1
|
Yu CY, Huang TY, Chung HW. Single breath-hold MR T1 mapping in the heart: Hybrid MOLLI combining saturation and inversion recovery. Magn Reson Imaging 2023; 96:85-92. [PMID: 36470451 DOI: 10.1016/j.mri.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/31/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
The native T1 values of the myocardium provide valuable information for tissue characterization and assessment of cardiomyopathies. In this study, we proposed a novel hybrid MOLLI sequence for myocardial T1 mapping. Unlike the two groups of inversion-recovery sampling of the conventional MOLLI5(3 s)3 sequence, the hybrid MOLLI sequence consisted of an inversion-recovery block followed by a saturation-recovery block. Since the second block employed a saturation pulse to spoil the longitudinal magnetization, it did not require a waiting period as MOLLI5(3 s)3 did. As a result, the hybrid MOLLI required less acquisition time leading to a practical application for patients with breath-hold difficulties. Phantom and healthy subject experiments were performed to evaluate the proposed sequence against the MOLLI5(3 s)3 sequence. The phantom study showed that the heart-rate dependency of one variant of the hybrid MOLLI sequences, hbMOLLI4, was comparable to that of MOLLI5(3 s)3. In addition, both hbMOLLI4 and MOLLI53 derived T1 values under 2% variations with simulated heart rates from 50 to 90 beats-per-minute within the range of T1 values for myocardium and blood before contrast administration. Simulation results suggested slightly reduced T1 fitting precision in hbMOLLI4 compared with MOLLI5(3 s)3, but prominently better than saturation recovery. Bland-Altman analysis on accuracy assessment revealed that hbMOLLI4 partially reduced the T1 underestimation of MOLLI5(3 s)3. In the human study, The T1 values of both methods were consistent (hbMOLLI4 vs. MOLLI5(3 s)3, slope = 1.14, R2 > 0.97), with equal reproducibility. The results supported that hybrid MOLLI produced comparable T1 mapping results in terms of accuracy, reproducibility, and heart-rate dependency, at the expense of slightly reduced precision. We concluded that the hybrid MOLLI sequence presents a competitive alternative to the MOLLI5(3 s)3 sequence when a speedy acquisition is required.
Collapse
Affiliation(s)
- Chun-Yang Yu
- Graduate Institute of Biomedical Electronics and Bioinformatics, Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
| | - Teng-Yi Huang
- Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
| | - Hsiao-Wen Chung
- Graduate Institute of Biomedical Electronics and Bioinformatics, Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Qin L, Min J, Chen C, Zhu L, Gu S, Zhou M, Yang W, Yan F. Incremental Values of T1 Mapping in the Prediction of Sudden Cardiac Death Risk in Hypertrophic Cardiomyopathy: A Comparison With Two Guidelines. Front Cardiovasc Med 2021; 8:661673. [PMID: 34169099 PMCID: PMC8217449 DOI: 10.3389/fcvm.2021.661673] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/28/2021] [Indexed: 12/02/2022] Open
Abstract
Background: MRI native T1 mapping and extracellular volume fraction (ECV) are quantitative values that could reflect various myocardial tissue characterization. The role of these parameters in predicting the risk of sudden cardiac death (SCD) in hypertrophic cardiomyopathy (HCM) is still poorly understood. Aim: This study aims to investigate the ability of native T1 mapping and ECV values to predict major adverse cardiovascular events (MACE) in HCM, and its incremental values over the 2014 European Society of Cardiology (ESC) and enhanced American College of Cardiology/American Heart Association (ACC/AHA) guidelines. Methods: Between July 2016 and October 2020, HCM patients and healthy individuals with sex and age matched who underwent cardiac MRI were prospectively enrolled. The native T1 and ECV parameters were measured. The SCD risk was evaluated by the 2014 ESC guidelines and enhanced ACC/AHA guidelines. MACE included cardiac death, transplantation, heart failure admission, and implantable cardioverter-defibrillator implantation. Results: A total of 203 HCM patients (54.2 ± 14.9 years) and 101 healthy individuals (53.2 ± 14.7 years) were evaluated. During a median follow-up of 15 months, 25 patients (12.3%) had MACE. In multivariate Cox regression analysis, global native T1 mapping (hazard ratio (HR): 1.446; 95% confidence interval (CI): 1.195–1.749; P < 0.001) and non-sustained ventricular tachycardia (NSVT) (HR: 4.949; 95% CI, 2.033–12.047; P < 0.001) were independently associated with MACE. Ten of 86 patients (11.6%) with low SCD risk assessed by the two guidelines had MACE. In this subgroup of patients, multivariate Cox regression analysis showed that global native T1 mapping was independently associated with MACE (HR: 1.532; 95% CI: 1.221–1.922; P < 0.001). In 85 patients with conflicting results assessed by the two guidelines, end-stage systolic dysfunction was independently associated with MACE (HR: 7.942, 95% CI: 1.322–47.707, P = 0.023). In 32 patients with high SCD risk assessed by the two guidelines, NSVT was independently associated with MACE (HR: 9.779, 95% CI: 1.953–48.964, P = 0.006). Conclusion: The global native T1 mapping could provide incremental values and serve as potential supplements to the current guidelines in the prediction of MACE.
