1
|
Danckwardt S, Trégouët DA, Castoldi E. Post-transcriptional control of haemostatic genes: mechanisms and emerging therapeutic concepts in thrombo-inflammatory disorders. Cardiovasc Res 2023; 119:1624-1640. [PMID: 36943786 PMCID: PMC10325701 DOI: 10.1093/cvr/cvad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 03/23/2023] Open
Abstract
The haemostatic system is pivotal to maintaining vascular integrity. Multiple components involved in blood coagulation have central functions in inflammation and immunity. A derailed haemostasis is common in prevalent pathologies such as sepsis, cardiovascular disorders, and lately, COVID-19. Physiological mechanisms limit the deleterious consequences of a hyperactivated haemostatic system through adaptive changes in gene expression. While this is mainly regulated at the level of transcription, co- and posttranscriptional mechanisms are increasingly perceived as central hubs governing multiple facets of the haemostatic system. This layer of regulation modulates the biogenesis of haemostatic components, for example in situations of increased turnover and demand. However, they can also be 'hijacked' in disease processes, thereby perpetuating and even causally entertaining associated pathologies. This review summarizes examples and emerging concepts that illustrate the importance of posttranscriptional mechanisms in haemostatic control and crosstalk with the immune system. It also discusses how such regulatory principles can be used to usher in new therapeutic concepts to combat global medical threats such as sepsis or cardiovascular disorders.
Collapse
Affiliation(s)
- Sven Danckwardt
- Centre for Thrombosis and Hemostasis (CTH), University Medical Centre
Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- German Centre for Cardiovascular Research (DZHK),
Berlin, Germany
- Posttranscriptional Gene Regulation, University Medical Centre
Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University
Medical Centre Mainz, Langenbeckstr. 1, 55131
Mainz, Germany
- Center for Healthy Aging (CHA), Mainz,
Germany
| | - David-Alexandre Trégouët
- INSERM, Bordeaux Population Health Research Center, UMR 1219, Department of
Molecular Epidemiology of Vascular and Brain Disorders (ELEANOR), University of
Bordeaux, Bordeaux, France
| | - Elisabetta Castoldi
- Department of Biochemistry, Cardiovascular Research Institute Maastricht
(CARIM), Maastricht University, Universiteitsingel 50, 6229
ER Maastricht, The Netherlands
| |
Collapse
|
2
|
A mathematical model of fibrinogen-mediated erythrocyte-erythrocyte adhesion. Commun Biol 2023; 6:192. [PMID: 36801914 PMCID: PMC9938206 DOI: 10.1038/s42003-023-04560-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
Erythrocytes are deformable cells that undergo progressive biophysical and biochemical changes affecting the normal blood flow. Fibrinogen, one of the most abundant plasma proteins, is a primary determinant for changes in haemorheological properties, and a major independent risk factor for cardiovascular diseases. In this study, the adhesion between human erythrocytes is measured by atomic force microscopy (AFM) and its effect observed by micropipette aspiration technique, in the absence and presence of fibrinogen. These experimental data are then used in the development of a mathematical model to examine the biomedical relevant interaction between two erythrocytes. Our designed mathematical model is able to explore the erythrocyte-erythrocyte adhesion forces and changes in erythrocyte morphology. AFM erythrocyte-erythrocyte adhesion data show that the work and detachment force necessary to overcome the adhesion between two erythrocytes increase in the presence of fibrinogen. The changes in erythrocyte morphology, the strong cell-cell adhesion and the slow separation of the two cells are successfully followed in the mathematical simulation. Erythrocyte-erythrocyte adhesion forces and energies are quantified and matched with experimental data. The changes observed on erythrocyte-erythrocyte interactions may give important insights about the pathophysiological relevance of fibrinogen and erythrocyte aggregation in hindering microcirculatory blood flow.
