1
|
Xu J, Zhou Y, Yan C, Wang X, Lou J, Luo Y, Gao S, Wang J, Wu L, Gao X, Shao A. Neurosteroids: A novel promise for the treatment of stroke and post-stroke complications. J Neurochem 2021; 160:113-127. [PMID: 34482541 DOI: 10.1111/jnc.15503] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 01/14/2023]
Abstract
Stroke is the primary reason for death and disability worldwide, with few treatment strategies to date. Neurosteroids, which are natural molecules in the brain, have aroused great interest in the field of stroke. Neurosteroids are a kind of steroid that acts on the nervous system, and are synthesized in the mitochondria of neurons or glial cells using cholesterol or other steroidal precursors. Neurosteroids mainly include estrogen, progesterone (PROG), allopregnanolone, dehydroepiandrosterone (DHEA), and vitamin D (VD). Most of the preclinical studies have confirmed that neurosteroids can decrease the risk of stroke, and improve stroke outcomes. In the meantime, neurosteroids have been shown to have a positive therapeutic significance in some post-stroke complications, such as epilepsy, depression, anxiety, cardiac complications, movement disorders, and post-stroke pain. In this review, we report the historical background, modulatory mechanisms of neurosteroids in stroke and post-stroke complications, and emphasize on the application prospect of neurosteroids in stroke therapy.
Collapse
Affiliation(s)
- Jiawei Xu
- The First Affiliated Hospital of Zhejiang, Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Caochong Yan
- The Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianyao Lou
- Department of General Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi Luo
- The Second Affiliated Hospital of Zhejiang University School of Medicine (Changxing Branch), Changxing, Huzhou, Zhejiang, China
| | - Shiqi Gao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junjie Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liang Wu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangfu Gao
- The First Affiliated Hospital of Zhejiang, Chinese Medical University, Hangzhou, Zhejiang, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Belelli D, Hogenkamp D, Gee KW, Lambert JJ. Realising the therapeutic potential of neuroactive steroid modulators of the GABA A receptor. Neurobiol Stress 2019; 12:100207. [PMID: 32435660 PMCID: PMC7231973 DOI: 10.1016/j.ynstr.2019.100207] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/19/2019] [Indexed: 01/27/2023] Open
Abstract
In the 1980s particular endogenous metabolites of progesterone and of deoxycorticosterone were revealed to be potent, efficacious, positive allosteric modulators (PAMs) of the GABAA receptor (GABAAR). These reports were followed by the discovery that such steroids may be synthesised not only in peripheral endocrine glands, but locally in the central nervous system (CNS), to potentially act as paracrine, or autocrine "neurosteroid" messengers, thereby fine tuning neuronal inhibition. These discoveries triggered enthusiasm to elucidate the physiological role of such neurosteroids and explore whether their levels may be perturbed in particular psychiatric and neurological disorders. In preclinical studies the GABAAR-active steroids were shown to exhibit anxiolytic, anticonvulsant, analgesic and sedative properties and at relatively high doses to induce a state of general anaesthesia. Collectively, these findings encouraged efforts to investigate the therapeutic potential of neurosteroids and related synthetic analogues. However, following over 30 years of investigation, realising their possible medical potential has proved challenging. The recent FDA approval for the natural neurosteroid allopregnanolone (brexanolone) to treat postpartum depression (PPD) should trigger renewed enthusiasm for neurosteroid research. Here we focus on the influence of neuroactive steroids on GABA-ergic signalling and on the challenges faced in developing such steroids as anaesthetics, sedatives, analgesics, anticonvulsants, antidepressants and as treatments for neurodegenerative disorders.
Collapse
Affiliation(s)
- Delia Belelli
- Systems Medicine, Neuroscience, Mail Box 6, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, United Kingdom
| | - Derk Hogenkamp
- Department of Pharmacology, 110C Med Surge1, Mail Code 4625, University of California, Irvine, School of Medicine, Irvine, CA, 92697, USA
| | - Kelvin W Gee
- Department of Pharmacology, 110C Med Surge1, Mail Code 4625, University of California, Irvine, School of Medicine, Irvine, CA, 92697, USA
| | - Jeremy J Lambert
- Systems Medicine, Neuroscience, Mail Box 6, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, United Kingdom
| |
Collapse
|
3
|
Yawno T, Miller SL, Bennet L, Wong F, Hirst JJ, Fahey M, Walker DW. Ganaxolone: A New Treatment for Neonatal Seizures. Front Cell Neurosci 2017; 11:246. [PMID: 28878622 PMCID: PMC5572234 DOI: 10.3389/fncel.2017.00246] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/02/2017] [Indexed: 12/11/2022] Open
Abstract
Neonatal seizures are amongst the most common neurologic conditions managed by a neonatal care service. Seizures can exacerbate existing brain injury, induce “de novo” injury, and are associated with neurodevelopmental disabilities in post-neonatal life. In this mini-review, we present evidence in support of the use of ganaxolone, a GABAA agonist neurosteroid, as a novel neonatal therapy. We discuss evidence that ganaxolone can provide both seizure control and neuroprotection with a high safety profile when administered early following birth-related hypoxia, and show evidence that it is likely to prevent or reduce the incidence of the enduring disabilities associated with preterm birth, cerebral palsy, and epilepsy. We suggest that ganaxolone is an ideal anti-seizure treatment because it can be safely used prospectively, with minimal or no adverse effects on the neonatal brain.
