1
|
Shen X, Tang J, Ru W, Zhang X, Huang Y, Lei C, Cao H, Lan X, Chen H. CircINSR Regulates Fetal Bovine Muscle and Fat Development. Front Cell Dev Biol 2021; 8:615638. [PMID: 33490079 PMCID: PMC7815687 DOI: 10.3389/fcell.2020.615638] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/07/2020] [Indexed: 01/22/2023] Open
Abstract
The level of muscle development in livestock directly affects the production efficiency of livestock, and the contents of intramuscular fat (IMF) is an important factor that affects meat quality. However, the molecular mechanisms through which circular RNA (circRNA) affects muscle and IMF development remains largely unknown. In this study, we isolated myoblasts and intramuscular preadipocytes from fetal bovine skeletal muscle. Oil Red O and BODIPY staining were used to identify lipid droplets in preadipocytes, and anti-myosin heavy chain (MyHC) immunofluorescence was used to identify myotubes differentiated from myoblasts. Bioinformatics, a dual-fluorescence reporter system, RNA pull-down, and RNA-binding protein immunoprecipitation were used to determine the interactions between circINSR and the micro RNA (miR)-15/16 family. Molecular and biochemical assays were used to confirm the roles played by circINSR in myoblasts and intramuscular preadipocytes. We found that isolated myoblasts and preadipocytes were able to differentiate normally. CircINSR was found to serve as a sponge for the miR-15/16 family, which targets CCND1 and Bcl-2. CircINSR overexpression significantly promoted myoblast and preadipocyte proliferation and inhibited cell apoptosis. In addition, circINSR inhibited preadipocyte adipogenesis by alleviating the inhibition of miR-15/16 against the target genes FOXO1 and EPT1. Taken together, our study demonstrated that circINSR serves as a regulator of embryonic muscle and IMF development.
Collapse
Affiliation(s)
- Xuemei Shen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jia Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Wenxiu Ru
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaoyan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yongzhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hui Cao
- Shaanxi Kingbull Livestock Co., Ltd., Yangling, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Sun C, Zhang AD, Chen HH, Bian J, Liu ZJ. Magnet-targeted delivery of bone marrow-derived mesenchymal stem cells improves therapeutic efficacy following hypoxic-ischemic brain injury. Neural Regen Res 2021; 16:2324-2329. [PMID: 33818519 PMCID: PMC8354132 DOI: 10.4103/1673-5374.310942] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Stem cell transplantation may represent a feasible therapeutic option for the recovery of neurological function in children with hypoxic-ischemic brain injury; however, the therapeutic efficacy of bone marrow-derived mesenchymal stem cells largely depends on the number of cells that are successfully transferred to the target. Magnet-targeted drug delivery systems can use a specific magnetic field to attract the drug to the target site, increasing the drug concentration. In this study, we found that the double-labeling using superparamagnetic iron oxide nanoparticle and poly-L-lysine (SPIO-PLL) of bone marrow-derived mesenchymal stem cells had no effect on cell survival but decreased cell proliferation 48 hours after labeling. Rat models of hypoxic-ischemic brain injury were established by ligating the left common carotid artery. One day after modeling, intraventricular and caudal vein injections of 1 × 105 SPIO-PLL-labeled bone marrow-derived mesenchymal stem cells were performed. Twenty-four hours after the intraventricular injection, magnets were fixed to the left side of the rats’ heads for 2 hours. Intravoxel incoherent motion magnetic resonance imaging revealed that the perfusion fraction and the diffusion coefficient of rat brain tissue were significantly increased in rats treated with SPIO-PLL-labeled cells through intraventricular injection combined with magnetic guidance, compared with those treated with SPIO-PLL-labeled cells through intraventricular or tail vein injections without magnetic guidance. Hematoxylin-eosin and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining revealed that in rats treated with SPIO-PLL-labeled cells through intraventricular injection under magnetic guidance, cerebral edema was alleviated, and apoptosis was decreased. These findings suggest that targeted magnetic guidance can be used to improve the therapeutic efficacy of bone marrow-derived mesenchymal stem cell transplantation for hypoxic-ischemic brain injury. This study was approved by the Animal Care and Use Committee of The Second Hospital of Dalian Medical University, China (approval No. 2016-060) on March 2, 2016.
