1
|
Martin P, Gurevich DB. Macrophage regulation of angiogenesis in health and disease. Semin Cell Dev Biol 2021; 119:101-110. [PMID: 34330619 DOI: 10.1016/j.semcdb.2021.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/24/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022]
Abstract
Macrophages are primarily known as phagocytic innate immune cells, but are, in fact, highly dynamic multi-taskers that interact with many different tissue types and have regulatory roles in development, homeostasis, tissue repair, and disease. In all of these scenarios angiogenesis is pivotal and macrophages appear to play a key role in guiding both blood vessel sprouting and remodelling wherever that occurs. Recent studies have explored these processes in a diverse range of models utilising the complementary strengths of rodent, fish and tissue culture studies to unravel the mechanisms underlying these interactions and regulatory functions. Here we discuss how macrophages regulate angiogenesis and its resolution as embryonic tissues grow, as well as their parallel and different functions in repairing wounds and in pathologies, with a focus on chronic wounds and cancer.
Collapse
Affiliation(s)
- Paul Martin
- School of Biochemistry, Biomedical Sciences, University of Bristol, Bristol BS8 1TD, UK; School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - David Baruch Gurevich
- Department of Biology & Biochemistry, Faculty of Science, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|
2
|
Du Cheyne C, Tay H, De Spiegelaere W. The complex TIE between macrophages and angiogenesis. Anat Histol Embryol 2019; 49:585-596. [PMID: 31774212 DOI: 10.1111/ahe.12518] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/30/2019] [Accepted: 11/08/2019] [Indexed: 12/20/2022]
Abstract
Macrophages are primarily known as phagocytic immune cells, but they also play a role in diverse processes, such as morphogenesis, homeostasis and regeneration. In this review, we discuss the influence of macrophages on angiogenesis, the process of new blood vessel formation from the pre-existing vasculature. Macrophages play crucial roles at each step of the angiogenic cascade, starting from new blood vessel sprouting to the remodelling of the vascular plexus and vessel maturation. Macrophages form promising targets for both pro- and anti-angiogenic treatments. However, to target macrophages, we will first need to understand the mechanisms that control the functional plasticity of macrophages during each of the steps of the angiogenic cascade. Here, we review recent insights in this topic. Special attention will be given to the TIE2-expressing macrophage (TEM), which is a subtype of highly angiogenic macrophages that is able to influence angiogenesis via the angiopoietin-TIE pathway.
Collapse
Affiliation(s)
- Charis Du Cheyne
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Hanna Tay
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ward De Spiegelaere
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
3
|
Garcia-Bonilla L, Faraco G, Moore J, Murphy M, Racchumi G, Srinivasan J, Brea D, Iadecola C, Anrather J. Spatio-temporal profile, phenotypic diversity, and fate of recruited monocytes into the post-ischemic brain. J Neuroinflammation 2016; 13:285. [PMID: 27814740 PMCID: PMC5097435 DOI: 10.1186/s12974-016-0750-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/20/2016] [Indexed: 12/24/2022] Open
Abstract
Background A key feature of the inflammatory response after cerebral ischemia is the brain infiltration of blood monocytes. There are two main monocyte subsets in the mouse blood: CCR2+Ly6Chi “inflammatory” monocytes involved in acute inflammation, and CX3CR1+Ly6Clo “patrolling” monocytes, which may play a role in repair processes. We hypothesized that CCR2+Ly6Chi inflammatory monocytes are recruited in the early phase after ischemia and transdifferentiate into CX3CR1+Ly6Clo “repair” macrophages in the brain. Methods CX3CR1GFP/+CCR2RFP/+ bone marrow (BM) chimeric mice underwent transient middle cerebral artery occlusion (MCAo). Mice were sacrificed from 1 to 28 days later to phenotype and map subsets of infiltrating monocytes/macrophages (Mo/MΦ) in the brain over time. Flow cytometry analysis 3 and 14 days after MCAo in CCR2−/− mice, which exhibit deficient monocyte recruitment after inflammation, and NR4A1−/− BM chimeric mice, which lack circulating CX3CR1+Ly6Clo monocytes, was also performed. Results Brain mapping of CX3CR1GFP/+ and CCR2RFP/+ cells 3 days after MCAo