Collapse
Affiliation(s)
- Le Qin
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiehua Min
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chihua Chen
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lan Zhu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengjia Gu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mi Zhou
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjie Yang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Shi RY, Wu R, An DAL, Chen BH, Wu CW, Du L, Jiang M, Xu JR, Wu LM. Texture analysis applied in T1 maps and extracellular volume obtained using cardiac MRI in the diagnosis of hypertrophic cardiomyopathy and hypertensive heart disease compared with normal controls. Clin Radiol 2020; 76:236.e9-236.e19. [PMID: 33272531 DOI: 10.1016/j.crad.2020.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 11/04/2020] [Indexed: 10/22/2022]
Abstract
AIM To assess the potential of texture analysis (TA) applied in T1 maps and extracellular volume (ECV) obtained using cardiac magnetic resonance (CMR) in the diagnosis of hypertrophic cardiomyopathy (HCM) and hypertensive heart disease (HHD) compared with normal controls (NC). Strain parameters were analysed to compare with final TA models. MATERIALS AND METHODS This retrospective study included 66 HCM patients, 39 HHD patients, and 41 NC. Step-wise dimension reduction and feature selection were performed by reproducibility, machine learning, collinearity, and multivariable regression analysis to select the texture features that enable diagnosis of and differentiation between HCM and HHD. Strain parameters were calculated by short-axis and three long-axis cine sequences. RESULTS Independent features in T1 maps and ECV analysis allowed for the differentiation between patients (HCM and HHD) and NC. Of the best-calculated model, the areas under the receiver operating curve (AUCs) were as follows: 0.969 for T1 map and 0.964 for ECV. To distinguish HCM from HHD, two independent features were screened out for both T1 and ECV maps. The AUCs were as follows: 0.793 for T1 map and 0.894 for ECV. Radial, circumferential, and longitudinal strain parameters could differentiate patients from NC, but only longitudinal strain parameters was significantly different between HCM and HHD. CONCLUSIONS Texture analysis of T1 maps and ECV shows high accuracy in differentiating hypertrophic myocardium from NC, and HCM from HHD. Strain parameters are able to demonstrate the difference between patients and NC, but were less impressive in differentiating HCM and HHD.
Collapse
Affiliation(s)
- R-Y Shi
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - R Wu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - D-A L An
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - B-H Chen
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - C-W Wu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - L Du
- Department of Robotics, Ritsumeikan University, Shiga, Japan
| | - M Jiang
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - J-R Xu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - L-M Wu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
4
|
Shi RY, An DA, Chen BH, Wu R, Du L, Jiang M, Xu JR, Wu LM. Diffusion-weighted imaging in hypertrophic cardiomyopathy: association with high T2-weighted signal intensity in addition to late gadolinium enhancement. Int J Cardiovasc Imaging 2020; 36:2229-2238. [PMID: 32666169 DOI: 10.1007/s10554-020-01933-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/03/2020] [Indexed: 10/23/2022]
Abstract
Diffusion-weighted imaging (DWI) has been confirmed to be associated with late gadolinium enhancement (LGE) in hypertrophic cardiomyopathy (HCM). In this context, we aimed to study whether DWI could reflect the active tissue injury and edema information of HCM which were usually indicated by T2 weighted images. Forty HCM patients were examined using a 3.0 T magnetic resonance scanner. Cine, T2-weighted short tau inversion recovery (T2-STIR), DWI and LGE sequences were acquired. T1 mapping was also included to quantify the focal and diffuse fibrosis. Cardiac troponin I (cTnI) was tested to assess the recently myocardial injury. Student's t-test, Mann-Whitney U test, One-way analysis, Kruskal-Wallis analysis, the Spearman correlation analysis, and multivariable regression were used in this study. The apparent diffusion coefficient (ADC) was significantly elevated in the cTnI positive group (P = 0.01) and correlated with LGE (ρ = 0.312, P = 0.049) and HighT2 extent (ρ = 0.443, P = 0.004) in the global level. In the segmental analysis, the ADC significantly differentiated the segments with and without HighT2/LGE presence (P = 0.00). The average ADC values were higher in segments with HighT2 and LGE coexistence than in those with only LGE presence (P < 0.05). Multivariable regression indicated that segmental HighT2 and LGE were both contributing factors to the ADC values. In this study of HCM, we confirmed that ADC as a molecular diffusion parameter reflects the replacement fibrosis of myocardium. Moreover, it also reveals edema extent and its association with serum cTnI.
