1
|
Sillanmäki S, Hartikainen S, Ylä-Herttuala E. Review of Myocardial Ischemia, Scar, and Viability Estimation with Molecular Magnetic Resonance Imaging. Biomedicines 2024; 12:1681. [PMID: 39200146 PMCID: PMC11351116 DOI: 10.3390/biomedicines12081681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Cardiovascular diseases, particularly myocardial ischemia from coronary artery obstruction, remain a leading cause of global morbidity. This review explores cardiac molecular magnetic resonance imaging (mMRI) and other molecular imaging techniques for the evaluation of myocardial ischemia, scarring, and viability. RESULTS AND FINDINGS mMRI imaging methods provide detailed information on myocardial ischemia, edema, and scar tissue using techniques like cine imaging, T1 and T2 mapping, and gadolinium-based contrast agents. These methods enable the precise assessment of the myocardial tissue properties, crucial in diagnosing and treating cardiovascular diseases. Advanced techniques, such as the T1ρ and RAFFn methods, might provide enhanced contrast and sensitivity for the detection of myocardial scarring without contrast agents. Molecular probes, including gadolinium-based and protein-targeted contrast agents, improve the detection of molecular changes, facilitating early diagnosis and personalized treatment. Integrating MRI with positron emission tomography (PET) combines the high spatial and temporal resolution with molecular and functional imaging. CONCLUSION Recent advancements in mMRI and molecular imaging have changed the evaluation of myocardial ischemia, scarring, and viability. Despite significant progress, extensive research is needed to validate these techniques clinically and further develop imaging methods for better diagnostic and prognostic outcomes.
Collapse
Affiliation(s)
- Saara Sillanmäki
- Institute of Clinical Medicine, University of Eastern Finland, 70029 Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, 70200 Kuopio, Finland
| | - Suvi Hartikainen
- Institute of Clinical Medicine, University of Eastern Finland, 70029 Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, 70200 Kuopio, Finland
| | - Elias Ylä-Herttuala
- Diagnostic Imaging Center, Kuopio University Hospital, 70200 Kuopio, Finland
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
2
|
Moss AJ, Sim AM, Adamson PD, Seidman MA, Andrews JPM, Doris MK, Shah ASV, BouHaidar R, Alcaide-Corral CJ, Williams MC, Leipsic JA, Dweck MR, MacRae VE, Newby DE, Tavares AAS, Sellers SL. Ex vivo 18F-fluoride uptake and hydroxyapatite deposition in human coronary atherosclerosis. Sci Rep 2020; 10:20172. [PMID: 33214599 PMCID: PMC7677392 DOI: 10.1038/s41598-020-77391-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/27/2020] [Indexed: 01/02/2023] Open
Abstract
Early microcalcification is a feature of coronary plaques with an increased propensity to rupture and to cause acute coronary syndromes. In this ex vivo imaging study of coronary artery specimens, the non-invasive imaging radiotracer, 18F-fluoride, was highly selective for hydroxyapatite deposition in atherosclerotic coronary plaque. Specifically, coronary 18F-fluoride uptake had a high signal to noise ratio compared with surrounding myocardium that makes it feasible to identify coronary mineralisation activity. Areas of 18F-fluoride uptake are associated with osteopontin, an inflammation-associated glycophosphoprotein that mediates tissue mineralisation, and Runt-related transcription factor 2, a nuclear protein involved in osteoblastic differentiation. These results suggest that 18F-fluoride is a non-invasive imaging biomarker of active coronary atherosclerotic mineralisation.
Collapse
Affiliation(s)
- Alastair J Moss
- BHF Centre for Cardiovascular Science, Chancellor's Building, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK. .,British Heart Foundation Cardiovascular Research Centre, University of Leicester, Leicester, UK.
| | - Alisia M Sim
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK
| | - Philip D Adamson
- BHF Centre for Cardiovascular Science, Chancellor's Building, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.,Christchurch Heart Institute, University of Otago, Christchurch, New Zealand
| | - Michael A Seidman
- Department of Pathology, St Paul's Hospital and University of British Columbia, Vancouver, Canada
| | - Jack P M Andrews
- BHF Centre for Cardiovascular Science, Chancellor's Building, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Mhairi K Doris
- BHF Centre for Cardiovascular Science, Chancellor's Building, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Anoop S V Shah
- BHF Centre for Cardiovascular Science, Chancellor's Building, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Ralph BouHaidar
- BHF Centre for Cardiovascular Science, Chancellor's Building, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Carlos J Alcaide-Corral
- BHF Centre for Cardiovascular Science, Chancellor's Building, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Michelle C Williams
- BHF Centre for Cardiovascular Science, Chancellor's Building, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Jonathon A Leipsic
- Department of Radiology and Centre for Heart Lung Innovation, St Paul's Hospital and University of British Columbia, Vancouver, Canada
| | - Marc R Dweck
- BHF Centre for Cardiovascular Science, Chancellor's Building, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Vicky E MacRae
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - David E Newby
- BHF Centre for Cardiovascular Science, Chancellor's Building, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Adriana A S Tavares
- BHF Centre for Cardiovascular Science, Chancellor's Building, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Stephanie L Sellers
- Department of Radiology and Centre for Heart Lung Innovation, St Paul's Hospital and University of British Columbia, Vancouver, Canada
| |
Collapse
|
3
|
Atherosclerosis Imaging with 18F-Sodium Fluoride PET. Diagnostics (Basel) 2020; 10:diagnostics10100852. [PMID: 33092250 PMCID: PMC7590213 DOI: 10.3390/diagnostics10100852] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/08/2020] [Accepted: 10/15/2020] [Indexed: 12/21/2022] Open
Abstract
The evidence on atherosclerosis imaging with 18F-sodium-fluoride (NaF) positron emission tomography (PET) is hotly debated because of the different patient characteristics, methodology, vascular beds, etc. in reported studies. This review is a continuation of a previous review on this topic, which covered the period 2010-2018. The purpose was to examine whether some of the most important questions that the previous review had left open had been elucidated by the most recent literature. Using principles of a systematic review, we ended analyzing 25 articles dealing with the carotids, coronary arteries, aorta, femoral, intracranial, renal, and penile arteries. The knowledge thus far can be summarized as follows: by targeting active arterial microcalcification, NaF uptake is considered a marker of early stage atherosclerosis, is age-dependent, and consistently associated with cardiovascular risk. Longitudinal studies on NaF uptake, conducted in the abdominal aorta only, showed unchanged uptake in postmenopausal women for nearly four years and varying uptake in prostate cancer patients over 1.5 years, despite constant or increasing calcium volume detected by computed tomography (CT). Thus, uncertainty remains about the transition from active arterial wall calcification marked by increased NaF uptake to less active or consolidated calcification detected by CT. The question of whether early-phase atherosclerosis and calcification can be modified remains also unanswered due to lack of intervention studies.
