1
|
Hwang JW, Myeong SH, Lee NH, Kim H, Son HJ, Chang JW, Lee NK, Na DL. Immunosuppressant Drugs Mitigate Immune Responses Generated by Human Mesenchymal Stem Cells Transplanted into the Mouse Parenchyma. Cell Transplant 2021; 30:9636897211019025. [PMID: 34044601 PMCID: PMC8168027 DOI: 10.1177/09636897211019025] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
It has been widely accepted that mesenchymal stem cells (MSCs) can evade the immune surveillance of the recipient. However, emerging research cast doubt on whether MSCs are intrinsically immune-privileged. Previously, we observed that the transplantation of human MSCs (hMSCs) into the mouse parenchyma attracted a high infiltration of leukocytes into the injection tract. Thus, in order to reduce the immune responses generated by hMSCs, the aim of this study was to assess which immunosuppressant condition (dexamethasone only, tacrolimus only, or dexamethasone and tacrolimus together) would not only reduce the overall immune response but also enhance the persistence of MSCs engrafted into the caudate putamen of wild-type C57BL/6 mice. According to immunohistochemical analysis, compared to the hMSC only group, the administration of immunosuppressants (for all three conditions) reduced the infiltration of CD45-positive leukocytes and neutrophils at the site of injection. The highest hMSC persistence was detected from the group that received combinatorial administrations of dexamethasone and tacrolimus. Moreover, compared to the immunocompetent WT mouse, higher MSC engraftment was observed from the immunodeficient BALB/c mice. The results of this study support the use of immunosuppressants to tackle MSC-mediated immune responses and to possibly prolong the engraftment of transplanted MSCs.
Collapse
Affiliation(s)
- Jung Won Hwang
- Department of Health Sciences and Technology, SAIHST, 35019Sungkyunkwan University, Gangnam-gu, Seoul, Republic of Korea.,Stem Cell & Regenerative Medicine Institute, 36626Samsung Medical Center, Seoul, Republic of Korea.,Department of Neurology, Samsung Medical Center, 35019Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Su Hyeon Myeong
- Department of Health Sciences and Technology, SAIHST, 35019Sungkyunkwan University, Gangnam-gu, Seoul, Republic of Korea.,Stem Cell & Regenerative Medicine Institute, 36626Samsung Medical Center, Seoul, Republic of Korea.,Department of Neurology, Samsung Medical Center, 35019Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Na-Hee Lee
- Department of Health Sciences and Technology, SAIHST, 35019Sungkyunkwan University, Gangnam-gu, Seoul, Republic of Korea.,Stem Cell & Regenerative Medicine Institute, 36626Samsung Medical Center, Seoul, Republic of Korea.,Department of Neurology, Samsung Medical Center, 35019Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Alzheimer's Disease Convergence Research Center, 36626Samsung Medical Center, Seoul, Republic of Korea
| | - Hyeongseop Kim
- Stem Cell & Regenerative Medicine Institute, 36626Samsung Medical Center, Seoul, Republic of Korea.,Stem Cell Institute, ENCell Co. Ltd., Seoul, Republic of Korea
| | - Hyo Jin Son
- Stem Cell & Regenerative Medicine Institute, 36626Samsung Medical Center, Seoul, Republic of Korea.,Department of Neurology, Samsung Medical Center, 35019Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Alzheimer's Disease Convergence Research Center, 36626Samsung Medical Center, Seoul, Republic of Korea.,School of Medicine, 35019Sungkyunkwan University, Seoul, Republic of Korea
| | - Jong Wook Chang
- Stem Cell & Regenerative Medicine Institute, 36626Samsung Medical Center, Seoul, Republic of Korea.,Stem Cell Institute, ENCell Co. Ltd., Seoul, Republic of Korea
| | - Na Kyung Lee
- Stem Cell & Regenerative Medicine Institute, 36626Samsung Medical Center, Seoul, Republic of Korea.,Alzheimer's Disease Convergence Research Center, 36626Samsung Medical Center, Seoul, Republic of Korea.,School of Medicine, 35019Sungkyunkwan University, Seoul, Republic of Korea
| | - Duk L Na
- Department of Health Sciences and Technology, SAIHST, 35019Sungkyunkwan University, Gangnam-gu, Seoul, Republic of Korea.,Stem Cell & Regenerative Medicine Institute, 36626Samsung Medical Center, Seoul, Republic of Korea.,Department of Neurology, Samsung Medical Center, 35019Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Alzheimer's Disease Convergence Research Center, 36626Samsung Medical Center, Seoul, Republic of Korea.,School of Medicine, 35019Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Immunological considerations and concerns as pertinent to whole eye transplantation. Curr Opin Organ Transplant 2019; 24:726-732. [PMID: 31689262 DOI: 10.1097/mot.0000000000000713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE OF REVIEW The advent of clinical vascularized composite allotransplantation (VCA), offers hope for whole eye transplantation (WET) in patients with devastating vison loss that fails or defies current treatment options. Optic nerve regeneration and reintegration remain the overarching hurdles to WET. However, the realization of WET may indeed be limited by our lack of understanding of the singular immunological features of the eye as pertinent to graft survival and functional vision restoration in the setting of transplantation. RECENT FINDINGS Like other VCA, such as the hand or face, the eye includes multiple tissues with distinct embryonic lineage and differential antigenicity. The ultimate goal of vision restoration through WET requires optimal immune modulation of the graft for successful optic nerve regeneration. Our team is exploring barriers to our understanding of the immunology of the eye in the context of WET including the role of immune privilege and lymphatic drainage on rejection, as well as the effects ischemia, reperfusion injury and rejection on optic nerve regeneration. SUMMARY Elucidation of the unique immunological responses in the eye and adnexa after WET will provide foundational clues that will help inform therapies that prevent immune rejection without hindering optic nerve regeneration or reintegration.