showed absence of CX3CR1GFP/+ Mo/MΦ but accumulation of CCR2RFP/+ Mo/MΦ throughout the ischemic territory. On the other hand, CX3CR1+ cells accumulated 14 days after MCAo at the border of the infarct core where CCR2RFP/+ accrued. Whereas the amoeboid morphology of CCR2RFP/+ Mo/MΦ remained unchanged over time, CX3CR1GFP/+ cells exhibited three distinct phenotypes: amoeboid cells with retracted processes, ramified cells, and perivascular elongated cells. CX3CR1GFP/+ cells were positive for the Mo/MΦ marker Iba1 and phenotypically distinct from endothelial cells, smooth muscle cells, pericytes, neurons, astrocytes, or oligodendrocytes. Because accumulation of CX3CR1+Ly6Clo Mo/MΦ was absent in the brains of CCR2 deficient mice, which exhibit deficiency in CCR2+Ly6Chi Mo/MΦ recruitment, but not in NR4A1−/− chimeric mice, which lack of circulating CX3CR1+Ly6Clo monocytes, our data suggest a local transition of CCR2+Ly6Chi Mo/MΦ into CX3CR1+Ly6Clo Mo/MΦ phenotype. Conclusions CX3CR1+Ly6Clo arise in the brain parenchyma from CCR2+Ly6Chi Mo/MΦ rather than being de novo recruited from the blood. These findings provide new insights into the trafficking and phenotypic diversity of monocyte subtypes in the post-ischemic brain. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0750-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lidia Garcia-Bonilla
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street RR409, New York, NY, 10065, USA
| | - Giuseppe Faraco
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street RR409, New York, NY, 10065, USA
| | - Jamie Moore
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street RR409, New York, NY, 10065, USA
| | - Michelle Murphy
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street RR409, New York, NY, 10065, USA
| | - Gianfranco Racchumi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street RR409, New York, NY, 10065, USA
| | - Jayashree Srinivasan
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street RR409, New York, NY, 10065, USA
| | - David Brea
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street RR409, New York, NY, 10065, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street RR409, New York, NY, 10065, USA
| | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street RR409, New York, NY, 10065, USA.
| |
Collapse
|
4
|
Lin C, Yuan Y, Courtman DW. Differentiation of Murine Bone Marrow-Derived Smooth Muscle Progenitor Cells Is Regulated by PDGF-BB and Collagen. PLoS One 2016; 11:e0156935. [PMID: 27258003 PMCID: PMC4892566 DOI: 10.1371/journal.pone.0156935] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 05/20/2016] [Indexed: 12/30/2022] Open
Abstract
Smooth muscle cells (SMCs) are key regulators of vascular disease and circulating smooth muscle progenitor cells may play important roles in vascular repair or remodelling. We developed enhanced protocols to derive smooth muscle progenitors from murine bone marrow and tested whether factors that are increased in atherosclerotic plaques, namely platelet-derived growth factor-BB (PDGF-BB) and monomeric collagen, can influence the smooth muscle specific differentiation, proliferation, and survival of mouse bone marrow-derived progenitor cells. During a 21 day period of culture, bone marrow cells underwent a marked increase in expression of the SMC markers α-SMA (1.93 ± 0.15 vs. 0.0008 ± 0.0003 (ng/ng GAPDH) at 0 d), SM22-α (1.50 ± 0.27 vs. 0.005 ± 0.001 (ng/ng GAPDH) at 0 d) and SM-MHC (0.017 ± 0.004 vs. 0.001 ± 0.001 (ng/ng GAPDH) at 0 d). Bromodeoxyuridine (BrdU) incorporation experiments showed that in early culture, the smooth muscle progenitor subpopulation could be identified by high proliferative rates prior to the expression of smooth muscle specific markers. Culture of fresh bone marrow or smooth muscle progenitor cells with PDGF-BB suppressed the expression of α-SMA and SM22-α, in a rapidly reversible manner requiring PDGF receptor kinase activity. Progenitors cultured on polymerized collagen gels demonstrated expression of SMC markers, rates of proliferation and apoptosis similar to that of cells on tissue culture plastic; in contrast, cells grown on monomeric collagen gels displayed lower SMC marker expression, lower growth rates (319 ± 36 vs. 635 ± 97 cells/mm2), and increased apoptosis (5.3 ± 1.6% vs. 1.0 ± 0.5% (Annexin 5 staining)). Our data shows that the differentiation and survival of smooth muscle progenitors are critically affected by PDGF-BB and as well as the substrate collagen structure.
