2
|
Chen WT, Lo LW, Tsai WC, Lin YJ, Chang SL, Hu YF, Chung FP, Liao JN, Tuan TC, Chao TF, Lin CY, Chang TY, Kuo L, Liu CM, Liu SH, Cheng WH, Lin L, Ton ANK, Hsu CY, Chheng C, Elimam A, Wang HS, Kuo MR, Kao PH, Chen SA. Application of dynamic display technology to identify gaps after pulmonary vein isolation in catheter ablation of atrial fibrillation. J Cardiol 2022; 80:34-40. [PMID: 35337707 DOI: 10.1016/j.jjcc.2022.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/02/2022] [Accepted: 02/25/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND The identification of post pulmonary vein isolation (PVI) gaps by activation and voltage maps is time-consuming. This study aimed to investigate the characteristics, efficiency and accuracy of LiveView dynamic display module (EnSite™ Dynamic Display; Abbott, Abbott Park, IL, USA) in unmasking post PVI gaps and conduction block line. METHOD Twenty four patients with paroxysmal atrial fibrillation (PAF) who failed to achieve first-pass PVI or with recurrent PAF were enrolled. Ninety-six pulmonary veins (PVs) were evaluated, and gaps were identified in 25 (26.0%) PVs. The gap location was confirmed by activation and propagation maps; 110 frames on gaps and 118 frames on block lines were analyzed by using LiveView module. We defined isochronal crowding in the local activation time (LAT) mode as three colors between two adjacent electrodes. Each frame was classified as with or without isochronal crowding in LAT mode and one/continuous color or isochronal discontinuity in reentrant mode. The gray color inside the PVs was considered to represent conduction block. RESULT The isochronal crowding could be found on both gap and block line in LAT mode, whereas isochronal discontinuity only presented on the block line in reentrant mode. The sensitivity and specificity of isochronal discontinuity or gray color in reentrant mode to identify block line were 61.0% and 100%, respectively. The sensitivity and specificity of isochronal crowding or gray color in LAT mode to identify block line were 71.2% and 71.8%, respectively. CONCLUSION Reentrant mode in LiveView module is very specific in identifying block lines. We proposed an efficient, practical algorithm to differentiate the block line from PV gaps.
Collapse
Affiliation(s)
- Wei-Tso Chen
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Cardiology, Department of Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Li-Wei Lo
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Wen-Chin Tsai
- Division of Cardiology, Department of Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Yenn-Jiang Lin
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Lin Chang
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Feng Hu
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Fa-Po Chung
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jo-Nan Liao
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ta-Chuan Tuan
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tze-Fan Chao
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chin-Yu Lin
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ting-Yung Chang
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ling Kuo
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Min Liu
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shin-Huei Liu
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wen-Han Cheng
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Linda Lin
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - An Nu-Khanh Ton
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chu-Yu Hsu
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chhay Chheng
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ahmed Elimam
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hui-Sheng Wang
- Division of Cardiology, Department of Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Ming-Ren Kuo
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Pei-Heng Kao
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Ann Chen
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang Ming Chiao Tung University, Taipei, Taiwan; Cardiovascular center, Taichung Veterans General Hospital, Taichung, Taiwan.
| |
Collapse
|
3
|
van Schie MS, Starreveld R, Roos-Serote MC, Taverne YJHJ, van Schaagen FRN, Bogers AJJC, de Groot NMS. Classification of sinus rhythm single potential morphology in patients with mitral valve disease. Europace 2021; 22:1509-1519. [PMID: 33033830 PMCID: PMC7544534 DOI: 10.1093/europace/euaa130] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/24/2020] [Accepted: 04/28/2020] [Indexed: 12/31/2022] Open
Abstract
Aims The morphology of unipolar single potentials (SPs) contains information on intra-atrial conduction disorders and possibly the substrate underlying atrial fibrillation (AF). This study examined the impact of AF episodes on features of SP morphology during sinus rhythm (SR) in patients with mitral valve disease. Methods and results Intraoperative epicardial mapping (interelectrode distance 2 mm) of the right and left atrium (RA, LA), Bachmann’s bundle (BB), and pulmonary vein area (PVA) was performed in 67 patients (27 male, 67 ± 11 years) with or without a history of paroxysmal AF (PAF). Unipolar SPs were classified according to their differences in relative R- and S-wave amplitude ratios. A clear predominance of S-waves was observed at BB and the RA in both the no AF and PAF groups (BB 88.8% vs. 85.9%, RA 92.1% vs. 85.1%, respectively). Potential voltages at the RA, BB, and PVA were significantly lower in the PAF group (P < 0.001 for each) and were mainly determined by the size of the S-waves amplitudes. The largest difference in S-wave amplitudes was found at BB; the S-wave amplitude was lower in the PAF group [4.08 (2.45–6.13) mV vs. 2.94 (1.40–4.75) mV; P < 0.001]. In addition, conduction velocity (CV) at BB was lower as well [0.97 (0.70–1.21) m/s vs. 0.89 (0.62–1.16) m/s, P < 0.001]. Conclusion Though excitation of the atria during SR is heterogeneously disrupted, a history of AF is characterized by decreased SP amplitudes at BB due to loss of S-wave amplitudes and decreased CV. This suggests that SP morphology could provide additional information on wavefront propagation.
Collapse
Affiliation(s)
- Mathijs S van Schie
- Department of Cardiology, Unit Translational Electrophysiology, Erasmus Medical Centre, Dr Molewaterplein 40, 3015GD Rotterdam, the Netherlands
| | - Roeliene Starreveld
- Department of Cardiology, Unit Translational Electrophysiology, Erasmus Medical Centre, Dr Molewaterplein 40, 3015GD Rotterdam, the Netherlands
| | - Maarten C Roos-Serote
- Department of Cardiology, Unit Translational Electrophysiology, Erasmus Medical Centre, Dr Molewaterplein 40, 3015GD Rotterdam, the Netherlands
| | - Yannick J H J Taverne
- Department of Cardiothoracic Surgery, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Frank R N van Schaagen
- Department of Cardiothoracic Surgery, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Ad J J C Bogers
- Department of Cardiothoracic Surgery, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Natasja M S de Groot
- Department of Cardiology, Unit Translational Electrophysiology, Erasmus Medical Centre, Dr Molewaterplein 40, 3015GD Rotterdam, the Netherlands
| |
Collapse
|