a healthy control based on sex, age (+/-3 yr), and BMI (+/-2.5 kg m(-2)). The concentration (ng/ml) of serum IGF-I, IGF-II, IGFBP-1, IGFBP-2 and IGFBP-3 and acid-labile subunit (microg/ml) was determined by IRMA. RESULTS In ALS patients, there was an increase of 11% in [IGF(TOTAL)] (p=0.042) ([IGF(TOTAL)]=[IGF-I]+[IGF-II]) and [IGFBP-1] was decreased by 34% (p=0.050) compared to matched controls. In "surviving" ALS patients, defined as those ALS patients with long disease duration (+2 SD from the mean survival time for Irish patients post diagnosis), there was an increase in [IGF-I] 36% (p=0.032) and a large decrease in [IGFBP-1] -58% (p=0.020) compared to controls. These differences were not evident in pre-agonal ALS patients. The concentration of serum IGF-I was 38% (p=0.018), acid-labile subunit 17% (p=0.044) and IGFBP-2 43% (p=0.035) higher in MS patients compared to controls. When stratified for interferon-beta (IFN-beta) use, we observed an increase in serum [IGF-I] 52% (p=0.013) and [IGF(TOTAL)] 19% (p=0.043) in MS patients undergoing IFN-beta treatment, but MS patients not undergoing IFN-beta treatment had similar IGF and IGFBP concentration to controls. Serum [IGFBP-3] 18% (p=0.033), [IGFBP-2] 86% (p=0.015) and (acid-labile subunit) 33% (p=0.012) was also higher in IFN-beta patients compared to controls. Stratified by stage of disease the most significant increase in components of the peripheral IGF system was attributed to relapsing-remitting MS patients treated with IFN-beta. All components of the peripheral IGF system in PPS patients were similar to controls. CONCLUSIONS The increase in circulating IGF-I and a reduction in regulatory binding protein IGFBP-1 in ALS patients with a "stable" disease profile suggest a potential change in peripheral IGF bioavailability in these subjects. In MS, we report a change in a number of components of the peripheral IGF system, the observed increase in IGF-I in patients treated with IFN-beta being of most significance as a potential therapeutic biomarker.
Collapse
Affiliation(s)
- Sharah Hosback
- Human Science Research Unit, University of Limerick, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Serum insulin-like growth factor I and ischemic brain injury. Brain Res 2007; 1185:328-35. [PMID: 17961524 DOI: 10.1016/j.brainres.2007.09.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 09/11/2007] [Accepted: 09/12/2007] [Indexed: 12/25/2022]
Abstract
Serum insulin-like growth factor I (IGF-I), which is mostly produced by the liver, has recently been shown to have the unexpected ability to modulate normal brain function as well as brain response to injury. Moreover, serum IGF-I levels are modified in many brain diseases, including stroke. However, whether these modifications are related to the disease process remains uncertain. We now examined a potential relationship between serum IGF-I and ischemic brain injury after middle cerebral artery occlusion (MCAo) and reperfusion in mice with either high or low serum IGF-I levels prior to insult. Surprisingly, we found that chronic high serum IGF-I correlates with increased brain infarct size following MCAo, while low levels correlate with reduced lesion size. Immunocytochemistry and immunoblot analyses revealed that levels of phosphorylated (i.e., activated) MAPK, known to be associated with the severity of ischemic brain injury, were increased in IGF-I treated mice. No overall effect of IGF-I treatment on IGF family mRNA expression in the brain was observed. Altogether, these results indicate that serum IGF-I levels negatively correlate with stroke outcome. Therefore, lowering serum IGF-I levels in aging mammals, including humans, may be beneficial against the increased risk of stroke associated to old age.
Collapse
|
46
|
Bondanelli M, Ambrosio MR, Onofri A, Bergonzoni A, Lavezzi S, Zatelli MC, Valle D, Basaglia N, degli Uberti EC. Predictive value of circulating insulin-like growth factor I levels in ischemic stroke outcome. J Clin Endocrinol Metab 2006; 91:3928-34. [PMID: 16882751 DOI: 10.1210/jc.2006-1040] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT Cerebrovascular disease is highly prevalent in the general population, frequently leading to permanent invalidity and reduced quality of life. IGF-I is recognized as an important neuroprotective factor against cerebral hypoxic insult. OBJECTIVE The objective of the study was to evaluate pituitary function, in particular GH-IGF-I axis, in adult patients receiving rehabilitation after an ischemic stroke. SUBJECTS AND METHODS We studied 42 patients (12 females; age range, 50-88 yr) during rehabilitation after stroke, evaluating the relationship between the GH-IGF-I axis and the severity (National Institutes of Health stroke scale) and outcome [Rancho Los Amigos Scale of Cognitive Functioning (LCFS); Functional Independence Measure (FIM); modified Ranking Scale] from stroke. RESULTS GH deficiency was demonstrated in five patients (11.9%). Peak GH after GHRH + arginine test and IGF-I levels did not correlate with severity of stroke. IGF-I was positively correlated with LCFS (r = 0.305, P < 0.05) and the difference between FIM on admission and at discharge from rehabilitation (DeltaFIM; r = 0.361, P < 0.02). Outcome indexes (LCFS, FIM at discharge, DeltaFIM) and occurrence of favorable outcome (modified Ranking Scale 0-1) were significantly (P < 0.05) higher in patients with IGF-I levels 161.8 mug/dl or greater (50th percentile of the patient distribution). LH-FSH deficiency (three cases), ACTH deficiency (one case), and hyperprolactinemia (two cases) were detected. One patient had primary hypogonadism, and six males had low testosterone with normal LH and FSH levels. By multivariate analysis, IGF-I level was the main significant predictor of DeltaFIM and LCFS. CONCLUSIONS Ischemic stroke may be associated with pituitary dysfunction, particularly GH and gonadotropin deficiencies. The higher IGF-I levels observed in patients with better outcome suggest a possible neuroprotective role of IGF-I. Circulating IGF-I may predict functional performance during rehabilitation and ischemic stroke outcome.
