4
|
Lin J, Lin W, Ye Y, Wang L, Chen X, Zang S, Huang A. Kindlin-2 promotes hepatocellular carcinoma invasion and metastasis by increasing Wnt/β-catenin signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:134. [PMID: 28969700 PMCID: PMC5623973 DOI: 10.1186/s13046-017-0603-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 09/19/2017] [Indexed: 12/15/2022]
Abstract
Background Kindlin-2 is a member of the focal adhesion protein family that regulates invasion and metastasis in multiple malignancies; however, little is known about the role of Kindlin-2 in hepatocellular carcinoma (HCC) progression. Methods Immunohistochemistry was used to investigate Kindlin-2 expression in 177 pairs of human HCC and adjacent liver tissue samples. The role of Kindlin-2 in the in vitro invasion and migration of HCC cell lines was evaluated in MHCC97H, LM3 and SMMC7721 cells. Microarray expression analysis was applied to explore the molecular mechanism through which Kindlin-2 promoted HCC progression. Quantitative real-time PCR and Western blotting were performed to verify the microarray results. Results High Kindlin-2 expression was found to significantly correlate with aggressive HCC clinicopathological features including tumor encapsulation, microvascular invasion, extrahepatic metastasis and poor prognosis. In vitro, Kindlin-2 knockout or knockdown inhibited HCC cell adhesion, migration and invasion, while ectopic Kindlin-2 expression promoted these processes. Importantly, Kindlin-2 activated Wnt/β-catenin signaling and increased β-catenin expression, especially levels of non-phosphorylated β-catenin, as well as two Wnt/β-catenin signaling pathway targets, Axin2 and MMP7. Kindlin-2 also induced a change in the expression profile of HCC cells, suggesting the cells underwent epithelial-mesenchymal transition. For example, the expression of the epithelial marker E-cadherin was downregulated, while the mesenchymal markers Vimentin, N-cadherin and Snail were upregulated. Conclusion Kindlin-2 promotes HCC invasion, metastasis and epithelial-mesenchymal transition through Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Jie Lin
- Department of Pathology, The School of Basic Medical Sciences, Fujian Medical University, No.1, Xuefu North Road, University Town, Fuzhou, 350122, Fujian, China.,Department of Pathology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Wansong Lin
- Laboratory of Immuno-Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer hospital, Fuzhou, 350014, China.,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, 350014, China
| | - Yunbin Ye
- Laboratory of Immuno-Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer hospital, Fuzhou, 350014, China.,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, 350014, China
| | - Liping Wang
- Department of Pathology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Xiaoyan Chen
- Department of Pathology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Shengbing Zang
- Department of Pathology, The School of Basic Medical Sciences, Fujian Medical University, No.1, Xuefu North Road, University Town, Fuzhou, 350122, Fujian, China
| | - Aimin Huang
- Department of Pathology, The School of Basic Medical Sciences, Fujian Medical University, No.1, Xuefu North Road, University Town, Fuzhou, 350122, Fujian, China.