Collapse
MESH Headings
- Actins/genetics
- Actins/metabolism
- Animals
- Apoptosis
- Becaplermin
- Blotting, Western
- Bone Marrow Cells/cytology
- Bone Marrow Cells/drug effects
- Bone Marrow Cells/ultrastructure
- Cell Differentiation/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Collagen/pharmacology
- Female
- Mice
- Microscopy, Electron, Transmission
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/ultrastructure
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/ultrastructure
- Proto-Oncogene Proteins c-sis/pharmacology
- Real-Time Polymerase Chain Reaction
Collapse
Affiliation(s)
- Clifford Lin
- Oregon Health and Science University, Portland, Oregon, United States of America
| | - Yifan Yuan
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - David W. Courtman
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
5
|
Yang P, Hong MS, Fu C, Schmit BM, Su Y, Berceli SA, Jiang Z. Preexisting smooth muscle cells contribute to neointimal cell repopulation at an incidence varying widely among individual lesions. Surgery 2015; 159:602-12. [PMID: 26387788 DOI: 10.1016/j.surg.2015.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 08/01/2015] [Accepted: 08/10/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND With the diverse origin of neointimal cells, previous studies have documented differences of neointimal cell lineage composition across models, but the animal-to-animal difference has not attracted much attention, although the cellular heterogeneity may impact neointimal growth and its response to therapeutic interventions. METHODS R26R(+);Myh11-CreER(+), and R26R(+);Scl-CreER(+) mice were used to attach LacZ tags to the preexisting smooth muscle cells (SMCs) and endothelial cells (ECs), respectively. Neointimal lesions were created via complete ligation of the common carotid artery (CCA) and transluminal injury to the femoral artery (FA). RESULTS LacZ-tagged SMCs were physically relocated from media to neointima and changed to a dedifferentiated phenotype in both CCA and FA lesions. The content of SMCs in the neointimal tissue, however, varied widely among specimens, ranging from 5 to 70% and 0 to 85%, with an average at low levels of 27% and 29% in CCA (n = 15) and FA (n = 15) lesions, respectively. Bone marrow cells, although able to home to the injured arteries, did not differentiate fully into SMCs after either type of injury. Preexisting ECs were located in the subendothelial region and produced mesenchymal marker α-actin, indicating endothelial-mesenchymal transition (EndoMT); however, EC-derived cells represented only 7% and 3% of the total neointimal cell pool of CCA (n = 7) and FA (n = 7) lesions, respectively. ECs located on the luminal surface exhibited little evidence of EndoMT. CONCLUSION Neointimal hyperplasia proceeds with a wide range of variation in its cellular composition between individual lesions. Relative to ECs, SMCs are major contributors to the lesion-to-lesion heterogeneity in neointimal cell lineage composition.
Collapse
Affiliation(s)
- Pu Yang
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, FL, United States
| | - Michael S Hong
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, FL, United States
| | - Chunhua Fu
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, FL, United States
| | - Bradley M Schmit
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, FL, United States
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, Georgia, United States
| | - Scott A Berceli
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, FL, United States; The Malcom Randall VAMC, Gainesville, FL, United States
| | - Zhihua Jiang
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, FL, United States.
