1
|
Dingman R, Bihorel S, Gusarova V, Mendell J, Pordy R. Evinacumab: Mechanism of action, clinical, and translational science. Clin Transl Sci 2024; 17:e13836. [PMID: 38845393 PMCID: PMC11157145 DOI: 10.1111/cts.13836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 06/10/2024] Open
Abstract
Homozygous familial hypercholesterolemia (HoFH) is a rare and serious genetic condition characterized by premature cardiovascular disease due to severely elevated low-density lipoprotein cholesterol (LDL-C). HoFH primarily results from loss-of-function (LOF) mutations in the LDL receptor (LDLR), reducing LDL-C clearance such that patients experience severe hypercholesterolemia, exacerbating the risk of developing cardiovascular events. Treatment options such as statins, lomitapide, ezetimibe, proprotein convertase subtilisin/kexin type 9 inhibitors, and apheresis help lower LDL-C; however, many patients with HoFH still fail to reach their target LDL-C levels and many of these lipid-lowering therapies are not indicated for pediatric use. Angiopoietin-like protein 3 (ANGPTL3) has been identified as a target to treat elevated LDL-C by acting as a natural inhibitor of lipoprotein lipase (LPL) and endothelial lipase (EL), enzymes involved in the hydrolysis of the triglyceride and phospholipid content of very low-density lipoproteins. Persons heterozygous for LOF mutations in ANGPTL3 were reported to have lower LDL-C than non-carriers and lower risk of coronary artery disease. Evinacumab is a first-in-class human monoclonal antibody that specifically binds to ANGPTL3 to prevent its inhibition of LPL and EL. In clinical trials, a 15 mg/kg intravenous dose every 4 weeks has shown a mean percent change from baseline in LDL-C of ~50% in adult, adolescent, and pediatric patients with HoFH. This mini review article describes the mechanism of action of evinacumab, evinacumab population PK and PD modeling, and clinical development history of evinacumab for the treatment of HoFH.
Collapse
Affiliation(s)
| | | | | | | | - Robert Pordy
- Regeneron Pharmaceuticals, Inc.TarrytownNew YorkUSA
| |
Collapse
|
2
|
Qureshi Z, Khanzada M, Safi A, Fatima E, Altaf F, Vittorio TJ. Hypercholesterolemia: a literature review on management using tafolecimab: a novel member of PCSK9 monoclonal antibodies. Ann Med Surg (Lond) 2024; 86:2818-2827. [PMID: 38694324 PMCID: PMC11060207 DOI: 10.1097/ms9.0000000000001945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/02/2024] [Indexed: 05/04/2024] Open
Abstract
Background Cardiovascular diseases (CVD) persist as the leading cause of mortality globally, with atherosclerotic cardiovascular disease (ASCVD), including hypercholesterolaemia, being a significant contributor. Hyperlipidemia management includes various lipid-lowering drugs, including statins, Bempedoic acid, inclisiran, Lomitapide, ANGPTL3 inhibitors, and PCSK9 inhibitors. Statins have traditionally dominated lipid management therapies; however, a subset of patients remains unresponsive or intolerant to this therapy, necessitating novel therapeutic approaches. Tafolecimab, a promising and novel PCSK9 monoclonal antibody, demonstrated significant LDL-C reduction and a favourable safety profile in clinical trials. Objective This review aimed to discuss the role and efficacy of Tafolecimab in the management of hypercholesterolaemia. Methods The authors searched online databases, including PubMed, Scopus, and Embase, for articles related to talofecimab. Discussion The efficacy of Tafolecimab in diverse patient populations, including those with comorbid conditions and various lipid disorders, has been explored. Ongoing trials, such as CREDIT-1, CREDIT-2, and CREDIT-4, have provided valuable insights into Tafolecimab's potential as a lipid-lowering agent. Moreover, the drug's extended dosing interval may enhance patient compliance and reduce treatment costs. It has also been found that Tafolecimab has more affinity for PCSK9 and a longer duration of LDL-C reduction than other monoclonal antibody drugs such as evolocumab. Thus, this review focuses on Tafolecimab, a novel PCSK9 monoclonal antibody, its mechanism of action, clinical trial outcomes, safety profile, and potential role in hypercholesterolaemia management. Despite its assuring potential, the long-term impact of Tafolecimab on cardiovascular outcomes remains to be fully elucidated, necessitating further research. Regulatory authorities like the FDA and EMA should also evaluate Tafolecimab's risks and benefits. Conclusion In conclusion, Tafolecimab shows potential as an innovative therapeutic option for hypercholesterolaemia, particularly in patients with specific risk factors, but warrants additional research.