Collapse
Affiliation(s)
- Tamara Yawno
- Ritchie Centre, Hudson Institute of Medical ResearchClayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash UniversityClayton, VIC, Australia
| | - Suzie L Miller
- Ritchie Centre, Hudson Institute of Medical ResearchClayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash UniversityClayton, VIC, Australia
| | - Laura Bennet
- Department of Physiology, The University of AucklandAuckland, New Zealand
| | - Flora Wong
- Ritchie Centre, Hudson Institute of Medical ResearchClayton, VIC, Australia.,Department of Paediatrics, Monash UniversityClayton, VIC, Australia
| | - Jonathan J Hirst
- School of Biomedical Sciences and Pharmacy, University of NewcastleCallaghan, NSW, Australia
| | - Michael Fahey
- Department of Paediatrics, Monash UniversityClayton, VIC, Australia
| | - David W Walker
- Ritchie Centre, Hudson Institute of Medical ResearchClayton, VIC, Australia.,School of Health and Biomedical Sciences, RMIT UniversityBundoora, VIC, Australia
| |
Collapse
|
4
|
Frantzias J, Sena ES, Macleod MR, Al-Shahi Salman R. Treatment of intracerebral hemorrhage in animal models: meta-analysis. Ann Neurol 2011; 69:389-99. [PMID: 21387381 DOI: 10.1002/ana.22243] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Interventions that improve functional outcome after acute intracerebral hemorrhage (ICH) in animals might benefit humans. Therefore, we systematically reviewed the literature to find studies of nonsurgical treatments tested in animal models of ICH. METHODS In July 2009 we searched Ovid Medline (from 1950), Embase (from 1980), and ISI Web of Knowledge (from 1969) for controlled animal studies of nonsurgical interventions given after the induction of ICH that reported neurobehavioral outcome. We assessed study quality and performed meta-analysis using a weighted mean difference random effects model. RESULTS Of 13,343 publications, 88 controlled studies described the effects of 64 different medical interventions (given a median of 2 hours after ICH induction) on 38 different neurobehavioral scales in 2,616 treated or control animals (median 14 rodents per study). Twenty-seven (31%) studies randomized treatment allocation, and 7 (8%) reported allocation concealment; these studies had significantly smaller effect sizes than those without these attributes (p < 0.001). Of 64 interventions stem cells, calcium channel blockers, anti-inflammatory drugs, iron chelators, and estrogens improved both structural outcomes and neurobehavioral scores in >1 study. Meta-regression revealed that together, structural outcome and the intervention used accounted for 65% of the observed heterogeneity in neurobehavioral score (p < 0.001, adjusted r(2) = 0.65). INTERPRETATION Further animal studies of the interventions that we found to improve both functional and structural outcomes in animals, using better experimental designs, could target efforts to translate effective treatments for ICH in animals into randomized controlled trials in humans.
Collapse
Affiliation(s)
- Joseph Frantzias
- Division of Clinical Neurosciences, Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom
| | | | | | | |
Collapse
|
5
|
Lapchak PA, Wu Q. Vascular Dysfunction in Brain Hemorrhage: Translational Pathways to Developing New Treatments from Old Targets. JOURNAL OF NEUROLOGY & NEUROPHYSIOLOGY 2011; 2011:S1-e001. [PMID: 22400125 PMCID: PMC3293216 DOI: 10.4172/2155-9562.s1-e001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hemorrhagic stroke which is a form of stroke that affects 20% of all stroke patients is a devastating condition for which new treatments must be developed. Current treatment methods are quite insufficient to reduce long term morbidity and high mortality rate, up to 50%, associated with bleeding into critical brain structures, into ventricular spaces and within the subarachnoid space. During the last 10-15 years, significant advances in the understanding of important mechanisms that contribute to cell death and clinical deficits have been made. The most important observations revolve around a key set of basic mechanisms that are altered in brain bleeding models, including activation of membrane metalloproteinases, oxidative stress and both inflammatory and coagulation pathways. Moreover, it is now becoming apparent that brain hemorrhage can activate the ischemic stroke cascade in neurons, glial cells and the vascular compartment. The activation of multiple pathways allows comes the opportunity to intervene pharmacologically using monotherapy or combination therapy. Ultimately, combination therapy or pleiotropic compounds with multi-target activities should prove to be more efficacious than any single therapy alone. This article provides a comprehensive look at possible targets for small molecule intervention as well as some new approaches that result in metabolic down-regulation or inhibition of multiple pathways simultaneously.