| |
Collapse
|
6
|
Ali MT, Martin K, Kumar AHS, Cavallin E, Pierrou S, Gleeson BM, McPheat WL, Turner EC, Huang CL, Khider W, Vaughan C, Caplice NM. A novel CX3CR1 antagonist eluting stent reduces stenosis by targeting inflammation. Biomaterials 2015; 69:22-9. [PMID: 26275859 DOI: 10.1016/j.biomaterials.2015.07.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 07/28/2015] [Accepted: 07/31/2015] [Indexed: 11/30/2022]
Abstract
We evaluated the therapeutic efficacy of a novel drug eluting stent (DES) inhibiting inflammation and smooth muscle cell (SMC) proliferation. We identified CX3CR1 as a targetable receptor for prevention of monocyte adhesion and inflammation and in-stent neointimal hyperplasia without interfering with stent re-endothelization. Efficacy of AZ12201182 (AZ1220), a CX3CR1 antagonist was evaluated in inhibition of monocyte attachment in vitro. A prototype AZ1220 eluting PLGA-based polymer coated stent developed with an optimal elution profile and dose of 1 μM/stent was tested over 4 weeks in a porcine model of coronary artery stenting. Polymer coated stents without AZ1220 and bare metal stents were used as controls. AZ1220 inhibited monocyte attachment to CX3CL1 in a dose dependent manner. AZ1220 eluted from polymer coated stents in an ex vivo flow system retained bioactivity in inhibiting monocyte attachment to CX3CL1. At 4 weeks following deployment, AZ1220 eluting stents significantly reduced (∼60%) in-stent stenosis compared to both bare metal and polymer only coated stents and markedly reduced peri-stent inflammation and monocyte/macrophage accumulation without affecting re-endothelization. Anti-CX3CR1 drug eluting stents potently inhibited in-stent stenosis and may offer an alternative to mTOR targeting by current DES, specifically inhibiting polymer-induced inflammatory response and SMC proliferation, while retaining an equivalent re-endothelization response to bare metal stents.
Collapse
Affiliation(s)
- Mohammed T Ali
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Kenneth Martin
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Arun H S Kumar
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Erika Cavallin
- Translational Sciences, iMED CVMD, AstraZeneca R&D Mölndal, Sweden
| | - Stefan Pierrou
- Bioscience Department, CVGI, AstraZeneca R&D Mölndal, Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | - Birgitta M Gleeson
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | | | - Elizebeth C Turner
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Chien-Ling Huang
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Wisam Khider
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | | | - Noel M Caplice
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland.
| |
Collapse
|
7
|
Deb A. Stem Cells. Atherosclerosis 2015. [DOI: 10.1002/9781118828533.ch14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Zhang N, Xie X, Chen H, Chen H, Yu H, Wang JA. Stem cell-based therapies for atherosclerosis: perspectives and ongoing controversies. Stem Cells Dev 2014; 23:1731-40. [PMID: 24702267 DOI: 10.1089/scd.2014.0078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Atherosclerosis is a major contributor to life-threatening cardiovascular events, the leading cause of death worldwide. Since the mechanisms of atherosclerosis have not been fully understood, currently, there are no effective approaches to regressing atherosclerosis. Therefore, there is a dire need to explore the mechanisms and potential therapeutic strategies to prevent or reverse the progression of atherosclerosis. In recent years, stem cell-based therapies have held promises to various diseases, including atherosclerosis. Unfortunately, the efficacy of stem cell-based therapies for atherosclerosis as reported in the literature has been inconsistent or even conflicting. In this review, we summarize the current literature of stem cell-based therapies for atherosclerosis and discuss possible mechanisms and future directions of these potential therapies.