Collapse
Affiliation(s)
- Zaheer Qureshi
- The Frank H. Netter M.D. School of Medicine at Quinnipiac University, Bridgeport, CT
| | - Mikail Khanzada
- Department of Internal Medicine, Lahore Medical & Dental College
| | - Adnan Safi
- Department of Medicine, Lahore General Hospital
| | - Eeshal Fatima
- Department of Medicine, Services Institute of Medical Sciences, Lahore, Pakistan
| | - Faryal Altaf
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai/BronxCare Health System
| | | |
Collapse
|
3
|
Santos RD, Cuchel M. LDL-C-Lowering Therapies for Adults and Children With Homozygous Familial Hypercholesterolemia: Challenges and Successes. Circulation 2024; 149:363-366. [PMID: 38285739 DOI: 10.1161/circulationaha.123.067241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Affiliation(s)
- Raul D Santos
- Lipid Clinic Heart Institute (InCor), University of Sao Paulo Medical School Hospital, Brazil (R.D.S.)
- Academic Research Organization, Hospital Israelita Albert Einstein, Sao Paulo, Brazil (R.D.S.)
| | - Marina Cuchel
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia (M.C.)
| |
Collapse
|
4
|
Santos RD, Mizuta MH. Paradoxical Findings in Homozygous Familial Hypercholesterolemia in Japan: Longer Life But Still Not Totally Better! JACC. ASIA 2023; 3:892-894. [PMID: 38155785 PMCID: PMC10751724 DOI: 10.1016/j.jacasi.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Affiliation(s)
- Raul D. Santos
- Lipid Clinic Heart Institute (InCor), University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil
- Academic Research Organization, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Marjorie H. Mizuta
- Lipid Clinic Heart Institute (InCor), University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil
| |
Collapse
|
5
|
Raal FJ, Rosenson RS, Reeskamp LF, Kastelein JJ, Rubba P, Duell PB, Koseki M, Stroes E, Ali S, Banerjee P, Chan KC, Khilla N, McGinniss J, Pordy R, Zhang Y, Gaudet D. The Long-Term Efficacy and Safety of Evinacumab in Patients With Homozygous Familial Hypercholesterolemia. JACC. ADVANCES 2023; 2:100648. [PMID: 38938723 PMCID: PMC11198175 DOI: 10.1016/j.jacadv.2023.100648] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/11/2023] [Accepted: 08/22/2023] [Indexed: 06/29/2024]
Abstract
Background Homozygous familial hypercholesterolemia (HoFH) is characterized by early-onset atherosclerotic cardiovascular disease due to the high low-density lipoprotein cholesterol (LDL-C) burden. Patients with null-null low-density lipoprotein receptor (LDLR) variants respond poorly, if at all, to statins and proprotein convertase subtilisin/kexin type 9 inhibitors, which act by upregulating LDLR expression. The 24-week double-blind treatment period (DBTP) of the phase 3 ELIPSE HoFH (Evinacumab Lipid Studies in Patients with Homozygous Familial hypercholesterolemia; NCT03399786) study demonstrated significant LDL-C reductions in patients with HoFH; LDL-C reductions were also observed in those with null-null LDLR mutations. Objectives The purpose of this study was to evaluate longer-term efficacy and safety of evinacumab in patients with HoFH from the ELIPSE HoFH study. Methods Patients with HoFH on stable lipid-lowering therapies (LLTs) ± lipoprotein apheresis and screening LDL-C ≥70 mg/dL who completed the DBTP entered the 24-week open-label treatment period (OLTP) and received intravenous evinacumab 15 mg/kg every 4 weeks. OLTP results were summarized descriptively. Results A total of 64 patients completed the DBTP and received open-label evinacumab. Despite multiple LLTs, the mean baseline LDL-C at DBTP entry was 250.5 ± 162.3 mg/dL. From baseline to week 48 (end of OLTP), evinacumab reduced mean LDL-C by 46.3% (mean reduction, 134.3 ± 117.3 mg/dL), with similar mean LDL-C reductions for patients with null-null (47.2%) and non-null variants (45.9%). Adverse events occurred in 47 (73.4%) patients; 4 (6.3%) patients experienced adverse events considered evinacumab-related (drug hypersensitivity, infusion-related reaction and asthenia, generalized pruritis, and muscle spasms). Conclusions In patients with HoFH, evinacumab demonstrated substantial and sustained LDL-C reduction regardless of LDLR function, and was generally well tolerated.