Collapse
Affiliation(s)
- Ruo-Yang Shi
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Shanghai, 200127, China
| | - Dong-Aolei An
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Shanghai, 200127, China
| | - Bing-Hua Chen
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Shanghai, 200127, China
| | - Rui Wu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Shanghai, 200127, China
| | - Liang Du
- Robotics Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Meng Jiang
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian-Rong Xu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Shanghai, 200127, China.
| | - Lian-Ming Wu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
5
|
Fukui M, Bing R, Dweck M, Cavalcante JL. Assessment of Aortic Stenosis by Cardiac Magnetic Resonance Imaging: Quantification of Flow, Characterization of Myocardial Injury, Transcatheter Aortic Valve Replacement Planning, and More. Magn Reson Imaging Clin N Am 2019; 27:427-437. [PMID: 31279447 DOI: 10.1016/j.mric.2019.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cardiac MR (CMR) imaging contributes uniquely to the comprehensive assessment and management of aortic stenosis (AS), beyond the information provided by transthoracic echocardiography. The severity of AS and subsequent ventricular remodeling response can be assessed using cine images and phase-contrast mapping. CMR imaging also identifies myocardial tissue characteristics, which are valuable markers of left ventricular decompensation and adverse outcomes in AS. CMR imaging may be used as an alternative modality for transcatheter aortic valve replacement (TAVR) planning and post-TAVR management. This article explores the clinical utility of CMR imaging evaluation.
Collapse
Affiliation(s)
- Miho Fukui
- Valve Science Center, Minneapolis Heart Institute Foundation, 920 East 28th Street, Suite 620, Minneapolis, MN 55407, USA
| | - Rong Bing
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Drive, Edinburgh, EH16 4TJ, UK
| | - Marc Dweck
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Drive, Edinburgh, EH16 4TJ, UK
| | - João L Cavalcante
- Valve Science Center, Minneapolis Heart Institute Foundation, 920 East 28th Street, Suite 620, Minneapolis, MN 55407, USA; Cardiac MRI and Structural CT and Cardiovascular Imaging Core Lab, Minneapolis Heart Institute, Abbott Northwestern Hospital, 800 East 28th Street, Suite 300, Minneapolis, MN 55407, USA.
| |
Collapse
|
6
|
Delgado V, Bax JJ. Will Cardiac Magnetic Resonance Change the Management of Severe Aortic Stenosis Patients? JACC Cardiovasc Imaging 2018; 11:984-986. [DOI: 10.1016/j.jcmg.2017.11.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 10/26/2017] [Accepted: 11/09/2017] [Indexed: 12/27/2022]
|
7
|
Abstract
Ventricular arrhythmias remain a significant cause of sudden cardiac death (SCD), and knowledge of their cause and high-risk features is important. SCD occurs when the interaction between vulnerable substrates and acute triggers results in sustained ventricular tachycardia progressing to ventricular fibrillation. Here, the authors aim to review the role of ventricular arrhythmias in SCD, first by approaching the substrates that support ventricular arrhythmias, and then by exploring features of these substrates and the acute triggers that may lead to SCD.
