1
|
Hanna P, Ardell JL. Cardiac Neuroanatomy and Fundamentals of Neurocardiology. Card Electrophysiol Clin 2024; 16:229-237. [PMID: 39084716 DOI: 10.1016/j.ccep.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Cardiac control is mediated via nested-feedback reflex control networks involving the intrinsic cardiac ganglia, intra-thoracic extra-cardiac ganglia, spinal cord, brainstem, and higher centers. This control system is optimized to respond to normal physiologic stressors; however, it can be catastrophically disrupted by pathologic events such as myocardial ischemia. In fact, it is now recognized that cardiac disease progression reflects the dynamic interplay between adverse remodeling of the cardiac substrate coupled with autonomic dysregulation. With advances in understanding of this network dynamic in normal and pathologic states, neuroscience-based neuromodulation therapies can be devised for the management of acute and chronic cardiac pathologies.
Collapse
Affiliation(s)
- Peter Hanna
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; UCLA Neurocardiology Research Program of Excellence, UCLA, Los Angeles, CA 90095, USA
| | - Jeffrey L Ardell
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; UCLA Neurocardiology Research Program of Excellence, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
2
|
Grondin CM, Cartier R, Roy D, Perrault LP. The History of Surgery at the Montreal Heart Institute. Semin Thorac Cardiovasc Surg 2017; 28:674-681. [PMID: 28285673 DOI: 10.1053/j.semtcvs.2016.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2016] [Indexed: 11/11/2022]
Abstract
The Montreal Heart Institute (MHI) is a specialty hospital dedicated to cardiology and heart surgery. Founded in 1954 by Paul David, it is currently affiliated with the Université de Montréal. The Montreal Heart Institute is a center that has rested on the shoulders of multiple pioneers over the past 63 years. Renowned for its sustained excellence and commitment to patient care, the MHI also focuses on research and innovation. It has become one of the leading heart institutions in modern cardiac surgery and also one of the busiest cardiac surgery centers in the country. Our leaders have impacted the treatment of patients with heart diseases through clinical care and education. Staff surgeons have been trained at top centers across the world for the benefit of Canadian patients. The MHI was a pioneer in heart transplantation and CABG surgery and focuses on evaluative research of new technology.
Collapse
Affiliation(s)
- Claude M Grondin
- Department of Surgery, Montreal Heart Institute, Université de Montréal, Montreal, Québec, Canada
| | - Raymond Cartier
- Department of Surgery, Montreal Heart Institute, Université de Montréal, Montreal, Québec, Canada
| | - Denis Roy
- Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Québec, Canada
| | - Louis P Perrault
- Department of Surgery, Montreal Heart Institute, Université de Montréal, Montreal, Québec, Canada.
| |
Collapse
|
3
|
Smith FM, Vermeulen M, Cardinal R. Long-term spinal cord stimulation modifies canine intrinsic cardiac neuronal properties and ganglionic transmission during high-frequency repetitive activation. Physiol Rep 2016; 4:4/13/e12855. [PMID: 27401459 PMCID: PMC4945838 DOI: 10.14814/phy2.12855] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 06/16/2016] [Indexed: 12/28/2022] Open
Abstract
Long‐term spinal cord stimulation (SCS) applied to cranial thoracic SC segments exerts antiarrhythmic and cardioprotective actions in the canine heart in situ. We hypothesized that remodeling of intrinsic cardiac neuronal and synaptic properties occur in canines subjected to long‐term SCS, specifically that synaptic efficacy may be preferentially facilitated at high presynaptic nerve stimulation frequencies. Animals subjected to continuous SCS for 5–8 weeks (long‐term SCS: n = 17) or for 1 h (acute SCS: n = 4) were compared with corresponding control animals (long‐term: n = 15, acute: n = 4). At termination, animals were anesthetized, the heart was excised and neurones from the right atrial ganglionated plexus were identified and studied in vitro using standard intracellular microelectrode technique. Main findings were as follows: (1) a significant reduction in whole cell membrane input resistance and acceleration of the course of AHP decay identified among phasic neurones from long‐term SCS compared with controls, (2) significantly more robust synaptic transmission to rundown in long‐term SCS during high‐frequency (10–40 Hz) presynaptic nerve stimulation while recording from either phasic or accommodating postsynaptic neurones; this was associated with significantly greater posttrain excitatory postsynaptic potential (EPSP) numbers in long‐term SCS than control, and (3) synaptic efficacy was significantly decreased by atropine in both groups. Such changes did not occur in acute SCS. In conclusion, modification of intrinsic cardiac neuronal properties and facilitation of synaptic transmission at high stimulation frequency in long‐term SCS could improve physiologically modulated vagal inputs to the heart.