Collapse
Affiliation(s)
- Chuang Sun
- Department of Radiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Ao-Dan Zhang
- Department of Radiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Hong-Hai Chen
- Department of Radiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Jie Bian
- Department of Radiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Zheng-Juan Liu
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
3
|
Ding XF, Liang HY, Yuan B, Li LF, Wang T, Kan QC, Wang LX, Sun TW. Efficacy of stem cell therapy for pulmonary arterial hypertension: a systematic review and meta-analysis of preclinical studies. Stem Cell Res Ther 2019; 10:55. [PMID: 30760312 PMCID: PMC6374914 DOI: 10.1186/s13287-019-1162-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/06/2019] [Accepted: 02/04/2019] [Indexed: 12/19/2022] Open
Abstract
Background Despite significant progress in drug treatment, the prognosis of patients with advanced pulmonary arterial hypertension (PAH) remains extremely poor. Many preclinical studies have reported the efficacy of stem cell (SC) therapy for PAH; however, this approach remains controversial. The aim of this systematic review and meta-analysis is to assess the potential efficacy of SC therapy for PAH. Methods The Medline, EMBASE, Cochrane Library, and Web of Science databases were searched from inception to August 12, 2018. Preclinical studies that evaluated the use of SC therapy for PAH were included. The primary outcome was pulmonary haemodynamics, as assessed by measurement of the right ventricular systolic pressure (RVSP), mean pulmonary arterial pressure (mPAP), and/or mean right ventricle pressure (mRVP). The secondary outcomes included the weight ratio of the right ventricle to the left ventricle plus septum (RV/LV+S), the right ventricle to body weight ratio (RV/BW), the percentage of pulmonary arteriole area index (WA), and/or the percentage of medial wall thickness of the pulmonary arteriole (WT). The quality of outcomes was evaluated using the SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE) bias risk tool. The inverse-variance method with random-effects modelling was used to calculate pooled weighted mean differences (WMDs) and 95% CIs. Statistical analysis was performed with STATA 14.0. Results Twenty-eight eligible articles (722 animals) were included. SC therapy reduced the pooled WMDs (95% CIs) of RVSP, mPAP, mRVP, RV/LV+S, RV/BW, WA, and WT for animals with PAH, with values of − 14.12 (− 14.63, − 13.61), − 11.86 (− 12.35, − 11.36), − 17.33 (− 18.10, − 16.56), − 0.10 (− 0.10, − 0.09), 0.23 (0.21, 0.24), − 13.66 (− 15.71, − 11.62), and − 7.96 (− 7.99, − 7.93), respectively. Conclusions SC therapy is effective for PAH in preclinical studies. These results may help to standardise preclinical animal studies and provide a theoretical basis for clinical trial design in the future. Systematic review registration PROSPERO (http://www.crd.york.ac.uk/PROSPERO). Electronic supplementary material The online version of this article (10.1186/s13287-019-1162-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xian-Fei Ding
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Huo-Yan Liang
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Bo Yuan
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Li-Feng Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Tian Wang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Quan-Cheng Kan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Le-Xin Wang
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Tong-Wen Sun
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
4
|
Mesenchymal stem cell–derived microvesicles alleviate pulmonary arterial hypertension by regulating renin-angiotensin system. ACTA ACUST UNITED AC 2018; 12:470-478. [DOI: 10.1016/j.jash.2018.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 11/23/2022]
|
5
|
Kouroupis D, Wang XN, El-Sherbiny Y, McGonagle D, Jones E. The Safety of Non-Expanded Multipotential Stromal Cell Therapies. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-59165-0_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Shahini A, Mistriotis P, Asmani M, Zhao R, Andreadis ST. NANOG Restores Contractility of Mesenchymal Stem Cell-Based Senescent Microtissues. Tissue Eng Part A 2017; 23:535-545. [PMID: 28125933 DOI: 10.1089/ten.tea.2016.0494] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been extensively used in the field of tissue engineering as a source of smooth muscle cells (SMCs). However, recent studies showed deficits in the contractile function of SMCs derived from senescent MSCs and there are no available strategies to restore the contractile function that is impaired due to cellular or organismal senescence. In this study, we developed a tetracycline-regulatable system and employed micropost tissue arrays to evaluate the effects of the embryonic transcription factor, NANOG, on the contractility of senescent MSCs. Using this system, we show that expression of NANOG fortified the actin cytoskeleton and restored contractile function that was impaired in senescent MSCs. NANOG increased the expression of smooth muscle α-actin (ACTA2) as well as the contractile force generated by cells in three-dimensional microtissues. Interestingly, NANOG worked together with transforming growth factor-beta1 to further enhance the contractility of senescent microtissues. The effect of NANOG on contractile function was sustained for about 10 days after termination of its expression. Our results show that NANOG could reverse the effects of stem cell senescence and restore the myogenic differentiation potential of senescent MSCs. These findings may enable development of novel strategies to restore the function of senescent cardiovascular and other SMC-containing tissues.