Collapse
|
3
|
Abstract
Stroke is the fifth leading cause of death and disability in the United States. According to World Heart Federation, every year, 15 million people suffer from stroke worldwide out of which nearly 6 million people die and another 5 million people are disabled. Out of many organs affected after stroke, one of them is eye. Majority of the stroke victims suffer vision loss due to stroke-induced retinal damage. However, stroke-induced retinal damage and microvascular changes have not been given paramount importance in understanding stroke pathophysiology and predicting its occurrence. Retinal imaging can be a very powerful tool to understand and predict stroke. This review will highlight the importance of retinal changes in predicting occurrence of stroke, major retinal changes, the relationship between retinal diseases and stroke and moreover, molecular mechanisms delineating the stroke induced-retinal changes and therapeutics associated with it.
Collapse
Affiliation(s)
- Varun Kumar
- Department of Ophthalmology, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
4
|
Ishibazawa A, Nagaoka T, Yokota H, Ono S, Yoshida A. Low shear stress up-regulation of proinflammatory gene expression in human retinal microvascular endothelial cells. Exp Eye Res 2013; 116:308-11. [DOI: 10.1016/j.exer.2013.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 09/28/2013] [Accepted: 10/03/2013] [Indexed: 11/16/2022]
|
5
|
Ishikawa H, Caputo M, Franzese N, Weinbren NL, Slakter A, Patel M, Stahl CE, Jacotte MA, Acosta S, Franyuti G, Shinozuka K, Tajiri N, van Loveren H, Kaneko Y, Borlongan CV. Stroke in the eye of the beholder. Med Hypotheses 2013; 80:411-5. [PMID: 23395299 DOI: 10.1016/j.mehy.2012.12.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 12/29/2012] [Indexed: 01/20/2023]
Abstract
The pathophysiological changes that occur during ischemic stroke can have a profound effect on the surrounding nerve tissue. To this end, we advance the hypothesis that retinal damage can occur as a consequence of ischemic stroke in animal models. We discuss the preclinical evidence over the last 3 decades supporting this hypothesis of retinal damage following ischemic stroke. In our evaluation of the hypothesis, we highlight the animal models providing evidence of pathological and mechanistic link between ischemic stroke and retinal damage. That retinal damage is closely associated with ischemic stroke, yet remains neglected in stroke treatment regimen, provides the impetus for recognizing the treatment of retinal damage as a critical component of stroke therapy.
Collapse
Affiliation(s)
- Hiroto Ishikawa
- Department of Neurosurgery and Brain Repair, 12901 Bruce B. Downs Blvd, University of South Florida, Tampa, FL 33612, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Immunosuppressant FK506: Focusing on neuroprotective effects following brain and spinal cord injury. Life Sci 2012; 91:77-82. [DOI: 10.1016/j.lfs.2012.06.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 06/09/2012] [Accepted: 06/23/2012] [Indexed: 01/19/2023]
|
7
|
Zawadzka M, Dabrowski M, Gozdz A, Szadujkis B, Sliwa M, Lipko M, Kaminska B. Early steps of microglial activation are directly affected by neuroprotectant FK506 in both in vitro inflammation and in rat model of stroke. J Mol Med (Berl) 2012; 90:1459-71. [PMID: 22806180 PMCID: PMC3506835 DOI: 10.1007/s00109-012-0925-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 05/10/2012] [Accepted: 05/30/2012] [Indexed: 02/05/2023]
Abstract
Neuroprotective and/or neuroregenerative activity of FK506, its derivatives, and to a lesser extent cyclosporin A (CsA) in animal models of neurodegenerative diseases of different etiology have been reported. Here, we verified a hypothesis that the most likely mechanism of their neuroprotective action is inhibition of the early steps of inflammatory activation of microglia by interference with mitogen-activated protein kinase (MAPK) signaling. The effect of immunosuppressants on lipopolysaccharide (LPS)-induced changes in morphology, proliferation, and motility of rat primary microglial cultures was evaluated. FK506 and CsA directly inhibited LPS-induced microglia activation and inflammatory responses. While both drugs efficiently reduced the expression of iNOS and the release of nitric oxide, only FK506 strongly inhibited the expression of Cox-2 and secretion of the mature form of IL-1β. FK506 strongly reduced LPS-induced activation of MAPK, and its downstream signaling crucial for inflammatory responses. Comparative analysis of global gene expression in rat ischemic brains and in LPS-stimulated microglial cultures revealed many genes and signaling pathways regulated in the same way in both systems. FK506 treatment blocked a majority of genes induced by an ischemic insult in the cortex, in particular inflammatory/innate immunity and apoptosis-related genes. Microglia-mediated inflammation is considered as one of the most important components of brain injury after trauma or stroke; thus, effective and multifaceted blockade of microglial activation by FK506 has clinical relevance and potential therapeutic implications.