Collapse
Affiliation(s)
- Marta Bondanelli
- Section of Endocrinology, Department of Biomedical Sciences and Advanced Therapies, University of Ferrara, via Savonarola 9, 44100 Ferrara, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
van Rijn MJE, Slooter AJC, Bos MJ, Catarino CFBS, Koudstaal PJ, Hofman A, Breteler MMB, van Duijn CM. Insulin-like growth factor I promoter polymorphism, risk of stroke, and survival after stroke: the Rotterdam study. J Neurol Neurosurg Psychiatry 2006; 77:24-7. [PMID: 16361587 PMCID: PMC2117398 DOI: 10.1136/jnnp.2005.067447] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 06/22/2005] [Accepted: 06/23/2005] [Indexed: 11/04/2022]
Abstract
BACKGROUND AND PURPOSE Low levels of insulin-like growth factor I (IGF-I) predispose to atherosclerosis and may therefore increase the risk of stroke. Low levels have also been found to influence the outcome of cardiovascular and cerebrovascular disease. A polymorphism in the promoter region of the IGF-I gene influences IGF-I levels. Non-carriers of the 192 bp allele have lower levels of IGF-I compared with 192 bp allele carriers. We studied the IGF-I polymorphism in relation to the risk of stroke and survival after stroke. METHODS We studied 6808 subjects of the Rotterdam Study, who were followed for the occurrence of stroke and death after stroke. Subjects were grouped according to the 192 bp allele of IGF-I into non-carriers, heterozygotes, and homozygotes. The risk of stroke and survival after stroke was studied using Cox regression analysis, adjusting for age and sex, with homozygotes for the wildtype allele as the reference. RESULTS Non-carriers had a relative risk of 0.8 (95% CI: 0.6 to 1.0) for the occurrence of any stroke and 0.7 (95% CI: 0.5 to 1.0) for ischaemic stroke. For non-carriers, the relative risk of death after any stroke was 1.5 (95% CI: 1.0 to 2.2). After an ischaemic stroke, this relative risk was 1.5 (95% CI: 0.9 to 2.6) and after a haemorrhagic stroke 5.2 (95% CI: 1.3 to 21.5). CONCLUSIONS Our study suggests that IGF-I is a significant determinant of survival after stroke.
Collapse
Affiliation(s)
- M J E van Rijn
- Department of Epidemiology and Biostatistics, Erasmus Medical Center, PO Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Dimopoulou I, Tsagarakis S. Hypothalamic-pituitary dysfunction in critically ill patients with traumatic and nontraumatic brain injury. Intensive Care Med 2005; 31:1020-8. [PMID: 15959759 DOI: 10.1007/s00134-005-2689-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Accepted: 05/27/2005] [Indexed: 11/29/2022]
Abstract
BACKGROUND A significant number of studies have shown that critically ill patients with brain injury (BI) frequently exhibit abnormal pituitary hormonal responses during the immediate postinjury period. DISCUSSION The elucidation of endocrine alterations depends on the criteria used, the diagnostic tests applied, and the timing of testing in relation to BI. The pattern of the detected hormonal abnormalities shows considerable variability. Altered endocrine responses are due mostly to hypothalamic changes rather than to pituitary dysfunction. Several studies have examined the correlation between hormonal alterations and BI severity, but the results are inconsistent. Furthermore, it remains currently unclear whether and how pituitary abnormalities adversely affect the clinical course of BI patients during the period of critical illness. On the basis of current knowledge, with the exception of clinically significant relative adrenal deficiency and diabetes insipidus, the other endocrine alterations do not seem to require any therapeutic intervention in severely ill BI patients. It is also uncertain whether hormonal abnormalities detected in the early post-BI period persist for the rest of these patients' lives. CONCLUSIONS In view of current evidence indicating a high incidence of pituitary dysfunction even years following BI it is recommended that repetition of endocrine evaluation should be performed during the rehabilitation phase in all patients.