Collapse
Affiliation(s)
- Frederick J. Raal
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Robert S. Rosenson
- Cardiometabolics Unit, Zena and Michael A Wiener Cardiovascular Institute, Marie-Josee and Henry R. Kravis Center for Cardiovascular Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Laurens F. Reeskamp
- Department of Vascular Medicine, University of Amsterdam, Amsterdam, The Netherlands
| | - John J.P. Kastelein
- Department of Vascular Medicine, University of Amsterdam, Amsterdam, The Netherlands
| | - Paolo Rubba
- Department of Internal Medicine and Surgery, Federico II University, Naples, Italy
| | - P. Barton Duell
- Knight Cardiovascular Institute and Division of Endocrinology, Diabetes and Clinical Nutrition, Oregon Health & Science University, Portland, Oregon, USA
| | - Masahiro Koseki
- Division of Cardiovascular Medicine, Department of Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Erik Stroes
- Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Shazia Ali
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | | | - Kuo-Chen Chan
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - Nagwa Khilla
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | | | - Robert Pordy
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - Yi Zhang
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - Daniel Gaudet
- Clinical Lipidology and Rare Lipid Disorders Unit, Department of Medicine, Université de Montréal Community Gene Medicine Center, Lipid Clinic Chicoutimi Hospital and ECOGENE-21 Clinical and Translational Research Center, Chicoutimi, Quebec, Canada
| |
Collapse
|
6
|
New Trends and Therapies for Familial Hypercholesterolemia. J Clin Med 2022; 11:jcm11226638. [PMID: 36431115 PMCID: PMC9696955 DOI: 10.3390/jcm11226638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/26/2022] [Accepted: 11/05/2022] [Indexed: 11/12/2022] Open
Abstract
Familial hypercholesterolemia (FH) is associated with an elevated risk of atherosclerosis. The finding of monogenic defects indicates higher atherosclerotic risk in comparison with hypercholesterolemia of other etiologies. However, in heterozygous FH, cardiovascular risk is heterogeneous and depends not only on high cholesterol levels but also on the presence of other biomarkers and genes. The development of atherosclerosis risk scores specific for heterozygous FH and the use of subclinical coronary atherosclerosis imaging help with identifying higher-risk individuals who may benefit from further cholesterol lowering with PCSK9 inhibitors. There is no question about the extreme high risk in homozygous FH, and intensive LDL-cholesterol-lowering therapy must be started as soon as possible. These patients have gained life free of events in comparison with the past, but a high atherosclerosis residual risk persists. Furthermore, there is also the issue of aortic and supra-aortic valve disease development. Newer therapies such as inhibitors of microsomal transfer protein and angiopoietin-like protein 3 have opened the possibility of LDL-cholesterol normalization in homozygous FH and may provide an alternative to lipoprotein apheresis for these patients. Gene-based therapies may provide more definite solutions for lowering high LDL cholesterol and consequent atherosclerosis risk for people with FH.