| |
Collapse
|
5
|
Zhang Z, Mu Y, Veevers J, Peter AK, Manso AM, Bradford WH, Dalton ND, Peterson KL, Knowlton KU, Ross RS, Zhou X, Chen J. Postnatal Loss of Kindlin-2 Leads to Progressive Heart Failure. Circ Heart Fail 2017; 9:CIRCHEARTFAILURE.116.003129. [PMID: 27502369 DOI: 10.1161/circheartfailure.116.003129] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/24/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND The striated muscle costamere, a multiprotein complex at the boundary between the sarcomere and the sarcolemma, plays an integral role in maintaining striated muscle structure and function. Multiple costamere-associated proteins, such as integrins and integrin-interacting proteins, have been identified and shown to play an increasingly important role in the pathogenesis of human cardiomyopathy. Kindlin-2 is an adaptor protein that binds to the integrin β cytoplasmic tail to promote integrin activation. Genetic deficiency of Kindlin-2 results in embryonic lethality, and knockdown of the Kindlin-2 homolog in Caenorhabditis elegans and Danio rerio suggests that it has an essential role in integrin function and normal muscle structure and function. The precise role of Kindlin-2 in the mammalian cardiac myocyte remains to be determined. METHODS AND RESULTS The current studies were designed to investigate the role of Kindlin-2 in the mammalian heart. We generated a series of cardiac myocyte-specific Kindlin-2 knockout mice with excision of the Kindlin-2 gene in either developing or adult cardiac myocytes. We found that mice lacking Kindlin-2 in the early developing heart are embryonic lethal. We demonstrate that deletion of Kindlin-2 at late gestation or in adult cardiac myocytes resulted in heart failure and premature death, which were associated with enlargement of the heart and extensive fibrosis. In addition, integrin β1D protein expression was significantly downregulated in the adult heart. CONCLUSIONS Kindlin-2 is required to maintain integrin β1D protein stability. Postnatal loss of Kindlin-2 from cardiac myocytes leads to progressive heart failure, showing the importance of costameric proteins like Kindlin-2 for homeostasis of normal heart function.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- From the Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (Z.Z., X.Z.); Department of Medicine-Cardiology, University of California San Diego, La Jolla (Z.Z., Y.M., J.V., A.K.P., A.M.M., W.H.B., N.D.D., K.L.P., K.U.K., R.S.R., J.C.); Veterans Administration Healthcare, Medicine/Cardiology, San Diego, CA (A.M.M., R.S.R.)
| | - Yongxin Mu
- From the Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (Z.Z., X.Z.); Department of Medicine-Cardiology, University of California San Diego, La Jolla (Z.Z., Y.M., J.V., A.K.P., A.M.M., W.H.B., N.D.D., K.L.P., K.U.K., R.S.R., J.C.); Veterans Administration Healthcare, Medicine/Cardiology, San Diego, CA (A.M.M., R.S.R.)
| | - Jennifer Veevers
- From the Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (Z.Z., X.Z.); Department of Medicine-Cardiology, University of California San Diego, La Jolla (Z.Z., Y.M., J.V., A.K.P., A.M.M., W.H.B., N.D.D., K.L.P., K.U.K., R.S.R., J.C.); Veterans Administration Healthcare, Medicine/Cardiology, San Diego, CA (A.M.M., R.S.R.)
| | - Angela K Peter
- From the Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (Z.Z., X.Z.); Department of Medicine-Cardiology, University of California San Diego, La Jolla (Z.Z., Y.M., J.V., A.K.P., A.M.M., W.H.B., N.D.D., K.L.P., K.U.K., R.S.R., J.C.); Veterans Administration Healthcare, Medicine/Cardiology, San Diego, CA (A.M.M., R.S.R.)
| | - Ana Maria Manso
- From the Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (Z.Z., X.Z.); Department of Medicine-Cardiology, University of California San Diego, La Jolla (Z.Z., Y.M., J.V., A.K.P., A.M.M., W.H.B., N.D.D., K.L.P., K.U.K., R.S.R., J.C.); Veterans Administration Healthcare, Medicine/Cardiology, San Diego, CA (A.M.M., R.S.R.)
| | - William H Bradford
- From the Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (Z.Z., X.Z.); Department of Medicine-Cardiology, University of California San Diego, La Jolla (Z.Z., Y.M., J.V., A.K.P., A.M.M., W.H.B., N.D.D., K.L.P., K.U.K., R.S.R., J.C.); Veterans Administration Healthcare, Medicine/Cardiology, San Diego, CA (A.M.M., R.S.R.)
| | - Nancy D Dalton
- From the Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (Z.Z., X.Z.); Department of Medicine-Cardiology, University of California San Diego, La Jolla (Z.Z., Y.M., J.V., A.K.P., A.M.M., W.H.B., N.D.D., K.L.P., K.U.K., R.S.R., J.C.); Veterans Administration Healthcare, Medicine/Cardiology, San Diego, CA (A.M.M., R.S.R.)