Collapse
Affiliation(s)
- Malgorzata Zawadzka
- Laboratory of Transcription Regulation, Department Cell Biology, Nencki Institute of Experimental Biology, 3 Pasteur Str., 02-093 Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
8
|
Yang H, Yang S, Hirooka K, Liu Y, Fujita T, Fukuda K, Nakamutra T, Itano T, Zhang J, Nishibori M, Shiraga F. Deleterious role of anti-high mobility group box 1 monoclonal antibody in retinal ischemia-reperfusion injury. Curr Eye Res 2012; 36:1037-46. [PMID: 21999229 DOI: 10.3109/02713683.2011.594201] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To investigate the effect of anti-high mobility group box 1 (HMGB1) monoclonal antibody (mAb) against ischemia-reperfusion injury in the rat retina. MATERIALS AND METHODS Retinal ischemia was induced by increasing and then maintaining intraocular pressure at 130 mmHg for 45 min. An intraperitoneal injection of anti-HMGB1 mAb was administered 30 min before ischemia. Retinal damage was evaluated at 7 days after the ischemia. Immunohistochemistry and image analysis were used to measure changes in the levels of reactive oxygen species (ROS) and the localization of anti-HMGB1 mAb. Dark-adapted full-field electroretinography (ERG) was also performed. RESULTS Pretreatment with anti-HMGB1 mAb significantly enhanced the ischemic injury of the retina. HMGB1 expression increased at 6-12 h after ischemia in the retina. After the ischemia, production of ROS was detected in retinal cells. However, pretreatment with anti-HMGB1 mAb increased the production of ROS. On the seventh postoperative day, the amplitudes of both the ERG a- and b-waves were significantly higher in the vehicle group than in the groups pretreated with anti-HMGB1 mAb. CONCLUSIONS The current in vivo model of retinal injury demonstrated that anti-HMGB1 mAb plays a large deleterious role in ischemia-reperfusion injury. In order to develop neuroprotective therapeutic strategies for acute retinal ischemic disorders, further studies on anti-HMGB1 mAb function are needed.
Collapse
Affiliation(s)
- Hongwei Yang
- Department of Ophthalmology, Kagawa University, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Tsujikawa A, Ogura Y. Evaluation of Leukocyte-Endothelial Interactions in Retinal Diseases. Ophthalmologica 2012; 227:68-79. [DOI: 10.1159/000332080] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 08/23/2011] [Indexed: 11/19/2022]
|
10
|
Ueda K, Nakahara T, Hoshino M, Mori A, Sakamoto K, Ishii K. Retinal blood vessels are damaged in a rat model of NMDA-induced retinal degeneration. Neurosci Lett 2010; 485:55-9. [DOI: 10.1016/j.neulet.2010.08.061] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 08/18/2010] [Accepted: 08/20/2010] [Indexed: 11/24/2022]
|
11
|
Rhodes JKJ, Sharkey J, Andrews PJD. The temporal expression, cellular localization, and inhibition of the chemokines MIP-2 and MCP-1 after traumatic brain injury in the rat. J Neurotrauma 2009; 26:507-25. [PMID: 19210118 DOI: 10.1089/neu.2008.0686] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The expression of the neutrophil chemokine macrophage inflammatory protein-2 (MIP-2/CXCL2) and the monocyte chemokine monocyte chemotactic protein-1 (MCP-1/CCL2) have been described in glial cells in vitro but their origin following TBI has not been established. Furthermore, little is known of the modulation of these chemokines. Chemokine expression was investigated in male Sprague-Dawley rats following moderate lateral fluid percussion injury (LFPI). At 0, 4, 8, 12, and 24 h after injury, brains were harvested and MIP-2/CXCL2 and MCP-1/CCL2 levels measured by ELISA. To investigate the inhibition of chemokine expression a second cohort of animals received dexamethasone (1-15mg/kg), FK506 (1mg/kg), or vehicle, systemically, immediately after injury. These animals were sacrificed at the time of peak chemokine expression. A third cohort of animals was also sacrificed at the time of peak chemokine expression and immunohistochemistry performed for MIP-2/CXCL2 and MCP-1/CCL2. Following LFPI, chemokines were increased in the ipsilateral hemisphere, MIP-2/CXCL2 peaking at 4 h and MCP-1/CCL2 peaking at 8-12 h post-injury. Dexamethasone significantly reduced cortical MCP-1/CCL2, but not MIP-2/CXCL2 concentrations. FK506 did not inhibit chemokine expression. In undamaged brain, chemokine expression was localized to cells with a neuronal morphology. For MIP-2/CXCL2 this was supported by double staining for the neuronal antigen NeuN. In contused tissue, increased MIP-2/CXCL2 and MCP-1/CCL2 staining was visible in cells with the morphology of degenerating neurons. MIP-2/CXCL2 and MCP-1/CCL2 are increased after injury, and neurons appear to be the source of this expression. Chemokine expression was selectively inhibited by dexamethasone. The implications of this are discussed.