Collapse
Affiliation(s)
- Paul A. Lapchak
- Director of Translational Research, Cedars-Sinai Medical Center, Department of Neurology, Davis Research Building, D- 2091, 110 N, George Burns Road, Los Angeles, CA 90048 USA
| | - Qiang Wu
- Project Scientist, Cedars-Sinai Medical Center, Department of Neurology, Davis Research Building, D-2094E, 110 N. George Burns Road, Los Angeles, CA 90048 USA
| |
Collapse
|
6
|
Lapchak PA, Araujo DM. Advances in hemorrhagic stroke therapy: conventional and novel approaches. Expert Opin Emerg Drugs 2007; 12:389-406. [PMID: 17874968 DOI: 10.1517/14728214.12.3.389] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Treatments for spontaneous intracerebral, thrombolytic-induced and intraventricular hemorrhages (IVH) are still at the preclinical or early clinical investigational stages. There has been some renewed interest in the use of surgical evacuation surgery or thrombolytics to remove hematomas, but these techniques can be used only for specific types of brain bleeding. The STICH (Surgical Trial in Intracerebral Haemorrhage) clinical trials should provide some insight into the potential for such techniques to counteract hematoma-induced damage and subsequently, morbidity and mortality. More recently, clinical trials (ATACH [Antihypertensive Treatment in Acute Cerebral Hemorrhage] and INTERACT [Intensive Blood Pressure Reduction in Acute Cerebral Hemorrhage Trial]) have begun testing whether or not regulating blood pressure affects the well-being of hemorrhage patients, but the findings thus far have not conclusively demonstrated a positive result. More promising trials, such as the early stage CHANT (Cerebral Hemorrhagic And NXY-059 Treatment) and the late stage FAST (Factor VIIa for Acute Hemorrhagic Stroke Treatment), have addressed whether or not manipulating oxidative stress and components of the blood coagulation cascade can achieve an improved prognosis following spontaneous hemorrhages. However, CHANT was halted prematurely because although it showed that the spin trap agent NXY-059 was safe, it also demonstrated that the drug was ineffective in treating acute ischemic stroke. In addition, the recombinant activated factor VII FAST trial recently concluded with only modestly positive results. Despite a beneficial effect on the primary end point of reducing hemorrhage volume, controlling the coagulation cascade with recombinant factor VIIa did not decrease the mortality rate. Consequently, Novo Nordisk has abandoned further development of the drug for the treatment of intracerebral hemorrhaging. Even though progress in hemorrhage therapy that successfully reduces the escalating morbidity and mortality rate associated with brain bleeding is slow, perseverance and applied translational drug development will eventually be productive. The urgent need for such therapy becomes more evident in light of concerns related to uncontrolled high blood pressure in the general population, increased use of blood thinners by the elderly (e.g., warfarin) and thrombolytics by acute ischemic stroke patients, respectively. The future of drug development for hemorrhage may require a multifaceted approach, such as combining drugs with diverse mechanisms of action. Because of the substantial benefit of factor VIIa in reducing hemorrhage volume, it should be considered as a prime drug candidate included in combination therapy as an off-label use if the FAST trial proves that the risk of thromboembolic events is not increased with drug administration. Other promising drugs that may be considered in combination include uncompetitive NMDA receptor antagonists (such as memantine), antioxidants, metalloprotease inhibitors, statins and erythropoietin analogs, all of which have been shown to reduce hemorrhage and behavioral deficits in one or more animal models.
Collapse
Affiliation(s)
- Paul A Lapchak
- University of California San Diego, Department of Neuroscience, MTF 316, 9500 Gilman Drive, La Jolla, CA 92093-0624, USA.