Collapse
Affiliation(s)
- Aref Shahini
- 1 Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York , Amherst, New York
| | - Panagiotis Mistriotis
- 1 Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York , Amherst, New York
| | - Mohammadnabi Asmani
- 2 Department of Biomedical Engineering, University at Buffalo, The State University of New York , Amherst, New York
| | - Ruogang Zhao
- 2 Department of Biomedical Engineering, University at Buffalo, The State University of New York , Amherst, New York
| | - Stelios T Andreadis
- 1 Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York , Amherst, New York.,2 Department of Biomedical Engineering, University at Buffalo, The State University of New York , Amherst, New York.,3 Center of Excellence in Bioinformatics and Life Sciences , Buffalo, New York
| |
Collapse
|
7
|
Norozi F, Ahmadzadeh A, Shahrabi S, Vosoughi T, Saki N. Mesenchymal stem cells as a double-edged sword in suppression or progression of solid tumor cells. Tumour Biol 2016; 37:11679-11689. [PMID: 27440203 DOI: 10.1007/s13277-016-5187-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/13/2016] [Indexed: 02/07/2023] Open
Abstract
Tumor cells are able to attract mesenchymal stem cells (MSCs) to primary tumor site. On the other hand, MSCs secrete various factors to attract tumor cells towards BM. In this review, in addition to assessment of MSCs function at tumor sites and their impact on growth and metastasis of tumor cells, the importance of MSC in attraction of malignant cells to BM and their involvement in drug resistance of tumor cells have also been studied. Relevant literature was identified by a PubMed search (2000-2015) of English-language literature using the terms mesenchymal stem cells, cancer cell, metastasis, and tumor microenvironment. MSCs migrate towards tumor microenvironment and are involved in both pro-tumorigenic and antitumorigenic functions. The dual function of MSCs at tumor sites is dependent upon a variety of factors, including the type and origin of MSCs, the cancer cell line under study, in vivo or in vitro conditions, the factors secreted by MSCs and interactions between MSCs, host immune cells and cancer cells. Therefore, MSCs can be regarded both as friends and enemies of cancer cells. Although the role of a number of pathways, including IL-6/STAT3 pathway, has been indicated in controlling the interaction between MSCs and tumor cells, other mechanisms by which MSCs can control the tumor cells are not clear yet. A better understanding of these mechanisms through further studies can determine the exact role of MSCs in cancer progression and identify them as important therapeutic agents or targets.
Collapse
Affiliation(s)
- Fatemeh Norozi
- Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Ahmadzadeh
- Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Shahrabi
- Department of biochemistry and hematology, Faculty of Medicine, Semnan University of medical sciences, Semnan, Iran
| | - Tina Vosoughi
- Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
8
|
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a disease characterized by pelvic pain, usually with urinary frequency. These symptoms make patients suffer from a poor quality of life. However, there is still a lack of consensus on the pathophysiology and curable treatment of IC/BPS. We have reviewed several candidates for the pathophysiology of this disease and also treatments that have been used. Although several oral medications, bladder instillation therapies, fulguration for Hunner's lesion, and hydrodistention have been tried as IC/BPS treatments, their outcomes have not been satisfactory. As the application of stem cell therapy is expanding into the urologic field, innovative strategies have been tested with animal models of IC/BPS and have shown promising therapeutic effects for reversing the symptoms of this disorder. Although several concerns about stem cell sources and their safety should be addressed before initiating human clinical trials, we introduce stem cell therapy as a valuable future treatment approach for IC/BPS.