Collapse
Affiliation(s)
- Jonathan K J Rhodes
- University of Edinburgh, Department of Anaesthesia, Critical Care and Pain Medicine, Western General Hospital, Edinburgh, Scotland.
| | | | | |
Collapse
|
12
|
Park CH, Kim YS, Kim YH, Choi MY, Yoo JM, Kang SS, Choi WS, Cho GJ. Calcineurin mediates AKT dephosphorylation in the ischemic rat retina. Brain Res 2008; 1234:148-57. [PMID: 18703031 DOI: 10.1016/j.brainres.2008.07.082] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 07/11/2008] [Accepted: 07/12/2008] [Indexed: 01/26/2023]
Abstract
Calcineurin (CaN) is a calcium/calmodulin-dependent protein phosphatase that has an important role in ischemia-induced apoptosis. The serine/threonine kinase, Akt, which is also known as protein kinase B, has an important role in the cell death/survival pathways. Akt is activated by its phosphorylation, which is positively regulated by phosphatidylinositol 3-kinase (PI3K) and negatively regulated by a class of protein phosphatases (PPs) in tissue. However, the relationship between CaN and Akt after transient ischemia remains unclear. In the present study, we investigated whether CaN is involved in neuronal cell apoptosis and Akt dephosphorylation that occur during ischemic injury. We examined the interdependence between CaN and Akt/protein kinase B (PKB) in the rat retina after transient ischemia. After ischemic damage, we detected changes in levels of CaN, Akt and Bad in rats in the presence or absence FK506, CaN inhibitor. Our results show that CaN cleavage reduced Akt phosphorylation at Thr308 and Ser473, and led to apoptosis via dephosphorylation of the proapoptotic Bcl-2 family member Bad. After treatment with FK506, Akt and Bad dephosphorylation was greatly reduced. The total number of TUNEL-positive neurons was reduced by intravitreal injection of FK506 after transient ischemia. These results indicate that CaN cleavage negatively regulates Akt phosphorylation and is involved in retinal cell apoptosis after transient ischemia.
Collapse
Affiliation(s)
- Chang Hwan Park
- Department of Anatomy, School of Medicine, Institute of Health Sciences, Medical Research Center for Neural Dysfunction, Gyeongsang National University, 92 Chilam-dong, Jinju, Gyeongnam 660-751, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Sha O, Kwong WH, Pang Cho EY, Wai Yew DT, Ng TB. Different neuronal toxicity of single-chain ribosome-inactivating proteins on the rat retina. Toxicon 2008; 51:45-53. [PMID: 17889920 DOI: 10.1016/j.toxicon.2007.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 08/08/2007] [Accepted: 08/09/2007] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To investigate the neurotoxicity of two structurally similar single chains of ribosome-inactivating proteins (RIPs): trichosanthin (TCS) and ricin A chain (RTA). METHODS TCS, RTA and Ricinus communis agglutinin (RCA, a multi-chain RIP for comparison) were separately injected into rat eyes. Saline was used as control. The data on cell counts, retinal thickness and histopathological scores were collected, and the TUNEL method (terminal deoxynucleotidyl transferase biotin-dUTP nick end labelling) was used to study the mode of cell death. RESULTS TCS caused distinct retinal changes at 1 nmol. Its toxic effects were most pronounced on the cells of the outer nuclear layer, less so on those of the inner nuclear layer, and little on the ganglion cells. Apoptosis was the predominant type of cell death induced by TCS. In contrast, RTA and RCA, both at 0.01 nmol, brought about acute retinal inflammation and necrosis. CONCLUSION TCS can eliminate specific retinal cells by apoptosis, while RTA and RCA cause retinitis. The B chain of type II RIPs is not obligatory for their neurotoxicity. The RIPs may be useful for creating retinal models and TCS may be useful for the chemical treatment of retinoblastoma.
Collapse
Affiliation(s)
- Ou Sha
- Department of Anatomy, Basic Medical Sciences Building, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | | | | | | | | |
Collapse
|
14
|
Thomale UW, Bender M, Casalis P, Rupprecht S, Griebenow M, Neumann K, Woiciechowsky C, Unterberg AW, Stover JF. Tacrolimus depresses local immune cell infiltration but fails to reduce cortical contusion volume in brain-injured rats. Immunobiology 2007; 212:567-76. [PMID: 17678714 DOI: 10.1016/j.imbio.2007.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 01/15/2007] [Accepted: 01/17/2007] [Indexed: 11/24/2022]
Abstract
The immunosuppressant drug tacrolimus (FK-506) failed to show an anti-edematous effect despite suppressing pro-inflammatory cytokines in cerebrospinal fluid following focal traumatic brain injury. By questioning the role of the inflammatory response as a pharmacological target, we investigated the effects of FK-506 on immune cell infiltration in brain-injured rats. Following induction of a cortical contusion, male Sprague-Dawley rats received FK-506 or physiological saline intraperitoneally. Brains were removed at 24 h, 72 h or 7 days, respectively. Frozen brain sections (7 microm) were stained immunohistologically for markers of endothelial activation (intercellular adhesion molecule-1--ICAM-1), neutrophil infiltration (His-48), and microglial and macrophage activation (Ox-6; ED-1), respectively. Immunopositive cells were counted microscopically. Contusion volume (CV) was quantified morphometrically 7 days after trauma. Inflammatory response was confined to the ipsilateral cortex and hippocampal formation, predominating in the contusion and pericontusional cortex. Strongest ICAM-1 expression coincided with sustained granulocyte accumulation at 72h which was suppressed by FK-506. Ox-6+ cells prevailing at 72 h were also significantly reduced by FK-506. ED-1+ cells reaching highest intensity at 7 days were significantly attenuated at 72 h. Cortical CV was not influenced. FK-506 significantly decreased post-traumatic local inflammation which, however, was not associated with a reduction in cortical CV. These results question the importance of post-traumatic local immune cell infiltration in the secondary growth of a cortical contusion.