Collapse
Affiliation(s)
- Na Zhang
- 1 Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine , Hangzhou, China
| | | | | | | | | | | |
Collapse
|
9
|
Silvestre JS, Smadja DM, Lévy BI. Postischemic revascularization: from cellular and molecular mechanisms to clinical applications. Physiol Rev 2013; 93:1743-802. [PMID: 24137021 DOI: 10.1152/physrev.00006.2013] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
After the onset of ischemia, cardiac or skeletal muscle undergoes a continuum of molecular, cellular, and extracellular responses that determine the function and the remodeling of the ischemic tissue. Hypoxia-related pathways, immunoinflammatory balance, circulating or local vascular progenitor cells, as well as changes in hemodynamical forces within vascular wall trigger all the processes regulating vascular homeostasis, including vasculogenesis, angiogenesis, arteriogenesis, and collateral growth, which act in concert to establish a functional vascular network in ischemic zones. In patients with ischemic diseases, most of the cellular (mainly those involving bone marrow-derived cells and local stem/progenitor cells) and molecular mechanisms involved in the activation of vessel growth and vascular remodeling are markedly impaired by the deleterious microenvironment characterized by fibrosis, inflammation, hypoperfusion, and inhibition of endogenous angiogenic and regenerative programs. Furthermore, cardiovascular risk factors, including diabetes, hypercholesterolemia, hypertension, diabetes, and aging, constitute a deleterious macroenvironment that participates to the abrogation of postischemic revascularization and tissue regeneration observed in these patient populations. Thus stimulation of vessel growth and/or remodeling has emerged as a new therapeutic option in patients with ischemic diseases. Many strategies of therapeutic revascularization, based on the administration of growth factors or stem/progenitor cells from diverse sources, have been proposed and are currently tested in patients with peripheral arterial disease or cardiac diseases. This review provides an overview from our current knowledge regarding molecular and cellular mechanisms involved in postischemic revascularization, as well as advances in the clinical application of such strategies of therapeutic revascularization.
Collapse
|
10
|
Role of CX3CR1 receptor in monocyte/macrophage driven neovascularization. PLoS One 2013; 8:e57230. [PMID: 23437346 PMCID: PMC3578809 DOI: 10.1371/journal.pone.0057230] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 01/18/2013] [Indexed: 11/30/2022] Open
Abstract
Monocyte/Macrophages are implicated in initiation of angiogenesis, tissue/organ perfusion and atherosclerosis biology. We recently showed that chemokine receptor CX3CR1 is an essential regulator of monocyte/macrophage derived smooth muscle cell differentiation in the vessel wall after injury. Here we hypothesised the contribution of CX3CR1- CX3CL1 interaction to in vivo neovascularization and studied the functional consequences of genetic and pharmacologic targeting of CX3CR1 in formation, maturation and maintenance of microvascular integrity. Cells functionally deficient in CX3CR1 lacked matrix tunnelling and tubulation capacity in a 3D Matrigel assay. These morphogenic and cytokinetic responses were driven by CX3CL1-CX3CR1 interaction and totally abrogated by a Rho antagonist. To evaluate the role of CX3CR1 system in vivo, Matrigel plugs were implanted in competent CX3CR1+/gfp and functionally deficient CX3CR1gfp/gfp mice. Leaky microvessels (MV) were formed in the Matrigel implanted in CX3CR1gfp/gfp but not in CX3CR1+/gfp mice. In experimental plaque neovascularization immature MV phenotype was observed in CX3CR1gfp/gfp mice, lacking CX3CR1 positive smooth muscle-like cells, extracellular collagen and basement membrane (BM) laminin compared to competent CX3CR1+/gfp mice. This was associated with increased extravasation of platelets into the intima of CX3CR1gfp/gfp but not functionally competent CX3CR1 mice. Pharmacologic targeting using CX3CR1 receptor antagonist in wild type mice resulted in formation of plaque MV with poor BM coverage and a leaky phenotype. Our data indicate a hitherto unrecognised role for functional CX3CR1 in Matrigel and experimental plaque neovascularization in vivo, which may buttress MV collectively in favour of a more stable non-leaky phenotype.
