2
|
Wen F, Liu J, Dai R, Hong S, Ji B, Liu J, Zhang J, Han X, Lv Q, Liu J, Shen Q, Xu H. Angiopoietin-like protein 3: a novel potential biomarker for nephrotic syndrome in children. Front Pediatr 2023; 11:1113484. [PMID: 37266537 PMCID: PMC10229790 DOI: 10.3389/fped.2023.1113484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/03/2023] [Indexed: 06/03/2023] Open
Abstract
Background Angiopoietin-like 3 (ANGPTL3) is a secretory glycoprotein. It has been demonstrated that ANGPTL3 level was upregulated in minimal change nephrotic syndrome (MCNS) kidney tissues. Subsequently, our group found that ANGPTL3 level was closely correlated with nephropathy in vivo and in vitro. Hence, whether ANGPTL3 level could be correlated with the proteinuria level, and assessment of disease severity of nephrotic syndrome (NS) remained to be investigated. This study aimed to analyzed the correlation between the levels of ANGPTL3 in serum and urine of patients with nephrotic syndrome and proteinuria, and assessed the severity of the patients' disease. In future clinical translation, the level of ANGPTL3 in serum, urine will be used as a biomarker to better predict the development of nephrotic syndrome. Methods A total of 200 NS patients and 80 healthy controls (age, 1-18 years) were admitted to our institution between 2021 and 2022. The etiology of NS included primary nephrotic syndrome (PNS, n = 144) and NS with other causes (n = 56). A total of 280 serum samples and 244 urinary samples were collected to determine ANGPTL3 level using enzyme-linked immunosorbent assay (ELISA). Results Serum ANGPTL3 and urinary ANGPTL3/Cre were remarkably elevated in NS patients compared with those in healthy controls. Furthermore, serum ANGPTL3 and urinary ANGPTL3/Cre were significantly correlated with proteinuria level. Additionally, multivariate linear regression analysis demonstrated that serum ALB was independently correlated with serum ANGPTL3 and PRO/CR was independently correlated with urinary ANGPTL3/Cre in NS patients. Conclusion Serum ANGPTL3 and urinary ANGPTL3/Cre showed a promising performance in the diagnosis of NS, and served as novel potential noninvasive biomarkers to assess disease severity of NS. Further exploration of the role of ANGPTL3 level may shed a new light on the treatment of NS.
Collapse
Affiliation(s)
- Fujie Wen
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
| | - Junchao Liu
- Department of Traditional Chinese Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Rufeng Dai
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
| | - Sha Hong
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
| | - Baowei Ji
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
| | - Jiaojiao Liu
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
| | - Jun Zhang
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
| | - Xinli Han
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
| | - Qianying Lv
- Department of Rheumatology, Children's Hospital of Fudan University, Shanghai, China
| | - Jialu Liu
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
| | - Qian Shen
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
| | - Hong Xu
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
3
|
Cadby G, Giles C, Melton PE, Huynh K, Mellett NA, Duong T, Nguyen A, Cinel M, Smith A, Olshansky G, Wang T, Brozynska M, Inouye M, McCarthy NS, Ariff A, Hung J, Hui J, Beilby J, Dubé MP, Watts GF, Shah S, Wray NR, Lim WLF, Chatterjee P, Martins I, Laws SM, Porter T, Vacher M, Bush AI, Rowe CC, Villemagne VL, Ames D, Masters CL, Taddei K, Arnold M, Kastenmüller G, Nho K, Saykin AJ, Han X, Kaddurah-Daouk R, Martins RN, Blangero J, Meikle PJ, Moses EK. Comprehensive genetic analysis of the human lipidome identifies loci associated with lipid homeostasis with links to coronary artery disease. Nat Commun 2022; 13:3124. [PMID: 35668104 PMCID: PMC9170690 DOI: 10.1038/s41467-022-30875-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/17/2022] [Indexed: 12/26/2022] Open
Abstract
We integrated lipidomics and genomics to unravel the genetic architecture of lipid metabolism and identify genetic variants associated with lipid species putatively in the mechanistic pathway for coronary artery disease (CAD). We quantified 596 lipid species in serum from 4,492 individuals from the Busselton Health Study. The discovery GWAS identified 3,361 independent lipid-loci associations, involving 667 genomic regions (479 previously unreported), with validation in two independent cohorts. A meta-analysis revealed an additional 70 independent genomic regions associated with lipid species. We identified 134 lipid endophenotypes for CAD associated with 186 genomic loci. Associations between independent lipid-loci with coronary atherosclerosis were assessed in ∼456,000 individuals from the UK Biobank. Of the 53 lipid-loci that showed evidence of association (P < 1 × 10-3), 43 loci were associated with at least one lipid endophenotype. These findings illustrate the value of integrative biology to investigate the aetiology of atherosclerosis and CAD, with implications for other complex diseases.