Collapse
Affiliation(s)
- Ulrich W Thomale
- Department of Neurosurgery, Charité, Medical University of Berlin, Campus Virchow Medical Center, D-13353 Berlin, Germany, and University Hospital Zürich, Division of Surgical Instensive Care Medicine, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Furuichi Y, Maeda M, Matsuoka N, Mutoh S, Yanagihara T. Therapeutic time window of tacrolimus (FK506) in a nonhuman primate stroke model: Comparison with tissue plasminogen activator. Exp Neurol 2007; 204:138-46. [PMID: 17169359 DOI: 10.1016/j.expneurol.2006.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 10/01/2006] [Accepted: 10/04/2006] [Indexed: 11/28/2022]
Abstract
Tacrolimus (FK506), an immunosuppressive drug, has been shown to exert a potent neuroprotective activity when administered immediately after occlusion of the middle cerebral artery (MCA) in a nonhuman primate model of stroke. Here, we assessed the neuroprotective efficacy of tacrolimus with delayed treatment using the same model and compared with that of recombinant tissue plasminogen activator (rt-PA). Ischemic insult was induced by photochemically induced thrombotic occlusion of MCA in cynomolgus monkeys, and tacrolimus (0.2 mg/kg) and/or rt-PA (1.0 mg/kg) was intravenously administered 2 h after MCA occlusion. In another experiment, tacrolimus (0.1 mg/kg) was administered 4 h after MCA occlusion. Neurological deficits were monitored for 28 days after the ischemic insult and cerebral infarct volumes were measured with brain slices. With drug administration 2 h after the ischemic insult, tacrolimus significantly reduced neurological deficits and infarct volumes in the cerebral cortex without affecting the recanalization pattern in the MCA, however, rt-PA did not significantly improve neurological deficits or infarct volumes, even though it increased the recanalization rate of the occluded MCA. Combined treatment with tacrolimus and rt-PA exerted additional protection. Administration of tacrolimus 4 h after the ischemic insult still showed significant amelioration of neurological deficits. These results suggested that tacrolimus had a wider therapeutic time window than rt-PA in the nonhuman primate stroke model.
Collapse
Affiliation(s)
- Yasuhisa Furuichi
- Pharmacology Research Labs, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, Japan.
| | | | | | | | | |
Collapse
|
16
|
Ishikawa T, Hokama H, Katagiri Y, Goto H, Usui M. Effects of intravitreal injection of tacrolimus (FK506) in experimental uveitis. Curr Eye Res 2005; 30:93-101. [PMID: 15814467 DOI: 10.1080/02713680490904368] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE To examine the immunosuppressive and neuroprotective effects of intravitreal injection of tacrolimus in experimental uveitis. METHODS Tacrolimus (40 microg) was injected intravitreally in rabbits to examine safety. Experimental uveitis was induced in rabbits by systemic immunization with bovine serum albumin (BSA) followed by intravitreal challenge with BSA. On day 1 after BSA challenge, tacrolimus (20 or 40 microg) or betamethasone (400 microg) was injected intravitreally in one eye and balanced salt solution in the contralateral eye. The eyes were evaluated by slit-lamp biomicroscopy, electroretinography, and histopathology. RESULTS No local or systemic adverse reaction was observed in normal rabbits. In experimental uveitis, intravitreal injection of tacrolimus significantly reduced intraocular inflammation in histopathological analysis (p < 0.03). Amplitudes on the electroretinogram were restored (p < 0.01), and retinal thickness was preserved in tacrolimus-treated eyes (p < 0.03). CONCLUSIONS In experimental uveitis, intravitreal injection of tacrolimus effectively suppresses ocular inflammation and preserves retinal architecture.
Collapse
Affiliation(s)
- Tomoaki Ishikawa
- Department of Ophthalmology, Tokyo Medical University, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
17
|
Furuichi Y, Noto T, Li JY, Oku T, Ishiye M, Moriguchi A, Aramori I, Matsuoka N, Mutoh S, Yanagihara T. Multiple modes of action of tacrolimus (FK506) for neuroprotective action on ischemic damage after transient focal cerebral ischemia in rats. Brain Res 2004; 1014:120-30. [PMID: 15212998 DOI: 10.1016/j.brainres.2004.04.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2004] [Indexed: 01/21/2023]
Abstract
While the immunosuppressant tacrolimus (FK506) is known to be neuroprotective following cerebral ischemia, the mechanisms underlying its neuroprotective properties are not fully understood. To determine the mode of action by which tacrolimus ameliorates neurodegeneration after transient focal ischemia, we therefore evaluated the effect of tacrolimus on DNA damage, release of cytochrome c, activation of microglia and infiltration of neutrophils following a 60-min occlusion of the middle cerebral artery (MCA) in rats. In this model, cortical brain damage gradually expanded until 24 h after reperfusion, whereas brain damage in the caudate putamen was fully developed within 5 h. Tacrolimus (1 mg/kg) administered immediately after MCA occlusion significantly reduced ischemic damage in the cerebral cortex, but not in the caudate putamen. Tacrolimus decreased both apoptotic and necrotic cell death at 24 h and reduced the number of cytochrome c immunoreactive cells at 8 h after reperfusion in the ischemic penumbra in the cerebral cortex. In contrast, tacrolimus did not show significant neuroprotection for necrotic cell death and reduction of cytochrome c immunoreactive cells in the caudate putamen. Tacrolimus also significantly decreased microglial activation at 8 h and inflammatory markers (cytokine-induced neutrophil chemoattractant and myeloperoxidase [MPO] activity) at 24 h after reperfusion in the ischemic cortex but not in the caudate putamen. These results collectively suggest that tacrolimus ameliorates the gradually expanded brain damage by inhibiting both apoptotic and necrotic cell death, as well as suppressing inflammatory reactions.