Collapse
Affiliation(s)
- Frank M Smith
- Department of Medical Neuroscience, Faculty of Medicine Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michel Vermeulen
- Department of Pharmacology, Faculté de médecine Université de Montréal and Centre de recherche Hôpital du Sacré-Cœur de Montréal, Montréal, Quebec, Canada
| | - René Cardinal
- Department of Pharmacology, Faculté de médecine Université de Montréal and Centre de recherche Hôpital du Sacré-Cœur de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
4
|
Abstract
Cardiac control is mediated via a series of reflex control networks involving somata in the (i) intrinsic cardiac ganglia (heart), (ii) intrathoracic extracardiac ganglia (stellate, middle cervical), (iii) superior cervical ganglia, (iv) spinal cord, (v) brainstem, and (vi) higher centers. Each of these processing centers contains afferent, efferent, and local circuit neurons, which interact locally and in an interdependent fashion with the other levels to coordinate regional cardiac electrical and mechanical indices on a beat-to-beat basis. This control system is optimized to respond to normal physiological stressors (standing, exercise, and temperature); however, it can be catastrophically disrupted by pathological events such as myocardial ischemia. In fact, it is now recognized that autonomic dysregulation is central to the evolution of heart failure and arrhythmias. Autonomic regulation therapy is an emerging modality in the management of acute and chronic cardiac pathologies. Neuromodulation-based approaches that target select nexus points of this hierarchy for cardiac control offer unique opportunities to positively affect therapeutic outcomes via improved efficacy of cardiovascular reflex control. As such, understanding the anatomical and physiological basis for such control is necessary to implement effectively novel neuromodulation therapies. © 2016 American Physiological Society. Compr Physiol 6:1635-1653, 2016.
Collapse
Affiliation(s)
- Jeffrey L Ardell
- Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, California, USA
| | - John Andrew Armour
- Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, California, USA
| |
Collapse
|
5
|
Matene E, Vinet A, Jacquemet V. Dynamics of atrial arrhythmias modulated by time-dependent acetylcholine concentration: a simulation study. Europace 2015; 16 Suppl 4:iv11-iv20. [PMID: 25362160 DOI: 10.1093/europace/euu255] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIM The autonomic nervous system modulates atrial activity, notably through acetylcholine (ACh) release. This time-dependent action may alter the dynamics of atrial arrhythmia. Our aim is to investigate in a computer model the changes induced by ACh release and degradation on the dynamical regime of a reentry. METHODS AND RESULTS A functional reentry was simulated in a 10 × 5 cm(2) two-dimensional tissue with canine atrial membrane kinetics including an ACh-dependent K(+) current. The local ACh concentration was altered over time in a circular region following a predefined spatiotemporal profile (ACh release and degradation) characterized by its maximum ACh level, time constant of release/degradation, and diameter of the region. Phase singularities were tracked to monitor the complexity of the dynamics. Four scenarios were identified: (i) the original reentry remained stable; (ii) repolarization gradients induced by ACh release caused wavebreaks, resulting in a transient complex dynamics that spontaneously converted to a single stable reentry; (iii) the reentry self-terminated through wavebreaks and wavefront interactions; (4) wavebreaks led to a complex dynamics that converted to two or three reentries that remained stable after ACh degradation. Higher ACh level, short ACh release time constant, larger heterogeneous region, and short distance between the heterogeneous region and the spiral tip were associated with higher occurrence of ACh-induced wavebreaks. CONCLUSION Variation of ACh concentration over time may modulate the complexity of atrial arrhythmias.