Collapse
Affiliation(s)
- Gemma Cadby
- School of Population and Global Health, University of Western Australia, Crawley, WA, Australia
| | - Corey Giles
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| | - Phillip E Melton
- School of Population and Global Health, University of Western Australia, Crawley, WA, Australia
- Menzies Research Institute, University of Tasmania, Hobart, TAS, Australia
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| | | | - Thy Duong
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Anh Nguyen
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Michelle Cinel
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Alex Smith
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Gavriel Olshansky
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| | - Tingting Wang
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| | - Marta Brozynska
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Mike Inouye
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Nina S McCarthy
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
| | - Amir Ariff
- School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Joseph Hung
- School of Medicine, The University of Western Australia, Crawley, WA, Australia
- Department of Cardiovascular Medicine, Sir Charles Gairdner Hospital, Perth, WA, Australia
- Busselton Population Medical Research Institute Inc., Perth, WA, Australia
| | - Jennie Hui
- Busselton Population Medical Research Institute Inc., Perth, WA, Australia
- PathWest Laboratory Medicine WA, Perth, WA, Australia
| | - John Beilby
- Busselton Population Medical Research Institute Inc., Perth, WA, Australia
- PathWest Laboratory Medicine WA, Perth, WA, Australia
| | - Marie-Pierre Dubé
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal Heart Institute, Montreal, QC, Canada
| | - Gerald F Watts
- School of Medicine, The University of Western Australia, Crawley, WA, Australia
- Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, Perth, WA, Australia
| | - Sonia Shah
- Institute for Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Naomi R Wray
- Institute for Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| | - Wei Ling Florence Lim
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Cooperative research Centre (CRC) for Mental Health, Joondalup, WA, Australia
| | - Pratishtha Chatterjee
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
- KaRa Institute of Neurological Disease, Sydney, Macquarie Park, NSW, Australia
| | - Ian Martins
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Simon M Laws
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
- Collaborative Genomics Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Tenielle Porter
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
- Collaborative Genomics Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Michael Vacher
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
- Collaborative Genomics Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- The Australian e-Health Research Centre, Health and Biosecurity, CSIRO, Floreat, WA, Australia
| | - Ashley I Bush
- The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Christopher C Rowe
- The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC, Australia
| | - Victor L Villemagne
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC, Australia
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC, Australia
| | - David Ames
- National Ageing Research Institute, Parkville, VIC, Australia
- University of Melbourne Academic Unit for Psychiatry of Old Age, St George's Hospital, Kew, VIC, Australia
| | - Colin L Masters
- The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Kevin Taddei
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Matthias Arnold
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Ralph N Martins
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Cooperative research Centre (CRC) for Mental Health, Joondalup, WA, Australia
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
- KaRa Institute of Neurological Disease, Sydney, Macquarie Park, NSW, Australia
| | - John Blangero
- South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia.
- Monash University, Melbourne, VIC, Australia.
| | - Eric K Moses
- Menzies Research Institute, University of Tasmania, Hobart, TAS, Australia.
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|