Collapse
|
7
|
Beyond Statins and PCSK9 Inhibitors: Updates in Management of Familial and Refractory Hypercholesterolemias. Curr Cardiol Rep 2021; 23:83. [PMID: 34081216 DOI: 10.1007/s11886-021-01514-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Elevation in apolipoprotein B-containing lipoproteins in the blood is a cause of atherosclerosis. Statins have changed the preventive cardiology scenario, and more recently monoclonal proprotein convertase subtilisin kexin type 9 (PCSK9) inhibitors were added as robust agents to further reduce pro-atherogenic lipoproteins and therefore prevent cardiovascular events. However, despite this many dyslipidemic individuals persist with inadequate LDL-C levels and still at risk. The purpose of this review was to discuss current status and describe advances in therapies beyond statins and monoclonal PCSK9 inhibitors. RECENT FINDINGS Ezetimibe and lomitapide have been used for many years to further reduce LDL-C and longer term data reinforce their safety. Bempedoic acid, an inhibitor of adenosine triphosphate-citrate lyase, has been shown to add LDL-C reduction on top of statins and ezetimibe, furthermore it may be an alternative for statin intolerant patients. Inclisiran is a small interfering ribonucleic acid inhibitor that reduces the hepatic production of PCSK9 that induces robust LDL-C lowering, similar to monoclonal antibodies, with the advantage of 2 or 3 injections per year. So far, no safety signs were seen with its use. Evinacumab, a monoclonal antibody that binds angiopoietin-like protein 3 (ANGPTL3), induces robust LDL-C lowering in either homozygous familial hypercholesterolemia or severe hypercholesterolemia patients with good tolerability. Many high-risk individuals persist with elevated LDL-C, newer medications further lower LDL-C on top of standard lipid-lowering therapies and are well tolerated. Ongoing clinical trials may prove if these novel medications will reduce cardiovascular events with safety.
Collapse
|
8
|
Soppert J, Lehrke M, Marx N, Jankowski J, Noels H. Lipoproteins and lipids in cardiovascular disease: from mechanistic insights to therapeutic targeting. Adv Drug Deliv Rev 2020; 159:4-33. [PMID: 32730849 DOI: 10.1016/j.addr.2020.07.019] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022]
Abstract
With cardiovascular disease being the leading cause of morbidity and mortality worldwide, effective and cost-efficient therapies to reduce cardiovascular risk are highly needed. Lipids and lipoprotein particles crucially contribute to atherosclerosis as underlying pathology of cardiovascular disease and influence inflammatory processes as well as function of leukocytes, vascular and cardiac cells, thereby impacting on vessels and heart. Statins form the first-line therapy with the aim to block cholesterol synthesis, but additional lipid-lowering drugs are sometimes needed to achieve low-density lipoprotein (LDL) cholesterol target values. Furthermore, beyond LDL cholesterol, also other lipid mediators contribute to cardiovascular risk. This review comprehensively discusses low- and high-density lipoprotein cholesterol, lipoprotein (a), triglycerides as well as fatty acids and derivatives in the context of cardiovascular disease, providing mechanistic insights into their role in pathological processes impacting on cardiovascular disease. Also, an overview of applied as well as emerging therapeutic strategies to reduce lipid-induced cardiovascular burden is provided.
Collapse
Affiliation(s)
- Josefin Soppert
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Aachen, Germany
| | - Michael Lehrke
- Medical Clinic I, University Hospital Aachen, Aachen, Germany
| | - Nikolaus Marx
- Medical Clinic I, University Hospital Aachen, Aachen, Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Aachen, Germany; Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht University, the Netherlands
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Aachen, Germany; Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands.