| | - Kirk L Peterson
- From the Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (Z.Z., X.Z.); Department of Medicine-Cardiology, University of California San Diego, La Jolla (Z.Z., Y.M., J.V., A.K.P., A.M.M., W.H.B., N.D.D., K.L.P., K.U.K., R.S.R., J.C.); Veterans Administration Healthcare, Medicine/Cardiology, San Diego, CA (A.M.M., R.S.R.)
| | - Kirk U Knowlton
- From the Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (Z.Z., X.Z.); Department of Medicine-Cardiology, University of California San Diego, La Jolla (Z.Z., Y.M., J.V., A.K.P., A.M.M., W.H.B., N.D.D., K.L.P., K.U.K., R.S.R., J.C.); Veterans Administration Healthcare, Medicine/Cardiology, San Diego, CA (A.M.M., R.S.R.)
| | - Robert S Ross
- From the Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (Z.Z., X.Z.); Department of Medicine-Cardiology, University of California San Diego, La Jolla (Z.Z., Y.M., J.V., A.K.P., A.M.M., W.H.B., N.D.D., K.L.P., K.U.K., R.S.R., J.C.); Veterans Administration Healthcare, Medicine/Cardiology, San Diego, CA (A.M.M., R.S.R.)
| | - Xinmin Zhou
- From the Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (Z.Z., X.Z.); Department of Medicine-Cardiology, University of California San Diego, La Jolla (Z.Z., Y.M., J.V., A.K.P., A.M.M., W.H.B., N.D.D., K.L.P., K.U.K., R.S.R., J.C.); Veterans Administration Healthcare, Medicine/Cardiology, San Diego, CA (A.M.M., R.S.R.)
| | - Ju Chen
- From the Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (Z.Z., X.Z.); Department of Medicine-Cardiology, University of California San Diego, La Jolla (Z.Z., Y.M., J.V., A.K.P., A.M.M., W.H.B., N.D.D., K.L.P., K.U.K., R.S.R., J.C.); Veterans Administration Healthcare, Medicine/Cardiology, San Diego, CA (A.M.M., R.S.R.).
| |
Collapse
|
6
|
Qi L, Yu Y, Chi X, Xu W, Lu D, Song Y, Zhang Y, Zhang H. Kindlin-2 interacts with α-actinin-2 and β1 integrin to maintain the integrity of the Z-disc in cardiac muscles. FEBS Lett 2015; 589:2155-62. [PMID: 26143257 DOI: 10.1016/j.febslet.2015.06.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/18/2015] [Accepted: 06/21/2015] [Indexed: 01/06/2023]
Abstract
Kindlin-2, as an integrin-interacting protein, was known to be required for the maintenance of cardiac structure and function in zebrafish. However, the mechanism remains unclear. We found that Kindlin-2 interacts and colocalizes with α-actinin-2 at the Z-disc of mouse cardiac muscles and there Kindlin-2 also interacts with β1 integrin. Knockdown of Kindlin-2 influences the association of β1 integrin with α-actinin-2 and disrupts the structure of the Z-disc and leads to cardiac dysfunction. Our data indicated that Kindlin-2 is a novel α-actinin-2-interacting protein and plays an important role in the regulation of cardiac structure and function.
Collapse
Affiliation(s)
- Lihua Qi
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China; Department of Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing 100191, China
| | - Yu Yu
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China; Department of Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing 100191, China
| | - Xiaochun Chi
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China; Department of Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing 100191, China
| | - Weizhi Xu
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China; Department of Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing 100191, China
| | - Danyu Lu
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China; Department of Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing 100191, China
| | - Yao Song
- Institute for Cardiovascular Research, Peking University Health Science Center, Beijing 100191, China
| | - Youyi Zhang
- Institute for Cardiovascular Research, Peking University Health Science Center, Beijing 100191, China
| | - Hongquan Zhang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China; Department of Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|