Collapse
Affiliation(s)
- Yasuhisa Furuichi
- Medicinal Biology Research Laboratories, Fujisawa Pharmaceutical Co. Ltd, 2-1-6, Kashima, Osaka 532-8514, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Furuichi Y, Maeda M, Moriguchi A, Sawamoto T, Kawamura A, Matsuoka N, Mutoh S, Yanagihara T. Tacrolimus, a potential neuroprotective agent, ameliorates ischemic brain damage and neurologic deficits after focal cerebral ischemia in nonhuman primates. J Cereb Blood Flow Metab 2003; 23:1183-94. [PMID: 14526229 DOI: 10.1097/01.wcb.0000088761.02615.eb] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Tacrolimus (FK506), an immunosuppressive drug, is known to have potent neuroprotective activity and attenuate cerebral infarction in experimental models of stroke. Here we assess the neuroprotective efficacy of tacrolimus in a nonhuman primate model of stroke, photochemically induced thrombotic occlusion of the middle cerebral artery (MCA) in cynomolgus monkeys. In the first experiment, tacrolimus (0.01, 0.032, or 0.1 mg/kg) was intravenously administered immediately after MCA occlusion, and neurologic deficits and cerebral infarction volumes were assessed 24 hours after the ischemic insult. Tacrolimus dose-dependently reduced neurologic deficits and infarction volume in the cerebral cortex, with statistically significant amelioration of neurologic deficits at 0.032 and 0.1 mg/kg and significant reduction of infarction at 0.1 mg/kg. In the second experiment, the long-term efficacy of tacrolimus on neurologic deficits and cerebral infarction was assessed. Vehicle-treated monkeys exhibited persistent and severe deficits in motor and sensory function for up to 28 days. A single intravenous bolus injection of tacrolimus (0.1 or 0.2 mg/kg) produced long-lasting amelioration of neurologic deficits and significant reduction of infarction volume. In conclusion, we have provided compelling evidence that a single dose of tacrolimus not only reduces brain infarction but also ameliorates long-term neurologic deficits in a nonhuman primate model of stroke, strengthening the view that tacrolimus might be beneficial in treating stroke patients.
Collapse
Affiliation(s)
- Yasuhisa Furuichi
- Medicinal Biology Research Laboratories, Fujisawa Pharmaceutical Co. Ltd., Osaka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Maeda M, Furuichi Y, Ueyama N, Moriguchi A, Satoh N, Matsuoka N, Goto T, Yanagihara T. A combined treatment with tacrolimus (FK506) and recombinant tissue plasminogen activator for thrombotic focal cerebral ischemia in rats: increased neuroprotective efficacy and extended therapeutic time window. J Cereb Blood Flow Metab 2002; 22:1205-11. [PMID: 12368659 DOI: 10.1097/01.wcb.0000037993.34930.72] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The authors evaluated the therapeutic efficacy of tacrolimus (FK506), administered alone or in combination with recombinant tissue plasminogen activator (t-PA), on brain infarction following thrombotic middle cerebral artery (MCA) occlusion. Thrombotic occlusion of the MCA was induced by a photochemical reaction between rose bengal and green light in Sprague-Dawley rats, and the volume of ischemic brain damage was determined 24 hours later. Intravenous administration of tacrolimus or t-PA dose-dependently reduced the volume of ischemic brain infarction, whether administered immediately or 1 hour after MCA occlusion. When tacrolimus or t-PA was administered 2 hours after MCA occlusion, each drug showed a tendency to reduce ischemic brain damage. However, combined treatment with both drugs resulted in a significant reduction in ischemic brain damage. On administration 3 hours after MCA occlusion, tacrolimus alone showed no effect, and t-PA tended to worsen ischemic brain damage. However, the combined treatment with both drugs not only ameliorated the worsening trend seen with t-PA alone, but also tended to reduce ischemic brain damage. In conclusion, tacrolimus, used in combination with t-PA, augmented therapeutic efficacy on brain damage associated with focal ischemia and extended the therapeutic time window compared to single-drug treatments.
Collapse
Affiliation(s)
- Masashi Maeda
- Medicinal Biology Research Laboratories, Fujisawa Pharmaceutical Co., Ltd., Kashima, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Ebisu T, Katsuta K, Fujikawa A, Aoki I, Umeda M, Naruse S, Tanaka C. Early and delayed neuroprotective effects of FK506 on experimental focal ischemia quantitatively assessed by diffusion-weighted MRI. Magn Reson Imaging 2001; 19:153-60. [PMID: 11358652 DOI: 10.1016/s0730-725x(01)00233-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The immunosuppressive drug FK506 (tacrolimus) has been reported to be a powerful neuroprotective agent in the focal ischemia of animals. However, no report has been published concerning neuroprotective effect of this compound on the morphology in superacute stage. The separate analysis between early and delayed effects of FK506 on the morphology may be helpful in the study of the compound's mechanism of action which is still unknown. The goal of this study was to determine early and delayed effects of pharmacological treatment with FK506 in permanent MCA occlusion using magnetic resonance imaging (MRI). Nineteen rats were subjected to permanent MCA occlusion, and given either intravenous injection of placebo or 1 mg/kg FK506 immediately after occlusion. DWI and T(2)-weighted MRI were performed 3 and 24 h after MCA occlusion, and postmortem histological analysis was also performed. FK506 drastically reduced the ischemic damage in 3-h apparent diffusion coefficient (ADC) map. This is the first report to demonstrate the neuroprotective effects of FK506 on focal cerebral ischemia in superacute stage. In addition, postmortem ischemic damage tended to be smaller than ischemic area indicated by 3-h ADC map in the FK506 group, whereas there was an excellent equality between them in the placebo group, suggesting the possible effect of FK506 on the later ischemic period. Our findings provide direct evidence for the neuroprotective effect of FK506 on ischemic cell damage in both early stage and possibly later stage.
