1
|
McBride KL, Ware SM. Modifying Mendel Redux: Unbiased Approaches Can Find Modifiers. ACTA ACUST UNITED AC 2017; 10:CIRCGENETICS.117.001891. [PMID: 29025762 DOI: 10.1161/circgenetics.117.001891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Kim L McBride
- From the Center for Cardiovascular Research (K.L.M.) and Department of Pediatrics, College of Medicine (K.L.M.), Nationwide Children's Hospital, Ohio State University, Columbus; and Departments of Pediatrics and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (S.M.W.).
| | - Stephanie M Ware
- From the Center for Cardiovascular Research (K.L.M.) and Department of Pediatrics, College of Medicine (K.L.M.), Nationwide Children's Hospital, Ohio State University, Columbus; and Departments of Pediatrics and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (S.M.W.)
| |
Collapse
|
2
|
The analysis of heterotaxy patients reveals new loss-of-function variants of GRK5. Sci Rep 2016; 6:33231. [PMID: 27618959 PMCID: PMC5020398 DOI: 10.1038/srep33231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/19/2016] [Indexed: 11/08/2022] Open
Abstract
G protein-coupled receptor kinase 5 (GRK5) is a regulator of cardiac performance and a potential therapeutic target in heart failure in the adult. Additionally, we have previously classified GRK5 as a determinant of left-right asymmetry and proper heart development using zebrafish. We thus aimed to identify GRK5 variants of functional significance by analysing 187 individuals with laterality defects (heterotaxy) that were associated with a congenital heart defect (CHD). Using Sanger sequencing we identified two moderately frequent variants in GRK5 with minor allele frequencies <10%, and seven very rare polymorphisms with minor allele frequencies <1%, two of which are novel variants. Given their evolutionarily conserved position in zebrafish, in-depth functional characterisation of four variants (p.Q41L, p.G298S, p.R304C and p.T425M) was performed. We tested the effects of these variants on normal subcellular localisation and the ability to desensitise receptor signalling as well as their ability to correct the left-right asymmetry defect upon Grk5l knockdown in zebrafish. While p.Q41L, p.R304C and p.T425M responded normally in the first two aspects, neither p.Q41L nor p.R304C were capable of rescuing the lateralisation phenotype. The fourth variant, p.G298S was identified as a complete loss-of-function variant in all assays and provides insight into the functions of GRK5.
Collapse
|
3
|
Los E, Quezada E, Chen Z, Lapidus J, Silberbach M. Pilot Study of Blood Pressure in Girls With Turner Syndrome: An Awareness Gap, Clinical Associations, and New Hypotheses. Hypertension 2016; 68:133-6. [PMID: 27217413 DOI: 10.1161/hypertensionaha.115.07065] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/22/2016] [Indexed: 01/15/2023]
Abstract
Cardiovascular disease is the major factor that reduces lifespan in Turner syndrome. High blood pressure (BP) is common in Turner syndrome and is the most easily treatable cardiovascular risk factor. We studied the prevalence of elevated screening systemic BP, awareness of the problem, and its clinical associations in a large group of girls attending the annual meeting of the Turner Syndrome Society of the United States. Among 168 girls aged 2 to 17 years, 42% had elevated screening BP (systolic and diastolic), yet only 8% reported a previous diagnosis of hypertension. History of aortic coarctation repair (17%) was positively associated with elevated systolic BP (52% versus 32%; P<0.05). Elevated systolic BP was positively associated with obesity (56% versus 31%; P<0.05). Because the prevalence of obesity in the studied population was similar to Center for Disease Control published data for obesity in all girls and the prevalence of increased BP is approximately twice that of the general population, the Turner syndrome phenotype/genotype probably includes an intrinsic risk for hypertension. Obesity and repaired aortic coarctation increase this risk further. There seems to be a BP awareness gap in girls with Turner syndrome. Because girls living with Turner syndrome are a sensitized population for hypertension, further study may provide clues to genetic factors leading to a better understanding of essential hypertension in the general population.
Collapse
Affiliation(s)
- Evan Los
- From the Pediatric Endocrinology (E.L.), Pediatric Cardiology (E.Q., M.S.), and Department of Public Health & Preventive Medicine (Z.C., J.L), Oregon Health & Science University, Portland, OR.