Collapse
Affiliation(s)
- Ioanna Dimopoulou
- Second Department of Critical Care Medicine, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Greece.
| | | |
Collapse
|
49
|
Denti L, Annoni V, Cattadori E, Salvagnini MA, Visioli S, Merli MF, Corradi F, Ceresini G, Valenti G, Hoffman AR, Ceda GP. Insulin-like growth factor 1 as a predictor of ischemic stroke outcome in the elderly. Am J Med 2004; 117:312-7. [PMID: 15336580 DOI: 10.1016/j.amjmed.2004.02.049] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2003] [Revised: 02/26/2004] [Accepted: 02/26/2004] [Indexed: 11/22/2022]
Abstract
PURPOSE To examine whether serum insulin-like growth factor 1 (IGF-1) and IGF binding protein 3 (IGFBP-3) concentrations, determined early after the onset of stroke, are predictive of clinical outcome in elderly patients. METHODS The sample comprised 85 patients (mean [+/- SD] age, 83 +/- 7.4 years; range, 67 to 99 years; 34% male) who were admitted with acute stroke to a geriatric ward between January 1998 and June 2000, and 88 control patients who were similar in age and sex. Clinical and laboratory assessments, computed tomographic scan of the head, carotid ultrasonography, and electrocardiography were employed to define the clinical and etiologic stroke subtype. Fasting blood samples were collected within 24 hours of admission for IGF-I and IGFBP-3 measurement. Univariate and multiple logistic regression analyses, with adjustment for other related clinical covariates, were used to assess the relation of IGF-I and IGFBP-3 to poor outcome, defined as severe disability (Barthel index <60/100) or death, at 1 month (or at discharge), 3 months, and 6 months. RESULTS Mean (+/- SD) IGF-1 levels were lower in patients with stroke than in controls (69 +/- 45 ng/mL vs. 102 +/- 67 ng/mL, P adjusted for age = 0.001). The mean IGF-1/IGFBP-3 molar ratio was also lower in stroke patients (0.12 +/- 0.07 vs. 0.19 +/- 0.09, P adjusted for age <0.0001). However, there was no relation of hormone levels to either the clinical subtype of stroke or the extent of neurologic impairment. IGF-1 levels were inversely related to poor outcome (mainly death) at 3 and 6 months, independent of other clinical covariates that were highly predictive of outcome, such as age and stroke scale score on admission (hazard ratio for death at 6 months for each 20-ng/mL increase = 0.7; 95% confidence interval: 0.5 to 0.9). An independent association of the molar ratio with death at 3 and 6 months was also found. CONCLUSION Low levels of circulating IGF-1 may predict the clinical outcome of stroke in elderly patients.
Collapse
Affiliation(s)
- Licia Denti
- Department of Internal Medicine and Biomedical Sciences, Section of Geriatrics, University of Parma, Parma, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Carrascosa C, Torres-Aleman I, Lopez-Lopez C, Carro E, Espejo L, Torrado S, Torrado JJ. Microspheres containing insulin-like growth factor I for treatment of chronic neurodegeneration. Biomaterials 2004; 25:707-14. [PMID: 14607509 DOI: 10.1016/s0142-9612(03)00562-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The therapeutic potential of peptide growth factors as insulin-like growth factor I (IGF-I) is currently under intense scrutiny in a wide variety of diseases, including neurodegenerative illnesses. A new poly(lactic-co-glycolide)-based microsphere IGF-I controlled release formulation for subcutaneous (SC) delivery has been developed by a triple emulsion method. The resulting microspheres displayed a mean diameter of 1.5microm, with an encapsulation efficiency of 74.3%. The protein retained integrity after the microencapsulation process as evaluated by circular dichroism and SDS-PAGE. The administration of IGF-I in microspheres caused at least a 30-fold increase in IGF-I mean residence time in rats and mice when compared with the conventional SC solution. Therefore, dosing can be changed from the conventional twice a day to once every 2 weeks. Therapeutic efficacy of this new formulation has been studied in mutant mice with inherited Purkinje cell degeneration (PCD). These mice show a chronic limb discoordination that is resolved after continuous systemic delivery of IGF-I. Normal motor coordination was maintained as long as IGF-I microsphere therapy is continued. Moreover, severely affected PCD mice, with marked ataxia, muscle wasting and shortened life-span showed a significant improvement after continuous IGF-I microsphere therapy as determined by enhanced motor coordination, marked weight gain and extended survival. This new formulation can be considered of great therapeutic promise for some chronic brain diseases.
Collapse
Affiliation(s)
- C Carrascosa
- Department of Pharmaceutical Technology, School of Pharmacy, Complutense University, Cajal Institute, CSIC, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|