| |
Collapse
|
9
|
Stefanutti C. Lomitapide-a Microsomal Triglyceride Transfer Protein Inhibitor for Homozygous Familial Hypercholesterolemia. Curr Atheroscler Rep 2020; 22:38. [PMID: 32557261 PMCID: PMC7303073 DOI: 10.1007/s11883-020-00858-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Homozygous familial hypercholesterolemia (HoFH) is a rare, genetic condition characterized by high levels of Low density lipoprotein cholesterol (LDL-C); overt, early-onset atherosclerotic cardiovascular disease (ASCVD); and premature cardiovascular events and mortality. Lomitapide is a first-in-class microsomal triglyceride transfer protein inhibitor for the treatment of HoFH. This review provides an update on data emerging from real-world studies of lomitapide following on from its pivotal phase 3 clinical trial in HoFH. RECENT FINDINGS Recent registry data have confirmed that HoFH is characterized by delayed diagnosis, with many patients not receiving effective therapy until they are approaching the age when major adverse cardiovascular events may occur. Data from case series of varying sizes, and from a 163-patient registry of HoFH patients receiving lomitapide, have demonstrated that lomitapide doses are lower and adverse events less severe than in the phase 3 study. Lomitapide enables many patients to reach European Atherosclerosis Society LDL-C targets. Some patients are able to reduce frequency of lipoprotein apheresis or, in some cases, stop the procedure altogether-unless there is significant elevation of lipoprotein (a). Modelling analyses based on historical and clinical trial data indicate that lomitapide has the potential to improve cardiovascular outcomes and survival in HoFH. Real-world clinical experience with lomitapide has shown the drug to be effective with manageable, less marked adverse events than in formal clinical studies. Event modelling data suggest a survival benefit with lomitapide in HoFH.
Collapse
Affiliation(s)
- Claudia Stefanutti
- Extracorporeal Therapeutic Techniques Unit, Lipid Clinic and Atherosclerosis Prevention Centre, Regional Centre (Lazio) for Rare Diseases, Immunohematology and Transfusion Medicine, Department of Molecular Medicine, "Sapienza" University of Rome, "Umberto I" Hospital, Rome, Italy.
| |
Collapse
|
10
|
Blom DJ, Raal FJ, Santos RD, Marais AD. Lomitapide and Mipomersen-Inhibiting Microsomal Triglyceride Transfer Protein (MTP) and apoB100 Synthesis. Curr Atheroscler Rep 2019; 21:48. [PMID: 31741187 DOI: 10.1007/s11883-019-0809-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE OF REVIEW The goal of this review is to evaluate the role of inhibiting the synthesis of lipoproteins when there is no or little residual LDL-receptor function as in patients with homozygous familial hypercholesterolaemia. Lomitapide is administered orally once a day while mipomersen is given by subcutaneous injection once a week. Lomitapide inhibits microsomal triglyceride transfer protein while mipomersen is an antisense oligonucleotide directed against apoB100. RECENT FINDINGS The pivotal registration trials for lomitapide and mipomersen were published in 2013 and 2010, respectively. More recently published data from extension trials and cohort studies provides additional information on long-term safety and efficacy. The mean LDL cholesterol reduction was 50% with lomitapide in its single-arm open-label registration trial. Mipomersen reduced LDL cholesterol by approximately 25% in its double-blind, placebo-controlled registration study. Both lomitapide and mipomersen therapy are associated with variable increases in hepatic fat content. The long-term safety of increased hepatic fat content in patients receiving these therapies is uncertain and requires further study. Both drugs may cause elevated transaminase in some patients, but no cases of severe liver injury have been reported. Lomitapide may also cause gastrointestinal discomfort and diarrhoea, especially if patients consume high-fat meals and patients are advised to follow a low-fat diet supplemented with essential fatty acids and fat-soluble vitamins. Mipomersen may cause injection-site and influenza-like reactions. The effect of lomitapide and mipomersen on cardiovascular outcomes has not been studied, but circumstantial evidence suggests that the LDL cholesterol lowering achieved with these two agents may reduce cardiovascular event rates.
Collapse
Affiliation(s)
- Dirk J Blom
- Department of Medicine, Division of Lipidology and Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, 4th Floor Chris Barnard Building, Anzio Road, 7925 Observatory, Cape Town, South Africa.
| | - Frederick J Raal
- Carbohydrate and Lipid Metabolism Research Unit, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Raul D Santos
- Lipid Clinic Heart Institute (InCor), University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil.,Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - A David Marais
- Division of Chemical Pathology, University of Cape Town Health Science Faculty, Cape Town, South Africa
| |
Collapse
|