Collapse
|
11
|
Merkulova-Rainon T, Broquères-You D, Kubis N, Silvestre JS, Lévy BI. Towards the therapeutic use of vascular smooth muscle progenitor cells. Cardiovasc Res 2012; 95:205-14. [PMID: 22354897 DOI: 10.1093/cvr/cvs097] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recent advances in the development of alternative proangiogenic and revascularization processes, including recombinant protein delivery, gene therapy, and cell therapy, hold the promise of greater efficacy in the management of cardiovascular disease in the coming years. In particular, vascular progenitor cell-based strategies have emerged as an efficient treatment approach to promote vessel formation and repair and to improve tissue perfusion. During the past decade, considerable progress has been achieved in understanding therapeutic properties of endothelial progenitor cells, while the therapeutic potential of vascular smooth muscle progenitor cells (SMPC) has only recently been explored; the number of the circulating SMPC being correlated with cardiovascular health. Several endogenous SMPC populations with varying phenotypes have been identified and characterized in the peripheral blood, bone marrow, and vascular wall. While the phenotypic entity of vascular SMPC is not fully defined and remains an evolving area of research, SMPC are increasingly recognized to play a special role in cardiovascular biology. In this review, we describe the current approaches used to define vascular SMPC. We further summarize the data on phenotype and functional properties of SMPC from various sources in adults. Finally, we discuss the role of SMPC in cardiovascular disease, including the contribution of SMPC to intimal proliferation, angiogenesis, and atherosclerotic plaque instability as well as the benefits resulting from the therapeutic use of SMPC.
Collapse
|
12
|
Bitar KN, Raghavan S. Intestinal tissue engineering: current concepts and future vision of regenerative medicine in the gut. Neurogastroenterol Motil 2012; 24:7-19. [PMID: 22188325 PMCID: PMC3248673 DOI: 10.1111/j.1365-2982.2011.01843.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Functional tissue engineering of the gastrointestinal (GI) tract is a complex process aiming to aid the regeneration of structural layers of smooth muscle, intrinsic enteric neuronal plexuses, specialized mucosa, and epithelial cells as well as interstitial cells. The final tissue-engineered construct is intended to mimic the native GI tract anatomically and physiologically. Physiological functionality of tissue-engineered constructs is of utmost importance while considering clinical translation. The construct comprises of cellular components as well as biomaterial scaffolding components. Together, these determine the immune response a tissue-engineered construct would elicit from a host upon implantation. Over the last decade, significant advances have been made to mitigate adverse host reactions. These include a quest for identifying autologous cell sources like embryonic and adult stem cells, bone marrow-derived cells, neural crest-derived cells, and muscle derived-stem cells. Scaffolding biomaterials have been fabricated with increasing biocompatibility and biodegradability. Manufacturing processes have advanced to allow for precise spatial architecture of scaffolds to mimic in vivo milieu closely and achieve neovascularization. This review will focus on the current concepts and the future vision of functional tissue engineering of the diverse neuromuscular structures of the GI tract from the esophagus to the internal anal sphincter.
Collapse
Affiliation(s)
- Khalil N. Bitar
- Address Correspondence to: Khalil N. Bitar, PhD., AGAF, Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem NC 27101, Phone: (336) 713-1470, FAX: (336) 713-7290,
| | | |
Collapse
|
13
|
Clover AJP, Kumar AHS, Caplice NM. Deficiency of CX3CR1 delays burn wound healing and is associated with reduced myeloid cell recruitment and decreased sub-dermal angiogenesis. Burns 2011; 37:1386-93. [PMID: 21924836 DOI: 10.1016/j.burns.2011.08.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 06/24/2011] [Accepted: 08/01/2011] [Indexed: 12/19/2022]
Abstract
The development of a good blood supply is a key step in burn wound healing and appears to be regulated in part by myeloid cells. CX3CR1 positive cells have recently been identified as myeloid cells with a potential role in angiogenesis. The role of functional CX3CR1 system in burn wound healing is not previously investigated. A 2% contact burn was induced in CX3CR1(+/gfp) and CX3CR1(gfp/gfp) mice. These transgenic mice facilitate the tracking of CX3CR1 cells (CX3CR1(+/gfp)) and allow evaluation of the consequence of CX3CR1 functional knockout (CX3CR1(gfp/gfp)) on burn wound healing. The progression of wound healing was monitored before tissue was harvested and analyzed at day 6 and day 12 for migration of CX3CR1 cells into burn wound. Deficiency of a functional CX3CR1 system resulted in decreased recruitment of CX3CR1 positive cells into the burn wound associated with decreased myeloid cell recruitment (p<0.001) and reduced maintenance of new vessels (p<0.001). Burn wound healing was prolonged (p<0.05). Our study is the first to establish a role for CX3CR1 in burn wound healing which is associated with sub-dermal angiogenesis. This chemokine receptor pathway may be attractive for therapeutic manipulation as it could increase sub dermal angiogenesis and thereby improve time to healing.
