1
|
Lerman BB, Markowitz SM, Cheung JW, Thomas G, Ip JE. Ventricular Tachycardia Due to Triggered Activity: Role of Early and Delayed Afterdepolarizations. JACC Clin Electrophysiol 2024; 10:379-401. [PMID: 38127010 DOI: 10.1016/j.jacep.2023.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/24/2023] [Accepted: 10/28/2023] [Indexed: 12/23/2023]
Abstract
Most forms of sustained ventricular tachycardia (VT) are caused by re-entry, resulting from altered myocardial conduction and refractoriness secondary to underlying structural heart disease. In contrast, VT caused by triggered activity (TA) is unrelated to an abnormal structural substrate and is often caused by molecular defects affecting ion channel function or regulation of intracellular calcium cycling. This review summarizes the cellular and molecular bases underlying TA and exemplifies their clinical relevance with selective representative scenarios. The underlying basis of TA caused by delayed afterdepolarizations is related to sarcoplasmic reticulum calcium overload, calcium waves, and diastolic sarcoplasmic reticulum calcium leak. Clinical examples of TA caused by delayed afterdepolarizations include sustained right and left ventricular outflow tract tachycardia and catecholaminergic polymorphic VT. The other form of afterpotentials, early afterdepolarizations, are systolic events and inscribe early afterdepolarizations during phase 2 or phase 3 of the action potential. The fundamental defect is a decrease in repolarization reserve with associated increases in late plateau inward currents. Malignant ventricular arrhythmias in the long QT syndromes are initiated by early afterdepolarization-mediated TA. An understanding of the molecular and cellular bases of these arrhythmias has resulted in generally effective pharmacologic-based therapies, but these are nonspecific agents that have off-target effects. Therapeutic efficacy may need to be augmented with an implantable defibrillator. Next-generation therapies will include novel agents that rescue arrhythmogenic abnormalities in cellular signaling pathways and gene therapy approaches that transfer or edit pathogenic gene variants or silence mutant messenger ribonucleic acid.
Collapse
Affiliation(s)
- Bruce B Lerman
- Department of Medicine, Division of Cardiology and the Greenberg Institute for Cardiac Electrophysiology, Department of Medicine, Cornell University Medical Center, New York, New York, USA.
| | - Steven M Markowitz
- Department of Medicine, Division of Cardiology and the Greenberg Institute for Cardiac Electrophysiology, Department of Medicine, Cornell University Medical Center, New York, New York, USA
| | - Jim W Cheung
- Department of Medicine, Division of Cardiology and the Greenberg Institute for Cardiac Electrophysiology, Department of Medicine, Cornell University Medical Center, New York, New York, USA
| | - George Thomas
- Department of Medicine, Division of Cardiology and the Greenberg Institute for Cardiac Electrophysiology, Department of Medicine, Cornell University Medical Center, New York, New York, USA
| | - James E Ip
- Department of Medicine, Division of Cardiology and the Greenberg Institute for Cardiac Electrophysiology, Department of Medicine, Cornell University Medical Center, New York, New York, USA
| |
Collapse
|
2
|
Lu YY, Chen YC, Lin YK, Chen SA, Chen YJ. Electrical and Structural Insights into Right Ventricular Outflow Tract Arrhythmogenesis. Int J Mol Sci 2023; 24:11795. [PMID: 37511554 PMCID: PMC10380666 DOI: 10.3390/ijms241411795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/08/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
The right ventricular outflow tract (RVOT) is the major origin of ventricular arrhythmias, including premature ventricular contractions, idiopathic ventricular arrhythmias, Brugada syndrome, torsade de pointes, long QT syndrome, and arrhythmogenic right ventricular cardiomyopathy. The RVOT has distinct developmental origins and cellular characteristics and a complex myocardial architecture with high shear wall stress, which may lead to its high vulnerability to arrhythmogenesis. RVOT myocytes are vulnerable to intracellular sodium and calcium overload due to calcium handling protein modulation, enhanced CaMKII activity, ryanodine receptor phosphorylation, and a higher cAMP level activated by predisposing factors or pathological conditions. A reduction in Cx43 and Scn5a expression may lead to electrical uncoupling in RVOT. The purpose of this review is to update the current understanding of the cellular and molecular mechanisms of RVOT arrhythmogenesis.
Collapse
Affiliation(s)
- Yen-Yu Lu
- Division of Cardiology, Department of Internal Medicine, Sijhih Cathay General Hospital, New Taipei City 22174, Taiwan
- School of Medicine, Fu-Jen Catholic University, New Taipei City 24257, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yung-Kuo Lin
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Cardiovacular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Shih-Ann Chen
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung 40705, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yi-Jen Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Cardiovacular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11696, Taiwan
| |
Collapse
|
3
|
Theory and Applications of the (Cardio) Genomic Fabric Approach to Post-Ischemic and Hypoxia-Induced Heart Failure. J Pers Med 2022; 12:jpm12081246. [PMID: 36013195 PMCID: PMC9410512 DOI: 10.3390/jpm12081246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
The genomic fabric paradigm (GFP) characterizes the transcriptome topology by the transcripts’ abundances, the variability of the expression profile, and the inter-coordination of gene expressions in each pathophysiological condition. The expression variability analysis provides an indirect estimate of the cell capability to limit the stochastic fluctuations of the expression levels of key genes, while the expression coordination analysis determines the gene networks in functional pathways. This report illustrates the theoretical bases and the mathematical framework of the GFP with applications to our microarray data from mouse models of post ischemic, and constant and intermittent hypoxia-induced heart failures. GFP analyses revealed the myocardium priorities in keeping the expression of key genes within narrow intervals, determined the statistically significant gene interlinkages, and identified the gene master regulators in the mouse heart left ventricle under normal and ischemic conditions. We quantified the expression regulation, alteration of the expression control, and remodeling of the gene networks caused by the oxygen deprivation and determined the efficacy of the bone marrow mono-nuclear stem cell injections to restore the normal transcriptome. Through the comprehensive assessment of the transcriptome, GFP would pave the way towards the development of personalized gene therapy of cardiac diseases.
Collapse
|
4
|
Wang M, Tu X. The Genetics and Epigenetics of Ventricular Arrhythmias in Patients Without Structural Heart Disease. Front Cardiovasc Med 2022; 9:891399. [PMID: 35783865 PMCID: PMC9240357 DOI: 10.3389/fcvm.2022.891399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/25/2022] [Indexed: 12/19/2022] Open
Abstract
Ventricular arrhythmia without structural heart disease is an arrhythmic disorder that occurs in structurally normal heart and no transient or reversible arrhythmia factors, such as electrolyte disorders and myocardial ischemia. Ventricular arrhythmias without structural heart disease can be induced by multiple factors, including genetics and environment, which involve different genetic and epigenetic regulation. Familial genetic analysis reveals that cardiac ion-channel disorder and dysfunctional calcium handling are two major causes of this type of heart disease. Genome-wide association studies have identified some genetic susceptibility loci associated with ventricular tachycardia and ventricular fibrillation, yet relatively few loci associated with no structural heart disease. The effects of epigenetics on the ventricular arrhythmias susceptibility genes, involving non-coding RNAs, DNA methylation and other regulatory mechanisms, are gradually being revealed. This article aims to review the knowledge of ventricular arrhythmia without structural heart disease in genetics, and summarizes the current state of epigenetic regulation.
Collapse
|