Collapse
Affiliation(s)
- Pok Tin Tang
- UCLA Cardiac Arrhythmia Center, UCLA Health System, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | - Noel G Boyle
- UCLA Cardiac Arrhythmia Center, UCLA Health System, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
8
|
Pediatric Fontan patients are at risk for myocardial fibrotic remodeling and dysfunction. Int J Cardiol 2017; 240:172-177. [DOI: 10.1016/j.ijcard.2017.04.073] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/26/2017] [Accepted: 04/20/2017] [Indexed: 11/19/2022]
|
9
|
Zamani P, Akers S, Soto-Calderon H, Beraun M, Koppula MR, Varakantam S, Rawat D, Shiva-Kumar P, Haines PG, Chittams J, Townsend RR, Witschey WR, Segers P, Chirinos JA. Isosorbide Dinitrate, With or Without Hydralazine, Does Not Reduce Wave Reflections, Left Ventricular Hypertrophy, or Myocardial Fibrosis in Patients With Heart Failure With Preserved Ejection Fraction. J Am Heart Assoc 2017; 6:JAHA.116.004262. [PMID: 28219917 PMCID: PMC5523746 DOI: 10.1161/jaha.116.004262] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Background Wave reflections, which are increased in patients with heart failure with preserved ejection fraction, impair diastolic function and promote pathologic myocardial remodeling. Organic nitrates reduce wave reflections acutely, but whether this is sustained chronically or affected by hydralazine coadministration is unknown. Methods and Results We randomized 44 patients with heart failure with preserved ejection fraction in a double‐blinded fashion to isosorbide dinitrate (ISDN; n=13), ISDN+hydralazine (ISDN+hydral; n=15), or placebo (n=16) for 6 months. The primary end point was the change in reflection magnitude (RM; assessed with arterial tonometry and Doppler echocardiography). Secondary end points included change in left ventricular mass and fibrosis, measured with cardiac magnetic resonance imaging, and the 6‐minute walk distance. ISDN reduced aortic characteristic impedance (mean baseline=0.15 [95% CI, 0.14–0.17], 3 months=0.11 [95% CI, 0.10–0.13], 6 months=0.10 [95% CI, 0.08–0.12] mm Hg/mL per second; P=0.003) and forward wave amplitude (Pf, mean baseline=54.8 [95% CI, 47.6–62.0], 3 months=42.2 [95% CI, 33.2–51.3]; 6 months=37.0 [95% CI, 27.2–46.8] mm Hg, P=0.04), but had no effect on RM (P=0.64), left ventricular mass (P=0.33), or fibrosis (P=0.63). ISDN+hydral increased RM (mean baseline=0.39 [95% CI, 0.35–0.43]; 3 months=0.31 [95% CI, 0.25–0.36]; 6 months=0.44 [95% CI, 0.37–0.51], P=0.03), reduced 6‐minute walk distance (mean baseline=343.3 [95% CI, 319.2–367.4]; 6 months=277.0 [95% CI, 242.7–311.4] meters, P=0.022), and increased native myocardial T1 (mean baseline=1016.2 [95% CI, 1002.7–1029.7]; 6 months=1054.5 [95% CI, 1036.5–1072.3], P=0.021). A high proportion of patients experienced adverse events with active therapy (ISDN=61.5%, ISDN+hydral=60.0%; placebo=12.5%; P=0.007). Conclusions ISDN, with or without hydralazine, does not exert beneficial effects on RM, left ventricular remodeling, or submaximal exercise and is poorly tolerated. ISDN+hydral appears to have deleterious effects on RM, myocardial remodeling, and submaximal exercise. Our findings do not support the routine use of these vasodilators in patients with heart failure with preserved ejection fraction. Clinical Trial Registration URL: www.clinicaltrials.gov. Unique identifier: NCT01516346.
Collapse
Affiliation(s)
- Payman Zamani
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Scott Akers
- Department of Radiology, Philadelphia Veterans' Affairs Medical Center, Philadelphia, PA
| | - Haideliza Soto-Calderon
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Melissa Beraun
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Maheswara R Koppula
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Swapna Varakantam
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Deepa Rawat
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Prithvi Shiva-Kumar
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Philip G Haines
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA.,Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI
| | - Jesse Chittams
- Office of Nursing Research, School of Nursing, University of Pennsylvania, Philadelphia, PA
| | - Raymond R Townsend
- Division of Nephrology/Hypertension, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Walter R Witschey
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Patrick Segers
- Biofluid, Tissue, and Solid Mechanics for Medical Applications, IBiTech, iMinds Medical IT, Ghent University, Ghent, Belgium
| | - Julio A Chirinos
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|