Collapse
|
3
|
Kapoor R, Khowal S, Panda BP, Wajid S. Comparative genomic analyses of Bacillus subtilis strains to study the biochemical and molecular attributes of nattokinases. Biotechnol Lett 2022; 44:485-502. [PMID: 35099650 DOI: 10.1007/s10529-022-03226-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/18/2022] [Indexed: 12/23/2022]
Abstract
The present research work explores the Nattokinase (NK) producing capacity of five Bacillus subtilis strains (MTCC 2616, MTCC 2756, MTCC 2451, MTCC 1427, and MTCC 7164) using soybean varieties as substrate under solid-state fermentation conditions. Subsequently, the biochemical attributes of NKs were analyzed. Soybean variety didn't affect the production of NK to a significant extent; however, the five strains differed substantially for their NK producing capacity. NK produced by MTCC 2451 (R3) showed a low Kmvalue implying its higher specificity for fibrin but this strain (MTCC 2451) didn't produce NK in sufficient quantity. The low Km of MTCC 2451 NK implicates its potential candidature for treating blood clots in cardiovascular patients. The NK produced by MTCC 2616 (R1) was produced in sufficient quantity and showed good fibrin dissolving potential. The aprN of MTCC 2616 substantially varied from the other four strains. The aprN of MTCC 2756 (R2), MTCC 2451 (R3), MTCC 1427 (R4), and MTCC 7164 (R5) shared > 99% sequence identity, but the encoded NKs had significant variations in their Km values. The biochemical-molecular analyses indicate the co-presence of three critical residues (Thr130, Asp140, and Tyr217) as a quintessential attribute in determining the low Km of NK enzymes, and the absence of any one of the three critical residues may affect (highly increase) the Km.
Collapse
Affiliation(s)
- Rohit Kapoor
- Microbial and Pharmaceutical Biotechnology Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Sapna Khowal
- Department of Biotechnology, School of Chemical and Life Science, Jamia Hamdard, New Delhi, 110062, India
| | - Bibhu Prasad Panda
- Microbial and Pharmaceutical Biotechnology Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Saima Wajid
- Department of Biotechnology, School of Chemical and Life Science, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
4
|
Castro F, Martins C, Silveira MJ, Moura RP, Pereira CL, Sarmento B. Advances on erythrocyte-mimicking nanovehicles to overcome barriers in biological microenvironments. Adv Drug Deliv Rev 2021; 170:312-339. [PMID: 32946921 DOI: 10.1016/j.addr.2020.09.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/29/2020] [Accepted: 09/05/2020] [Indexed: 12/14/2022]
Abstract
Although nanocarriers offer many advantages as drug delivery systems, their poor stability in circulation, premature drug release and nonspecific uptake in non-target organs have prompted biomimetic approaches using natural cell membranes to camouflage nanovehicles. Among them, erythrocytes, representing the most abundant blood circulating cells, have been extensively investigated for biomimetic coating on artificial nanocarriers due to their upgraded biocompatibility, biodegradability, non-immunogenicity and long-term blood circulation. Due to the cell surface mimetic properties combined with customized core material, erythrocyte-mimicking nanovehicles (EM-NVs) have a wide variety of applications, including drug delivery, imaging, phototherapy, immunomodulation, sensing and detection, that foresee a huge potential for therapeutic and diagnostic applications in several diseases. In this review, we summarize the recent advances in the biomedical applications of EM-NVs in cancer, infection, heart-, autoimmune- and CNS-related disorders and discuss the major challenges and opportunities in this research area.
Collapse
Affiliation(s)
- Flávia Castro
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Cláudia Martins
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Maria José Silveira
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Rui Pedro Moura
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Catarina Leite Pereira
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Bruno Sarmento
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal.
| |
Collapse
|
5
|
Rautenbach PH, Nienaber-Rousseau C, Pieters M. The association of alcohol with circulating total fibrinogen and plasma clot density is mediated by fibrinogen and FXIII genotypes. Thromb J 2020; 18:35. [PMID: 33292263 PMCID: PMC7706066 DOI: 10.1186/s12959-020-00249-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/12/2020] [Indexed: 01/01/2023] Open
Abstract
Background Alcohol consumption is associated with haemostasis and so may influence cardiovascular conditions. It is unknown whether the association of alcohol with total and γ’ fibrinogen concentrations, as well as clot structure, are modulated by fibrinogen and factor (F) XIII single nucleotide polymorphisms (SNPs). Methods Total fibrinogen, γ’ fibrinogen and clot properties of 2010 healthy Africans residing in South Africa were measured in relation to alcohol intake as well as its markers – gamma-glutamyltransferase (GGT), percentage carbohydrate deficient transferrin (%CDT), aspartate aminotransferase (AST), and alanine aminotransferase (ALT). Fourteen fibrinogen and two SNPs in the FXIII gene were genotyped to determine their influence. Results Alcohol intake and its markers correlated negatively with fibrinogen and clot lysis time (CLT) as well as with most of the clot properties. Percentage γ’ fibrinogen correlated positively with AST and negatively with alcohol intake. We then stratified for alcohol intake and found inverse associations between γ’ fibrinogen and both %CDT and GGT–CDT in consumers, but the positive association with AST remained only in abstainers. Alcohol intake and its markers modulated the influence of fibrinogen SNPs on total fibrinogen concentrations and the fibrinogen SNPs as well as an FXIII SNP on clot density (all p < 0.004). Conclusion/s We show for the first time that some individuals harbour certain genotypes that, in combination with alcohol consumption, might predispose or protect them from haemostatic factors that might lead to the development of cardiovascular disease. Studies are needed to clarify the mechanisms related to the interplay between alcohol and the gene variants observed here.