Collapse
|
14
|
Abstract
Accumulating evidence indicates that the mobilization and recruitment of circulating or tissue-resident progenitor cells that give rise to endothelial cells (ECs) and smooth muscle cells (SMCs) can participate in atherosclerosis, neointima hyperplasia after arterial injury, and transplant arteriosclerosis. It is believed that endothelial progenitor cells do exist and can repair and rejuvenate the arteries under physiologic conditions; however, they may also contribute to lesion formation by influencing plaque stability in advanced atherosclerotic plaque under specific pathologic conditions. At the same time, smooth muscle progenitors, despite their capacity to expedite lesion formation during restenosis, may serve to promote atherosclerotic plaque stabilization by producing extracellular matrix proteins. This profound evidence provides support to the hypothesis that both endothelial and smooth muscle progenitors may act as a double-edged sword in the pathogenesis of arteriosclerosis. Therefore, the understanding of the regulatory networks that control endothelial and smooth muscle progenitor differentiation is undoubtedly fundamental both for basic research and for improving current therapeutic avenues for atherosclerosis. We update the progress in progenitor cell study related to the development of arteriosclerosis, focusing specifically on the role of progenitor cells in lesion formation and discuss the controversial issues that regard the origins, frequency, and impact of the progenitors in the disease.
Collapse
Affiliation(s)
- Paola Campagnolo
- Cardiovascular Division, King's College London BHF Centre, London, England
| | | | | |
Collapse
|
15
|
Bobryshev YV, Tran D, Botelho NK, Lord RVN, Orekhov AN. Musashi-1 expression in atherosclerotic arteries and its relevance to the origin of arterial smooth muscle cells: histopathological findings and speculations. Atherosclerosis 2011; 215:355-65. [PMID: 21296351 DOI: 10.1016/j.atherosclerosis.2011.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 12/20/2010] [Accepted: 01/07/2011] [Indexed: 12/11/2022]
Abstract
The origin of smooth muscle cells in developing atherosclerotic lesions is a controversial topic with accumulating evidence indicating that at least some arterial smooth muscle cells might originate from bone marrow-derived smooth muscle cell precursors circulating in the blood. The stem cell markers currently used for the identification of stem cells in the arterial intima can be expressed by a number of different cell types residing in the arterial wall, such as mast cells, endothelial cells and dendritic cells, which can make interpretation of the data obtained somewhat ambiguous. In the present study we examined whether the putative intestinal stem cell marker Musashi-1 is expressed in the arterial wall. Using a multiplexed tandem polymerase chain reaction method (MT-PCR) and immunohistochemistry, Musashi-1 expression was revealed in human coronary arterial wall tissue segments, and this finding was followed by the demonstration of significantly higher expression levels of Musashi-1 in atherosclerotic plaques compared with those in undiseased intimal sites. Double immunohistochemistry demonstrated that in the arterial wall Musashi-1 positive cells either did not display any specific markers of cells that are known to reside in the arterial intima or Musashi-1 was co-expressed by smooth muscle α-actin positive cells. Some Musashi-1 positive cells were found along the luminal surface of arteries as well as within microvessels formed in atherosclerotic plaques by neovascularization, which supports the possibility that Musashi-1 positive cells might intrude into the arterial wall from the blood and might even represent circulating smooth muscle cell precursors.
Collapse
Affiliation(s)
- Yuri V Bobryshev
- Faculty of Medicine, University of New South Wales, Kensington, NSW 2052, Australia.
| | | | | | | | | |
Collapse
|
16
|
Albiero M, Menegazzo L, Fadini GP. Circulating Smooth Muscle Progenitors and Atherosclerosis. Trends Cardiovasc Med 2010; 20:133-40. [DOI: 10.1016/j.tcm.2010.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 11/19/2010] [Indexed: 11/28/2022]
|