Collapse
Affiliation(s)
- Aram Kim
- Departments of Urology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-RO 43 GIL SONGPA-GU, Seoul, 05505, South Korea
| | - Dong-Myung Shin
- Departments of Biomedical Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Myung-Soo Choo
- Departments of Urology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-RO 43 GIL SONGPA-GU, Seoul, 05505, South Korea.
| |
Collapse
|
9
|
Kang H, Kim KH, Lim J, Kim YS, Heo J, Choi J, Jeong J, Kim Y, Kim SW, Oh YM, Choo MS, Son J, Kim SJ, Yoo HJ, Oh W, Choi SJ, Lee SW, Shin DM. The Therapeutic Effects of Human Mesenchymal Stem Cells Primed with Sphingosine-1 Phosphate on Pulmonary Artery Hypertension. Stem Cells Dev 2015; 24:1658-71. [PMID: 25761906 DOI: 10.1089/scd.2014.0496] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Stem cell (SC) therapy has become a potential treatment modality for pulmonary artery hypertension (PAH), but the efficacy of human SC and priming effects have not yet been established. The mobilization and homing of hematopoietic stem cells (HSCs) are modulated by priming factors that include a bioactive lipid, sphingosine-1-phosphate (S1P), which stimulates CXCR4 receptor kinase signaling. Here, we show that priming human mesenchymal stem cells (MSCs) with S1P enhances their therapeutic efficacy in PAH. Human MSCs, similar to HSCs, showed stronger chemoattraction to S1P in transwell assays. Concomitantly, MSCs treated with 0.2 μM S1P showed increased phosphorylation of both MAPKp42/44 and AKT protein compared with nonprimed MSCs. Furthermore, S1P-primed MSCs potentiated colony forming unit-fibroblast, anti-inflammatory, and angiogenic activities of MSCs in culture. In a PAH animal model induced by subcutaneously injected monocrotaline, administration of human cord blood-derived MSCs (hCB-MSCs) or S1P-primed cells significantly attenuated the elevated right ventricular systolic pressure. Notably, S1P-primed CB-MSCs, but not unprimed hCB-MSCs, also elicited a significant reduction in the right ventricular weight ratio and pulmonary vascular wall thickness. S1P-primed MSCs enhanced the expression of several genes responsible for stem cell trafficking and angiogenesis, increasing the density of blood vessels in the damaged lungs. Thus, this study demonstrates that human MSCs have potential utility for the treatment of PAH, and that S1P priming increases the effects of SC therapy by enhancing cardiac and vascular remodeling. By optimizing this protocol in future studies, SC therapy might form a basis for clinical trials to treat human PAH.