Collapse
Affiliation(s)
- Elhacene Matene
- Centre de Recherche, Hôpital du Sacré-Coeur de Montréal, 5400, boul. Gouin Ouest, Montreal, QC, Canada H4J 1C5 Département de Physiologie Moléculaire et Intégrative, Institut de Génie Biomédical, Université de Montréal, Montreal, QC, Canada H3T 1J4
| | - Alain Vinet
- Centre de Recherche, Hôpital du Sacré-Coeur de Montréal, 5400, boul. Gouin Ouest, Montreal, QC, Canada H4J 1C5 Département de Physiologie Moléculaire et Intégrative, Institut de Génie Biomédical, Université de Montréal, Montreal, QC, Canada H3T 1J4
| | - Vincent Jacquemet
- Centre de Recherche, Hôpital du Sacré-Coeur de Montréal, 5400, boul. Gouin Ouest, Montreal, QC, Canada H4J 1C5 Département de Physiologie Moléculaire et Intégrative, Institut de Génie Biomédical, Université de Montréal, Montreal, QC, Canada H3T 1J4
| |
Collapse
|
6
|
Ardell JL, Cardinal R, Beaumont E, Vermeulen M, Smith FM, Andrew Armour J. Chronic spinal cord stimulation modifies intrinsic cardiac synaptic efficacy in the suppression of atrial fibrillation. Auton Neurosci 2014; 186:38-44. [PMID: 25301713 DOI: 10.1016/j.autneu.2014.09.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/16/2014] [Accepted: 09/19/2014] [Indexed: 10/24/2022]
Abstract
We sought to determine whether spinal cord stimulation (SCS) therapy, when applied chronically to canines, imparts long-lasting cardio-protective effects on neurogenic atrial tachyarrhythmia induction and, if so, whether its effects can be attributable to i) changes in intrinsic cardiac (IC) neuronal transmembrane properties vs ii) modification of their interneuronal stochastic interactivity that initiates such pathology. Data derived from canines subjected to long-term SCS [(group 1: studied after 3-4 weeks SCS; n = 5) (group 2: studied after 5 weeks SCS; n = 11)] were compared to data derived from 10 control animals (including 4 sham SCS electrode implantations). During terminal studies conducted under anesthesia, chronotropic and inotropic responses to vagal nerve or stellate ganglion stimulation were similar in all 3 groups. Chronic SCS suppressed atrial tachyarrhythmia induction evoked by mediastinal nerve stimulation. When induced, arrhythmia durations were shortened (controls: median of 27 s; SCS 3-4 weeks: median of 16s; SCS 5 weeks: median of 7s). Phasic and accommodating right atrial neuronal somata displayed similar passive and active membrane properties in vitro, whether derived from sham or either chronic SCS group. Synaptic efficacy was differentially enhanced in accommodating (not phasic) IC neurons by chronic SCS. Taken together these data indicate that chronic SCS therapy modifies IC neuronal stochastic inter-connectivity in atrial fibrillation suppression by altering synaptic function without directly targeting the transmembrane properties of individual IC neuronal somata.
Collapse
Affiliation(s)
- Jeffrey L Ardell
- Department of Medicine, UCLA Health System, Los Angeles, CA, United States.
| | - René Cardinal
- Department of Pharmacology, Faculté de médecine, Université de Montréal and Centre de recherche, Hôpital du Sacré-Cœur de Montréal, Montréal, Quebec, Canada
| | - Eric Beaumont
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Michel Vermeulen
- Department of Pharmacology, Faculté de médecine, Université de Montréal and Centre de recherche, Hôpital du Sacré-Cœur de Montréal, Montréal, Quebec, Canada
| | - Frank M Smith
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - J Andrew Armour
- Department of Medicine, UCLA Health System, Los Angeles, CA, United States
| |
Collapse
|
7
|
Mapping and ablation of autonomic ganglia in prevention of postoperative atrial fibrillation in coronary surgery: MAAPPAFS atrial fibrillation randomized controlled pilot study. Can J Cardiol 2014; 30:1202-7. [PMID: 25262862 DOI: 10.1016/j.cjca.2014.04.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/07/2014] [Accepted: 04/07/2014] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Postoperative atrial fibrillation (POAF) remains common after coronary artery bypass grafting (CABG). Limited efforts to intervene on cardiac autonomic ganglionic plexi (AGP) during surgery show mixed results. In this pilot study, we evaluated the safety and feasibility of map-guided ablation of AGPs during isolated CABG in the prevention of POAF. METHODS In this pilot study, patients undergoing isolated CABG were randomized into an intervention group (mapping and ablation of AGP [AGP+] group), and a control group (no mapping and ablation [AGP-] group). Using high-frequency stimulation, active AGPs were identified and ablated intraoperatively using radiofrequency. Continuous rhythm monitoring, serum electrolytes, postoperative medications, and postoperative complications were recorded until discharge. RESULTS Randomization of 47 patients (24 AGP+ and 23 AGP-) resulted in similar baseline characteristics, past medical history, and preoperative medication use. The intervention added a median of 14 minutes to the operative time. The incidence of POAF, mean time in POAF, and median length of stay in hospital were: AGP+ 21% vs AGP- 30%; AGP+ 298 minutes vs AGP- 514 minutes; AGP+ 5 days vs AGP- 6 days; respectively). Postoperative complications, medication use, and daily serum electrolyte profiles were similar in both groups. CONCLUSIONS This pilot study demonstrated the safety and feasibility of mapping and ablation of AGP during CABG with minimal added operative time. Results further suggest a potentially clinically significant effect on POAF. A multicentre trial is warranted.