Collapse
Affiliation(s)
- T Ebisu
- Department of Neurosurgery, Meiji University of Oriental Medicine, Kyoto, Japan.
| | | | | | | | | | | | | |
Collapse
|
21
|
Lang-Lazdunski L, Heurteaux C, Dupont H, Rouelle D, Widmann C, Mantz J. The effects of FK506 on neurologic and histopathologic outcome after transient spinal cord ischemia induced by aortic cross-clamping in rats. Anesth Analg 2001; 92:1237-44. [PMID: 11323353 DOI: 10.1097/00000539-200105000-00029] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
UNLABELLED Spinal cord injury is a devastating complication of thoracoabdominal aortic surgery. We investigated the effect of the immunosuppressant FK506, a macrolide antibiotic demonstrated to have neuroprotective effects in cerebral ischemia models, in a rat model of transient spinal cord ischemia. Spinal cord ischemia was induced in anesthetized rats by using direct aortic arch plus left subclavian artery cross-clamping through a limited thoracotomy. Experimental groups were as follows: sham-operation; control, receiving only vehicle; FK506 A, receiving FK506 (1 mg/kg IV) before clamping; and FK506 B, receiving FK506 (1 mg/kg IV) at the onset of reperfusion. Neurologic status was assessed at 24 h and then daily up to 96 h with a 0 to 6 scale (0, normal function; 6, severe paraplegia). Rats were randomly killed at 24, 48, or 96 h, and spinal cords were harvested for histopathology. Physiologic variables did not differ significantly among experimental groups. All control rats suffered severe and definitive paraplegia. FK506-treated rats had significantly better neurologic outcome compared with control. Histopathologic analysis disclosed severe injury in the lumbar gray matter of all control rats, whereas most FK506-treated rats had less injury. These data suggest that FK506 can improve neurologic recovery and attenuate spinal cord injury induced by transient thoracic aortic cross-clamping. IMPLICATIONS A single dose-injection of the immunosuppressant FK506 significantly improved neurologic outcome and attenuated spinal cord injury induced by transient thoracic aortic cross-clamping in the rat.
Collapse
Affiliation(s)
- L Lang-Lazdunski
- Department of Cardiovascular Surgery, Bichat University Hospital and Xavier Bichat Medical University, Paris, France.
| | | | | | | | | | | |
Collapse
|
22
|
Stover JF, Schöning B, Sakowitz OW, Woiciechowsky C, Unterberg AW. Effects of tacrolimus on hemispheric water content and cerebrospinal fluid levels of glutamate, hypoxanthine, interleukin-6, and tumor necrosis factor-α following controlled cortical impact injury in rats. J Neurosurg 2001; 94:782-7. [PMID: 11354410 DOI: 10.3171/jns.2001.94.5.0782] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object. Disturbance of calcium homeostasis contributes to evolving tissue damage and energetic impairment following traumatic brain injury (TBI). Calcium-mediated activation of calcineurin results in production of tissue-damaging nitric oxide and free oxygen radicals. Inhibition of calcineurin induced by the immunosuppressant tacrolimus (FK506) has been shown to reduce structural and functional damage after ischemia. The aims of the present study were to investigate time- and dose-dependent short-term antiedematous effects of tacrolimus following TBI.
Methods. A left temporoparietal contusion (controlled cortical impact injury [CCII]) was induced in 51 male Sprague—Dawley rats. Tacrolimus (1 or 3 mg/kg body weight) was administered by a single intraperitoneal injection at 5 minutes, 30 minutes, or 4 hours after CCII occurred. Control rats received physiological saline. Water contents of traumatized and nontraumatized hemispheres, as well as cerebrospinal fluid (CSF) levels of mediators reflecting tissue damage (the proinflammatory cytokines interleukin [IL]-6 and tumor necrosis factor [TNF]—α, the excitotoxin glutamate, and the adenosine triphosphate—degradation product hypoxanthine), were determined 24 hours after trauma.
Although CSF levels of IL-6 and TNFα were completely suppressed by tacrolimus at all time points and at both concentrations, CSF levels of glutamate and hypoxanthine, as well as edema formation, were only marginally influenced. Significant reduction of cerebral water content was confined to nontraumatized hemispheres. In addition, the higher dose of tacrolimus failed to exert significant antiedematous effects on traumatized hemispheres.
Conclusions. Under the present study design, the potency of tacrolimus in reducing edema formation following CCII seems limited. However, its immunosuppressive effects could be of value in influencing the posttraumatic inflammatory response known to aggravate tissue damage.