Collapse
Affiliation(s)
- Petro Hannie Rautenbach
- Centre of Excellence for Nutrition, North-West University, Private bag x6001, Nutrition, Box 594, Potchefstroom, 2520, South Africa
| | - Cornelie Nienaber-Rousseau
- Centre of Excellence for Nutrition, North-West University, Private bag x6001, Nutrition, Box 594, Potchefstroom, 2520, South Africa. .,Medical Research Council Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa.
| | - Marlien Pieters
- Centre of Excellence for Nutrition, North-West University, Private bag x6001, Nutrition, Box 594, Potchefstroom, 2520, South Africa.,Medical Research Council Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| |
Collapse
|
6
|
Cantero Guevara ME, Cardinali B, Marchi R. Purificación del fibrinógeno gamma A/gamma prima (γA/γ') por cromatografía líquida rápida de proteínas. REVISTA COLOMBIANA DE QUÍMICA 2018. [DOI: 10.15446/rev.colomb.quim.v47n3.68891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Una fracción del fibrinógeno circulante contiene una variante de la cadena γ que se origina por empalme alternativo del ARNm, denominada γ’ cuya concentración en plasma se ha relacionado con un incremento en el riesgo de padecer enfermedades cardiovasculares. Por tanto, el objetivo de este trabajo fue diseñar un método de purificación del fibrinógeno γA/γ’ más eficiente en relación a los descritos en la literatura, a partir de plasma humano. Se purificó el fibrinógeno γA/γ’ a partir del fibrinógeno total obtenido por precipitación con β-alanina, mediante la separación por cromatografía líquida rápida de proteínas. Se confirmó la presencia de fibrinógeno γA/γ’ mediante Western blot; su concentración fue determinada por ELISA. El método mostró ventajas en comparación con los métodos clásicos de separación, por ejemplo, que cantidades menores de muestra pudieron ser fraccionadas cuantitativamente en componentes puros en menor tiempo (30 min). Por tanto, se puede concluir que la técnica utilizada para la purificación de las variantes del fibrinógeno, correspondiente al Fg gA/gA y Fg gA/g’, es un método de separación eficiente que permite purificar el Fg gA/g’ libre de contaminantes principales, como lo confirma la inmunoelectroforesis.
Collapse
|
7
|
Peshkova AD, Malyasyov DV, Bredikhin RA, Le Minh G, Andrianova IA, Tutwiler V, Nagaswami C, Weisel JW, Litvinov RI. Reduced Contraction of Blood Clots in Venous Thromboembolism Is a Potential Thrombogenic and Embologenic Mechanism. TH OPEN 2018; 2:e104-e115. [PMID: 31249934 PMCID: PMC6524864 DOI: 10.1055/s-0038-1635572] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 02/08/2018] [Indexed: 12/12/2022] Open
Abstract
Contraction (retraction) of the blood clot is a part of the clotting process driven by activated platelets attached to fibrin that can potentially modulate the obstructiveness and integrity of thrombi. The aim of this work was to reveal the pathogenic importance of contraction of clots and thrombi in venous thromboembolism (VTE). We investigated the kinetics of clot contraction in the blood of 55 patients with VTE. In addition, we studied the ultrastructure of ex vivo venous thrombi as well as the morphology and functionality of isolated platelets. Thrombi from VTE patients contained compressed polyhedral erythrocytes, a marker for clot contraction in vivo. The extent and rate of contraction were reduced by twofold in clots from the blood of VTE patients compared with healthy controls. The contraction of clots from the blood of patients with pulmonary embolism was significantly impaired compared with that of those with isolated venous thrombosis, suggesting that less compacted thrombi are prone to embolization. The reduced ability of clots to contract correlated with continuous platelet activation followed by their partial refractoriness. Morphologically, 75% of platelets from VTE patients were spontaneously activated (with filopodia) compared with only 21% from healthy controls. At the same time, platelets from VTE patients showed a 1.4-fold reduction in activation markers expressed in response to chemical activation when compared with healthy individuals. The results obtained suggest that the impaired contraction of thrombi is an underappreciated pathogenic mechanism in VTE that may regulate the obstructiveness and embologenicity of venous thrombi.