Collapse
|
8
|
Sabouri S, Matene E, Vinet A, Richer LP, Cardinal R, Armour JA, Pagé P, Kus T, Jacquemet V. Simultaneous epicardial and noncontact endocardial mapping of the canine right atrium: simulation and experiment. PLoS One 2014; 9:e91165. [PMID: 24598778 PMCID: PMC3945013 DOI: 10.1371/journal.pone.0091165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 02/10/2014] [Indexed: 11/19/2022] Open
Abstract
Epicardial high-density electrical mapping is a well-established experimental instrument to monitor in vivo the activity of the atria in response to modulations of the autonomic nervous system in sinus rhythm. In regions that are not accessible by epicardial mapping, noncontact endocardial mapping performed through a balloon catheter may provide a more comprehensive description of atrial activity. We developed a computer model of the canine right atrium to compare epicardial and noncontact endocardial mapping. The model was derived from an experiment in which electroanatomical reconstruction, epicardial mapping (103 electrodes), noncontact endocardial mapping (2048 virtual electrodes computed from a 64-channel balloon catheter), and direct-contact endocardial catheter recordings were simultaneously performed in a dog. The recording system was simulated in the computer model. For simulations and experiments (after atrio-ventricular node suppression), activation maps were computed during sinus rhythm. Repolarization was assessed by measuring the area under the atrial T wave (ATa), a marker of repolarization gradients. Results showed an epicardial-endocardial correlation coefficients of 0.80 and 0.63 (two dog experiments) and 0.96 (simulation) between activation times, and a correlation coefficients of 0.57 and 0.46 (two dog experiments) and 0.92 (simulation) between ATa values. Despite distance (balloon-atrial wall) and dimension reduction (64 electrodes), some information about atrial repolarization remained present in noncontact signals.
Collapse
Affiliation(s)
- Sepideh Sabouri
- Département de Physiologie, Université de Montréal, Montréal, Québec, Canada
- Centre de Recherche, Hôpital du Sacré-Coeur de Montréal, Montréal, Québec, Canada
| | - Elhacene Matene
- Département de Physiologie, Université de Montréal, Montréal, Québec, Canada
- Centre de Recherche, Hôpital du Sacré-Coeur de Montréal, Montréal, Québec, Canada
| | - Alain Vinet
- Département de Physiologie, Université de Montréal, Montréal, Québec, Canada
- Centre de Recherche, Hôpital du Sacré-Coeur de Montréal, Montréal, Québec, Canada
| | | | - René Cardinal
- Département de Physiologie, Université de Montréal, Montréal, Québec, Canada
- Département de Pharmacologie, Université de Montréal, Montréal, Québec, Canada
| | - J. Andrew Armour
- Department of Pharmacology, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Pierre Pagé
- Centre de Recherche, Hôpital du Sacré-Coeur de Montréal, Montréal, Québec, Canada
- Département de Chirurgie, Université de Montréal, Montréal, Québec, Canada
| | - Teresa Kus
- Département de Physiologie, Université de Montréal, Montréal, Québec, Canada
- Département de Pharmacologie, Université de Montréal, Montréal, Québec, Canada
| | - Vincent Jacquemet
- Département de Physiologie, Université de Montréal, Montréal, Québec, Canada
- Centre de Recherche, Hôpital du Sacré-Coeur de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
9
|
Moss E, Cardinal R, Yin Y, Pagé P. Bilateral atrial ganglionated plexus involvement in atrial responses to left-sided plexus stimulation in canines. Cardiovasc Res 2013; 99:194-202. [DOI: 10.1093/cvr/cvt092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|