Collapse
Affiliation(s)
- J F Stover
- Department of Neurosurgery, Charité-Virchow Medical Center, Berlin, Germany.
| | | | | | | | | |
Collapse
|
23
|
McCarter JF, McGregor AL, Jones PA, Sharkey J. FK 506 protects brain tissue in animal models of stroke. Transplant Proc 2001; 33:2390-2. [PMID: 11377571 DOI: 10.1016/s0041-1345(01)02033-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- J F McCarter
- Fujisawa Institute of Neuroscience, University of Edinburgh, Edinburgh, Scotland, UK
| | | | | | | |
Collapse
|
24
|
Peeling J, Yan HJ, Corbett D, Xue M, Del Bigio MR. Effect of FK-506 on inflammation and behavioral outcome following intracerebral hemorrhage in rat. Exp Neurol 2001; 167:341-7. [PMID: 11161622 DOI: 10.1006/exnr.2000.7564] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Beginning 15 min after induction of intracerebral hemorrhage (ICH) by intrastriatal administration of collagenase, rats were treated intramuscularly with FK-506 (3 mg/kg) or with vehicle. Treatment was repeated daily for 7 days. MR imaging 1, 7, and 28 days post-ICH showed that treatment did not affect hematoma size or its subsequent resolution. Two days post-ICH, neutrophil infiltration around the hematoma was decreased in the FK-506-treated rats, as was the number of TUNEL-positive cells at the edge of the hematoma and in the peripheral region. The decreased inflammatory response was accompanied by functional improvement in the treated rats. The neurological deficit induced by the ICH (beam walking ability, postural reflex, spontaneous circling) was significantly decreased from 3 to 21 days post-ICH by treatment with FK-506. Skilled use of the forelimb ipsilateral to the ICH was improved and sensory neglect of the same limb was decreased 8-9 weeks post-ICH in rats treated with FK-506. However, neuronal loss assessed 9 weeks post-ICH was not different in the treated and untreated rats.
Collapse
Affiliation(s)
- J Peeling
- Department of Chemistry, The University of Manitoba, Winnipeg, Manitoba, R3E 0W3, Canada
| | | | | | | | | |
Collapse
|
25
|
Matsubara A, Tomida K, Matsuda Y, Tamai K, Tashita A, Jomori T, Tsujikawa A, Ogura Y. Protective effects of selectin ligands/inhibitor (SKK-60060) against retinal ischemia-reperfusion injury. Exp Eye Res 2000; 71:283-93. [PMID: 10973737 DOI: 10.1006/exer.2000.0880] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A newly developed selSep;71(3)28 to block P- and L-selectins in vitro. We examined its inhibition of leukocyte-endothelial interactions in vivo against retinal ischemia-reperfusion injury and protective effects on ischemia-induced retinal damage. Retinal ischemia was induced by temporary ligation of the optic sheath for 60 min in anesthetized pigmented rats. SKK-60060 was administered 5 min before reperfusion and 4, 12, 24 and 48 hr thereafter, and leukocyte dynamics in the retinal microcirculation were evaluated using acridine orange digital fluorography. After 7 days of reperfusion, ischemia-induced retinal damage was also assessed histologically.SKK-60060 treatment suppressed leukocyte rolling during the reperfusion period; their numbers in the SKK-60060-treated rats were reduced by 67.0% (P < 0. 01) and 53.2% (P < 0.01) at 12 and 24 hr, respectively. The subsequent leukocyte accumulation was also inhibited in SKK-60060-treated rats; accumulated leukocytes in the SKK-60060-treated rats were reduced by 72.8% (P < 0.01) and 53.4% (P < 0.01) at 12 and 24 hr, respectively. Retinal venous vasodilation in SKK-60060-treated rats were significantly suppressed at each time point (P < 0.05). Histological examination demonstrated protective effects of SKK-60060 on ischemia-induced retinal damage, which were more substantial in the inner retina (P < 0.01).SKK-60060 significantly inhibits the leukocyte rolling along the major retinal veins and their accumulation during the reperfusion period. These results suggest therapeutic potential of SKK-60060 for ischemia-reperfusion injury.
Collapse
Affiliation(s)
- A Matsubara
- Department of Ophthalmology, Nagoya City University Medical School, Nagoya, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Tsujikawa A, Kiryu J, Nonaka A, Yamashiro K, Nishiwaki H, Honda Y, Ogura Y. Leukocyte-endothelial cell interactions in diabetic retina after transient retinal ischemia. Am J Physiol Regul Integr Comp Physiol 2000; 279:R980-9. [PMID: 10956257 DOI: 10.1152/ajpregu.2000.279.3.r980] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetes is associated with increased neural damage after transient cerebral ischemia. Recently, leukocytes, which are thought to play a central role in ischemia-reperfusion injury, have been suggested to be involved in exacerbated damage after transient ischemia in diabetic animals. The present study was designed to clarify whether the anticipated worse outcome after transient cerebral ischemia in diabetic animals was due to augmented leukocyte-mediated neural injury. Using rats with streptozotocin-induced diabetes of 4-wk duration, we investigated leukocyte-endothelial cell interactions during reperfusion after a transient 60-min period of retinal ischemia. Unexpectedly, postischemic diabetic retina showed no active leukocyte-endothelial cell interactions during reperfusion. The maximal numbers of rolling and accumulating leukocytes in diabetic retina were reduced by 73.6 and 41.2%, respectively, compared with those in nondiabetic rats. In addition, neither preischemic insulin treatment of diabetic rats nor preischemic glucose infusion of nondiabetic rats significantly influenced leukocyte-endothelial cell interactions during reperfusion. The present study demonstrated that high blood glucose concentration before induction of ischemia did not exacerbate leukocyte involvement in the postischemic retinal injury. Furthermore, diabetic retina showed suppressed leukocyte-endothelial cells interactions after transient ischemia, perhaps due to an adaptive mechanism that developed during the period of induced diabetes.
Collapse
Affiliation(s)
- A Tsujikawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| | | | | | | | | | | | | |
Collapse
|