| | - Emilio Quezada
- From the Pediatric Endocrinology (E.L.), Pediatric Cardiology (E.Q., M.S.), and Department of Public Health & Preventive Medicine (Z.C., J.L), Oregon Health & Science University, Portland, OR
| | - Zunqiu Chen
- From the Pediatric Endocrinology (E.L.), Pediatric Cardiology (E.Q., M.S.), and Department of Public Health & Preventive Medicine (Z.C., J.L), Oregon Health & Science University, Portland, OR
| | - Jodi Lapidus
- From the Pediatric Endocrinology (E.L.), Pediatric Cardiology (E.Q., M.S.), and Department of Public Health & Preventive Medicine (Z.C., J.L), Oregon Health & Science University, Portland, OR
| | - Michael Silberbach
- From the Pediatric Endocrinology (E.L.), Pediatric Cardiology (E.Q., M.S.), and Department of Public Health & Preventive Medicine (Z.C., J.L), Oregon Health & Science University, Portland, OR
| |
Collapse
|
4
|
Hinton RB, McBride KL, Bleyl SB, Bowles NE, Border WL, Garg V, Smolarek TA, Lalani SR, Ware SM. Rationale for the Cytogenomics of Cardiovascular Malformations Consortium: A Phenotype Intensive Registry Based Approach. J Cardiovasc Dev Dis 2015; 2:76-92. [PMID: 29371513 PMCID: PMC5753096 DOI: 10.3390/jcdd2020076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 04/18/2015] [Accepted: 04/22/2015] [Indexed: 12/23/2022] Open
Abstract
Cardiovascular malformations (CVMs) are the most common birth defect, occurring in 1%–5% of all live births. Although the genetic contribution to CVMs is well recognized, the genetic causes of human CVMs are identified infrequently. In addition, a failure of systematic deep phenotyping of CVMs, resulting from the complexity and heterogeneity of malformations, has obscured genotype-phenotype correlations and contributed to a lack of understanding of disease mechanisms. To address these knowledge gaps, we have developed the Cytogenomics of Cardiovascular Malformations (CCVM) Consortium, a multi-site alliance of geneticists and cardiologists, contributing to a database registry of submicroscopic genetic copy number variants (CNVs) based on clinical chromosome microarray testing in individuals with CVMs using detailed classification schemes. Cardiac classification is performed using a modification to the National Birth Defects Prevention Study approach, and non-cardiac diagnoses are captured through ICD-9 and ICD-10 codes. By combining a comprehensive approach to clinically relevant genetic analyses with precise phenotyping, the Consortium goal is to identify novel genomic regions that cause or increase susceptibility to CVMs and to correlate the findings with clinical phenotype. This registry will provide critical insights into genetic architecture, facilitate genotype-phenotype correlations, and provide a valuable resource for the medical community.
Collapse
Affiliation(s)
- Robert B Hinton
- Divisions of Cardiology and Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | - Kim L McBride
- Center for Cardiovascular and Pulmonary Research and Heart Center, Nationwide Children's Hospital and Department of Pediatrics, Ohio State University, Columbus, OH 43205, USA.
| | - Steven B Bleyl
- Division of Pediatric Cardiology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| | - Neil E Bowles
- Division of Pediatric Cardiology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| | - William L Border
- Division of Cardiology, Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.
| | - Vidu Garg
- Center for Cardiovascular and Pulmonary Research and Heart Center, Nationwide Children's Hospital and Department of Pediatrics, Ohio State University, Columbus, OH 43205, USA.
| | - Teresa A Smolarek
- Divisions of Cardiology and Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | - Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Stephanie M Ware
- Departments of Pediatrics and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
5
|
Bonachea EM, Zender G, White P, Corsmeier D, Newsom D, Fitzgerald-Butt S, Garg V, McBride KL. Use of a targeted, combinatorial next-generation sequencing approach for the study of bicuspid aortic valve. BMC Med Genomics 2014; 7:56. [PMID: 25260786 PMCID: PMC4181662 DOI: 10.1186/1755-8794-7-56] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/24/2014] [Indexed: 12/18/2022] Open
Abstract
Background Bicuspid aortic valve (BAV) is the most common type of congenital heart disease with a population prevalence of 1-2%. While BAV is known to be highly heritable, mutations in single genes (such as GATA5 and NOTCH1) have been reported in few human BAV cases. Traditional gene sequencing methods are time and labor intensive, while next-generation high throughput sequencing remains costly for large patient cohorts and requires extensive bioinformatics processing. Here we describe an approach to targeted multi-gene sequencing with combinatorial pooling of samples from BAV patients. Methods We studied a previously described cohort of 78 unrelated subjects with echocardiogram-identified BAV. Subjects were identified as having isolated BAV or BAV associated with coarctation of aorta (BAV-CoA). BAV cusp fusion morphology was defined as right-left cusp fusion, right non-coronary cusp fusion, or left non-coronary cusp fusion. Samples were combined into 19 pools using a uniquely overlapping combinatorial design; a given mutation could be attributed to a single individual on the basis of which pools contained the mutation. A custom gene capture of 97 candidate genes was sequenced on the Illumina HiSeq 2000. Multistep bioinformatics processing was performed for base calling, variant identification, and in-silico analysis of putative disease-causing variants. Results Targeted capture identified 42 rare, non-synonymous, exonic variants involving 35 of the 97 candidate genes. Among these variants, in-silico analysis classified 33 of these variants as putative disease-causing changes. Sanger sequencing confirmed thirty-one of these variants, found among 16 individuals. There were no significant differences in variant burden among BAV fusion phenotypes or isolated BAV versus BAV-CoA. Pathway analysis suggests a role for the WNT signaling pathway in human BAV. Conclusion We successfully developed a pooling and targeted capture strategy that enabled rapid and cost effective next generation sequencing of target genes in a large patient cohort. This approach identified a large number of putative disease-causing variants in a cohort of patients with BAV, including variants in 26 genes not previously associated with human BAV. The data suggest that BAV heritability is complex and polygenic. Our pooling approach saved over $39,350 compared to an unpooled, targeted capture sequencing strategy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kim L McBride