Collapse
|
4
|
Abstract
Swine disease models are essential for mimicry of human metabolic and vascular pathophysiology, thereby enabling high-fidelity translation to human medicine. The worldwide epidemic of obesity, metabolic disease, and diabetes has prompted the focus on these diseases in this review. We highlight the remarkable similarity between Ossabaw miniature swine and humans with metabolic syndrome and atherosclerosis. Although the evidence is strongest for swine models of coronary artery disease, findings are generally applicable to any vascular bed. We discuss the major strengths and weaknesses of swine models. The development of vascular imaging is an example of optimal vascular engineering in swine. Although challenges regarding infrastructure and training of engineers in the use of swine models exist, opportunities are ripe for gene editing, studies of molecular mechanisms, and use of swine in coronary artery imaging and testing of devices that can move quickly to human clinical studies.
Collapse
Affiliation(s)
- Michael Sturek
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5120, USA; .,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 46907, USA
| | - Mouhamad Alloosh
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5120, USA;
| | - Frank W Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| |
Collapse
|
5
|
Høilund-Carlsen PF, Sturek M, Alavi A, Gerke O. Atherosclerosis imaging with 18F-sodium fluoride PET: state-of-the-art review. Eur J Nucl Med Mol Imaging 2019; 47:1538-1551. [PMID: 31773235 PMCID: PMC7188711 DOI: 10.1007/s00259-019-04603-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/05/2019] [Indexed: 12/30/2022]
Abstract
Purpose We examined the literature to elucidate the role of 18F-sodium fluoride (NaF)-PET in atherosclerosis. Methods Following a systematic search of PubMed/MEDLINE, Embase, and Cochrane Library included articles underwent subjective quality assessment with categories low, medium, and high. Of 2811 records, 1780 remained after removal of duplicates. Screening by title and abstract left 41 potentially eligible full-text articles, of which 8 (about the aortic valve (n = 1), PET/MRI feasibility (n = 1), aortic aneurysms (n = 1), or quantification methodology (n = 5)) were dismissed, leaving 33 published 2010–2012 (n = 6), 2013–2015 (n = 11), and 2016–2018 (n = 16) for analysis. Results They focused on coronary (n = 8), carotid (n = 7), and femoral arteries (n = 1), thoracic aorta (n = 1), and infrarenal aorta (n = 1). The remaining 15 studies examined more than one arterial segment. The literature was heterogeneous: few studies were designed to investigate atherosclerosis, 13 were retrospective, 9 applied both FDG and NaF as tracers, 24 NaF only. Subjective quality was low in one, medium in 13, and high in 19 studies. The literature indicates that NaF is a very specific tracer that mimics active arterial wall microcalcification, which is positively associated with cardiovascular risk. Arterial NaF uptake often presents before CT-calcification, tends to decrease with increasing density of CT-calcification, and appears, rather than FDG-avid foci, to progress to CT-calcification. It is mainly surface localized, increases with age with a wide scatter but without an obvious sex difference. NaF-avid microcalcification can occur in fatty streaks, but the degree of progression to CT-calcification is unknown. It remains unknown whether medical therapy influences microcalcification. The literature held no therapeutic or randomized controlled trials. Conclusion The literature was heterogeneous and with few clear cut messages. NaF-PET is a new approach to detect and quantify microcalcification in early-stage atherosclerosis. NaF uptake correlates with cardiovascular risk factors and appears to be a good measure of the body’s atherosclerotic burden, potentially suited also for assessment of anti-atherosclerotic therapy. Electronic supplementary material The online version of this article (10.1007/s00259-019-04603-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Poul F Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark. .,Research Unit of Clinical Physiology and Nuclear Medicine, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Michael Sturek
- Department of Anatomy, Cell Biology, Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Abass Alavi
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Oke Gerke
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark.,Research Unit of Clinical Physiology and Nuclear Medicine, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|