Collapse
Affiliation(s)
- Alina D Peshkova
- Department of Biochemistry and Biotechnology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Dmitry V Malyasyov
- Department of Vascular Surgery, Inter-Regional Clinical Diagnostic Center, Kazan, Russian Federation
| | - Roman A Bredikhin
- Department of Vascular Surgery, Inter-Regional Clinical Diagnostic Center, Kazan, Russian Federation
| | - Giang Le Minh
- Department of Biochemistry and Biotechnology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Izabella A Andrianova
- Department of Biochemistry and Biotechnology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Valerie Tutwiler
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States
| | - Chandrasekaran Nagaswami
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States
| | - John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States
| | - Rustem I Litvinov
- Department of Biochemistry and Biotechnology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation.,Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States
| |
Collapse
|
8
|
Impaired contraction of blood clots as a novel prothrombotic mechanism in systemic lupus erythematosus. Clin Sci (Lond) 2018; 132:243-254. [PMID: 29295895 DOI: 10.1042/cs20171510] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/13/2017] [Accepted: 01/01/2018] [Indexed: 11/17/2022]
Abstract
The aim of this work was to examine a possible role of clot contraction/retraction in thrombotic complications of systemic lupus erythematosus (SLE). Using a novel automated method, we investigated kinetics of clot contraction in the blood of 51 SLE patients and 60 healthy donors. The functionality of platelets in the SLE patients was assessed using flow cytometry by expression of P-selectin and fibrinogen-binding capacity. The rate and degree of clot contraction were significantly reduced in SLE patients compared with healthy subjects, especially in the patients with higher blood levels of anti-dsDNA antibodies. The reduced platelet contractility correlated with partial refractoriness of platelets isolated from the blood of SLE patients to stimulation induced by the thrombin receptor activating peptide. To test if the anti-dsDNA autoantibodies cause continuous platelet activation, followed by exhaustion and dysfunction of the cells, we added purified exogenous anti-dsDNA autoantibodies from SLE patients to normal blood before clotting. In support of this hypothesis, the antibodies first enhanced clot contraction and then suppressed it in a time-dependent manner. Importantly, a direct correlation of clot contraction parameters with the disease severity suggests that the reduced compactness of intravascular clots and thrombi could be a pathogenic factor in SLE that may exaggerate the impaired blood flow at the site of thrombosis. In conclusion, autoantibodies in SLE can affect platelet contractility, resulting in reduced ability of clots and thrombi to shrink in volume, which increases vessel obstruction and may aggravate the course and outcomes of thrombotic complications in SLE.
Collapse
|
9
|
Activated Monocytes Enhance Platelet-Driven Contraction of Blood Clots via Tissue Factor Expression. Sci Rep 2017; 7:5149. [PMID: 28698680 PMCID: PMC5506001 DOI: 10.1038/s41598-017-05601-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/31/2017] [Indexed: 01/13/2023] Open
Abstract
Platelet-driven reduction in blood clot volume (clot contraction or retraction) has been implicated to play a role in hemostasis and thrombosis. Although these processes are often linked with inflammation, the role of inflammatory cells in contraction of blood clots and thrombi has not been investigated. The aim of this work was to study the influence of activated monocytes on clot contraction. The effects of monocytes were evaluated using a quantitative optical tracking methodology to follow volume changes in a blood clot formed in vitro. When a physiologically relevant number of isolated human monocytes pre-activated with phorbol-12-myristate-13-acetate (PMA) were added back into whole blood, the extent and rate of clot contraction were increased compared to addition of non-activated cells. Inhibition of tissue factor expression or its inactivation on the surface of PMA-treated monocytes reduced the extent and rate of clot contraction back to control levels with non-activated monocytes. On the contrary, addition of tissue factor enhanced clot contraction, mimicking the effects of tissue factor expressed on the activated monocytes. These data suggest that the inflammatory cells through their expression of tissue factor can directly affect hemostasis and thrombosis by modulating the size and density of intra- and extravascular clots and thrombi.
Collapse
|