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
6
|
Donofrio MT, Moon-Grady AJ, Hornberger LK, Copel JA, Sklansky MS, Abuhamad A, Cuneo BF, Huhta JC, Jonas RA, Krishnan A, Lacey S, Lee W, Michelfelder EC, Rempel GR, Silverman NH, Spray TL, Strasburger JF, Tworetzky W, Rychik J. Diagnosis and treatment of fetal cardiac disease: a scientific statement from the American Heart Association. Circulation 2014; 129:2183-242. [PMID: 24763516 DOI: 10.1161/01.cir.0000437597.44550.5d] [Citation(s) in RCA: 762] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND The goal of this statement is to review available literature and to put forth a scientific statement on the current practice of fetal cardiac medicine, including the diagnosis and management of fetal cardiovascular disease. METHODS AND RESULTS A writing group appointed by the American Heart Association reviewed the available literature pertaining to topics relevant to fetal cardiac medicine, including the diagnosis of congenital heart disease and arrhythmias, assessment of cardiac function and the cardiovascular system, and available treatment options. The American College of Cardiology/American Heart Association classification of recommendations and level of evidence for practice guidelines were applied to the current practice of fetal cardiac medicine. Recommendations relating to the specifics of fetal diagnosis, including the timing of referral for study, indications for referral, and experience suggested for performance and interpretation of studies, are presented. The components of a fetal echocardiogram are described in detail, including descriptions of the assessment of cardiac anatomy, cardiac function, and rhythm. Complementary modalities for fetal cardiac assessment are reviewed, including the use of advanced ultrasound techniques, fetal magnetic resonance imaging, and fetal magnetocardiography and electrocardiography for rhythm assessment. Models for parental counseling and a discussion of parental stress and depression assessments are reviewed. Available fetal therapies, including medical management for arrhythmias or heart failure and closed or open intervention for diseases affecting the cardiovascular system such as twin-twin transfusion syndrome, lung masses, and vascular tumors, are highlighted. Catheter-based intervention strategies to prevent the progression of disease in utero are also discussed. Recommendations for delivery planning strategies for fetuses with congenital heart disease including models based on classification of disease severity and delivery room treatment will be highlighted. Outcome assessment is reviewed to show the benefit of prenatal diagnosis and management as they affect outcome for babies with congenital heart disease. CONCLUSIONS Fetal cardiac medicine has evolved considerably over the past 2 decades, predominantly in response to advances in imaging technology and innovations in therapies. The diagnosis of cardiac disease in the fetus is mostly made with ultrasound; however, new technologies, including 3- and 4-dimensional echocardiography, magnetic resonance imaging, and fetal electrocardiography and magnetocardiography, are available. Medical and interventional treatments for select diseases and strategies for delivery room care enable stabilization of high-risk fetuses and contribute to improved outcomes. This statement highlights what is currently known and recommended on the basis of evidence and experience in the rapidly advancing and highly specialized field of fetal cardiac care.
Collapse
|
7
|
Chang SW, Mislankar M, Misra C, Huang N, Dajusta DG, Harrison SM, McBride KL, Baker LA, Garg V. Genetic abnormalities in FOXP1 are associated with congenital heart defects. Hum Mutat 2013; 34:1226-30. [PMID: 23766104 DOI: 10.1002/humu.22366] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 06/03/2013] [Indexed: 12/20/2022]
Abstract
The etiology for the majority of congenital heart defects (CHD) is unknown. We identified a patient with unbalanced atrioventricular septal defect (AVSD) and hypoplastic left ventricle who harbored an ~0.3 Mb monoallelic deletion on chromosome 3p14.1. The deletion encompassed the first four exons of FOXP1, a gene critical for normal heart development that represses cardiomyocyte proliferation and expression of Nkx2.5. To determine whether FOXP1 mutations are found in patients with CHD, we sequenced FOXP1 in 82 patients with AVSD or hypoplastic left heart syndrome. We discovered two patients who harbored a heterozygous c.1702C>T variant in FOXP1 that predicted a potentially deleterious substitution of a highly conserved proline (p.Pro568Ser). This variant was not found in 287 controls but is present in dbSNP at a 0.2% frequency. The orthologous murine Foxp1 p.Pro596Ser mutant protein displayed deficits in luciferase reporter assays and resulted in increased proliferation and Nkx2.5 expression in cardiomyoblasts. Our data suggest that haploinsufficiency of FOXP1 is associated with human CHD.
Collapse
Affiliation(s)
- Sheng-Wei Chang
- Center for Cardiovascular and Pulmonary Research and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA
| | | | | | | | | | | | | | | | | |
Collapse
|