Collapse
Affiliation(s)
- Hyunsook Kang
- 1 Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea.,2 Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Kang-Hyun Kim
- 3 Department of Pulmonary and Critical Care Medicine, and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Jisun Lim
- 1 Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea.,2 Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - You-Sun Kim
- 3 Department of Pulmonary and Critical Care Medicine, and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Jinbeom Heo
- 1 Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea.,2 Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Jongjin Choi
- 3 Department of Pulmonary and Critical Care Medicine, and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Jaeho Jeong
- 1 Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea.,2 Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - YongHwan Kim
- 1 Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea.,2 Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Seong Who Kim
- 4 Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Yeon-Mok Oh
- 3 Department of Pulmonary and Critical Care Medicine, and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Myung-Soo Choo
- 5 Department of Urology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Jaekyoung Son
- 1 Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Su Jung Kim
- 6 Department of Biomedical Research Center, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Hyun Ju Yoo
- 6 Department of Biomedical Research Center, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Wonil Oh
- 7 Biomedical Research Institute , Medipost Co., Ltd., Seoul, Korea
| | - Soo Jin Choi
- 7 Biomedical Research Institute , Medipost Co., Ltd., Seoul, Korea
| | - Sei Won Lee
- 3 Department of Pulmonary and Critical Care Medicine, and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Dong-Myung Shin
- 1 Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea.,2 Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| |
Collapse
|
10
|
Patil S, Paul S. A comprehensive review on the role of various materials in the osteogenic differentiation of mesenchymal stem cells with a special focus on the association of heat shock proteins and nanoparticles. Cells Tissues Organs 2014; 199:81-102. [PMID: 25401759 DOI: 10.1159/000362226] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2014] [Indexed: 11/19/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have important roles in the area of regenerative medicine and clinical applications due to their pluripotent nature. Osteogenic differentiation of MSCs has been studied extensively using various stimulants to develop models of bone repair. There are several factors that enhance the differentiation of MSCs into bone tissues. This review focuses on the effects of various inducers on the osteoblast differentiation of MSCs at different stages of cellular development. We discuss the various growth factors, hormones, vitamins, cytokines, chemical stimulants, and mechanical forces applied in bioreactors that play an essential role in the proliferation, differentiation, and matrix mineralization of stem cells during osteogenesis. Various nanoparticles have also been used recently for the same purpose and the results are promising. Moreover, we review the role of various stresses, including thermal stress, and the subsequent involvement of heat shock proteins as inducers of the proliferation and differentiation of osteoblasts. We also report how various proteasome inhibitors have been shown to induce proliferation and osteogenic differentiation of MSCs in a number of cases. In this communication, the role of peptide-based scaffolds in osteoblast proliferation and differentiation is also reviewed. Based on the reviewed information, this article proposes novel possibilities for the enhancement of proliferation, differentiation, and migration of osteoblasts from MSCs. © 2014 S. Karger AG, Basel.
Collapse
Affiliation(s)
- Supriya Patil
- Structural Biology and Nanomedicine Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
| | | |
Collapse
|
11
|
Fayol D, Le Visage C, Ino J, Gazeau F, Letourneur D, Wilhelm C. Design of Biomimetic Vascular Grafts with Magnetic Endothelial Patterning. Cell Transplant 2013; 22:2105-18. [DOI: 10.3727/096368912x661300] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The development of small diameter vascular grafts with a controlled pluricellular organization is still needed for effective vascular tissue engineering. Here, we describe a technological approach combining a tubular scaffold and magnetically labeled cells to create a pluricellular and organized vascular graft, the endothelialization of which could be monitored by MRI prior to transplantation. A novel type of scaffold was developed with a tubular geometry and a porous bulk structure enabling the seeding of cells in the scaffold pores. A homogeneous distribution of human mesenchymal stem cells in the macroporous structure was obtained by seeding the freeze-dried scaffold with the cell suspension. The efficient covering of the luminal surface of the tube was then made possible thanks to the implementation of a magnetic-based patterning technique. Human endothelial cells or endothelial progenitors were magnetically labeled with iron oxide nanoparticles and successfully attracted to the 2-mm lumen where they attached and formed a continuous endothelium. The combination of imaging modalities [fluorescence imaging, histology, and 3D magnetic resonance imaging (MRI)] evidenced the integrity of the vascular construct. In particular, the observation of different cell organizations in a vascular scaffold within the range of resolution of single cells by 4.7 T MRI is reported.