| | | |
Collapse
|
7
|
Abstract
After intracerebral hemorrhage (ICH), many changes of gene transcription occur that may be important because they will contribute to understanding mechanisms of injury and recovery. Therefore, gene expression was assessed using Affymetrix microarrays in the striatum and the overlying cortex at 24 h after intracranial infusions of blood into the striatum of adult rats. Intracerebral hemorrhage regulated 369 of 8,740 transcripts as compared with saline-injected controls, with 104 regulated genes shared by the striatum and cortex. There were 108 upregulated and 126 downregulated genes in striatum, and 170 upregulated and 69 downregulated genes in the cortex. Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) confirmed upregulation of IL-1-beta, Lipcortin 1 (annexin) and metallothionein 1,2, and downregulation of potassium voltage-gated channel, shaker-related subfamily, beta member 2 (Kcnab2). Of the functional groups of genes modulated by ICH, many metabolism and signal-transduction-related genes decreased in striatum but increased in adjacent cortex. In contrast, most enzyme, cytokine, chemokine, and immune response genes were upregulated in both striatum and in the cortex after ICH, likely in response to foreign proteins from the blood. A number of these genes may contribute to brain edema and cellular apoptosis caused by ICH. In addition, downregulation of growth factor pathways and the phosphatidylinositol 3-kinase (PI3K)/Akt pathway could also contribute to perihematoma cell death/apoptosis. Intracerebral hemorrhage-related downregulation of GABA-related genes and potassium channels might contribute to perihematoma cellular excitability and increased risk of post-ICH seizures. These genomic responses to ICH potentially provide new therapeutic targets for treatment.
Collapse
Affiliation(s)
- Aigang Lu
- MIND Institute and Department of Neurology, University of California at Davis, Sacramento, California 95817, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Lapchak PA. The neuroactive steroid 3-alpha-ol-5-beta-pregnan-20-one hemisuccinate, a selective NMDA receptor antagonist improves behavioral performance following spinal cord ischemia. Brain Res 2004; 997:152-8. [PMID: 14706867 DOI: 10.1016/j.brainres.2003.10.047] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The initial response to an ischemic event is the rapid release of excitatory amino acid's followed by the activation of the "ischemic cascade". It has been suggested that neurosteroids, which act as negative modulators of excitatory amino acid receptors, may improve behavioral functions and promote neuronal survival following ischemia. The present study evaluated the pharmacological effects of 3-alpha-ol-5-beta-pregnan-20-one hemisuccinate (ABHS), a neurosteroid that inhibits excitatory amino acid receptor function, in a rabbit reversible spinal cord ischemia model (RSCIM). ABHS was administered (25 mg/kg) intravenously (i.v.) 5 or 30 min following the start of occlusion to groups of rabbits exposed to ischemia induced by temporary occlusion of the infrarenal aorta. The group P50 represents the duration of ischemia (min) associated with a 50% probability of resultant permanent paraplegia. Quantal analysis indicated that the P50 of the control group was 23.44 +/- 4.32 min. Using the RSCIM, neuroprotection is observed if a drug significantly prolongs the P50 compared to the control group. Treatment with ABHS (25 mg/kg) 5 min post-occlusion significantly (p < 0.05) prolonged the P50 of the group to 49.18 +/- 10.44 min, an increase of 110%. The effect of ABHS was not durable following a single injection since a significant difference between the control and ABHS-treated groups was not measurable at 48 h. However, if ABHS was injected 5 min following the start of ischemia and again 24 h after ischemia, there was a persistent effect of the drug at 48 h. Moreover, ABHS also increased the tolerance to ischemia if administered 30 min following the start of occlusion. Our results suggest that neuroactive steroids such as ABHS, which are selective NMDA receptor antagonists, may have substantial therapeutic benefit for the treatment of ischemic injuries including spinal cord neurodegeneration and stroke.
Collapse
Affiliation(s)
- P A Lapchak
- Department of Neuroscience, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0624, USA.
| |
Collapse
|
9
|
Green AR, Hainsworth AH, Jackson DM. GABA potentiation: a logical pharmacological approach for the treatment of acute ischaemic stroke. Neuropharmacology 2000; 39:1483-94. [PMID: 10854894 DOI: 10.1016/s0028-3908(99)00233-6] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
It has been shown that enhancing the function of the major inhibitory neurotransmitter GABA decreases glutamatergic activity in the brain. Since increased glutamatergic activity is the major primary event that results in cell death following an acute hypoxic-ischaemic stroke, GABAmimetic drugs might therefore be expected to be neuroprotective. This review examines the evidence that GABAergic function is acutely depressed following an ischaemic insult, and also reviews the data that suggest that increasing cerebral GABA concentration has a neuroprotective effect, as does the administration of some (but not all) GABAmimetic agents. The GABA uptake inhibitor CI-966, the GABA(A) agonist muscimol and the GABA(A)mimetic clomethiazole have all been shown to be neuroprotective in animal models of stroke when given after the ischaemic insult. In contrast, benzodiazepines and particularly barbiturates, although potent GABA(A) potentiators, have shown little promise as neuroprotectants. The diversity of GABA(A) receptor subtypes and the in vivo efficacy of certain GABA(A) receptor ligands in animal models of stroke suggests that GABAmimetic drugs are an undervalued approach to stroke therapy.
Collapse
Affiliation(s)
- A R Green
- AstraZeneca R&D Charnwood, Bakewell Rd, LE11 5RH, Loughborough, UK.
| | | | | |
Collapse
|