Collapse
Affiliation(s)
- Delphine Fayol
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS and Université Paris Diderot, Paris, France
| | - Catherine Le Visage
- Inserm, U698, Bio-ingénierie Cardiovasculaire, Université Paris Diderot, CHU X. Bichat, Paris, France
| | - Julia Ino
- Inserm, U698, Bio-ingénierie Cardiovasculaire, Université Paris Diderot, CHU X. Bichat, Paris, France
| | - Florence Gazeau
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS and Université Paris Diderot, Paris, France
| | - Didier Letourneur
- Inserm, U698, Bio-ingénierie Cardiovasculaire, Université Paris Diderot, CHU X. Bichat, Paris, France
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS and Université Paris Diderot, Paris, France
| |
Collapse
|
12
|
Zhang ZH, Lu Y, Luan Y, Zhao JJ. Effect of bone marrow mesenchymal stem cells on experimental pulmonary arterial hypertension. Exp Ther Med 2012; 4:839-843. [PMID: 23226736 PMCID: PMC3493740 DOI: 10.3892/etm.2012.691] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Accepted: 08/22/2012] [Indexed: 12/21/2022] Open
Abstract
The aim of the present study was to investigate the effect of bone marrow mesenchymal stem cell (BMSC) transp1antation on lung and heart damage in a rat model of monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH). The animals were randomly divided into 3 groups: control, PAH and BMSC implantation groups. Structural changes in the pulmonary vascular wall, such as the pulmonary artery lumen area (VA) and vascular area (TAA) were measured by hematoxylin and eosin (H&E) staining, and the hemodynamics were detected by echocardiography. Two weeks post-operation, our results demonstrated that sublingual vein injection of BMSCs significantly attenuated the pulmonary vascular structural and hemodynamic changes caused by pulmonary arterial hypertension. The mechanism may be executed via paracrine effects.
Collapse
Affiliation(s)
- Zhao-Hua Zhang
- Department of Pediatrics, The Second Hospital of Shandong University, Jinan
| | | | | | | |
Collapse
|
13
|
Luan Y, Zhang X, Kong F, Cheng GH, Qi TG, Zhang ZH. Mesenchymal stem cell prevention of vascular remodeling in high flow-induced pulmonary hypertension through a paracrine mechanism. Int Immunopharmacol 2012; 14:432-7. [PMID: 22922316 DOI: 10.1016/j.intimp.2012.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 08/01/2012] [Accepted: 08/01/2012] [Indexed: 01/31/2023]
Abstract
UNLABELLED Pulmonary arterial hypertension (PAH) is characterized by functional and structural changes in the pulmonary vasculature, and despite the drug treatment that made significant progress, the prognosis of patients with advanced PH remains extremely poor. In the present study, we investigated the early effect of bone marrow mesenchymal stem cells (BMSCs) on experimental high blood flow-induced PAH model rats and discussed the mechanism. BMSCs were isolated, cultured from bone marrow of Sprague-Dawley (SD) rat. The animal model of PAH was created by surgical methods to produce a left-to-right shunt. Following the successful establishment of the PAH model, rats were randomly assigned to three groups (n=20 in each group): sham group (control), PAH group, and BMSC group (received a sublingual vein injection of 1-5 × 10(6) BMSCs). Two weeks after the administration, BMSCs significantly reduced the vascular remodeling, improved the hemodynamic data, and deceased the right ventricle weight ratio to left ventricular plus septal weight (RV/LV+S) (P<0.05). Real-time reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry analysis results indicated that the inflammation factors such as interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) were reduced (P<0.05); the expression of matrix metallo proteinase-9 (MMP-9) was lower (P<0.05); vascular endothelial growth factor (VEGF) was higher in BMSC group than those in PAH group (P<0.05). CONCLUSION Sublingual vein injection of BMSCs for 2 weeks, significantly improved the lung and heart injury caused by left-to-right shunt-induced PAH; decreased pulmonary vascular remodeling and inflammation; and enhanced angiogenesis.
Collapse
Affiliation(s)
- Yun Luan
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, China
| | | | | | | | | | | |
Collapse
|
14
|
Implantation of mesenchymal stem cells improves right ventricular impairments caused by experimental pulmonary hypertension. Am J Med Sci 2012; 343:402-6. [PMID: 21876426 DOI: 10.1097/maj.0b013e31822dc5d3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Pulmonary hypertension (PH) is a rapidly progressive and fatal disease. In recent years, despite drug treatment made significant progress, the prognosis of patients with advanced PH remains extremely poor. The authors implanted bone marrow-derived mesenchymal stem cells (BMSCs) intravenously into the PH model rats and observed the effect of MSCs on right ventricular (RV) impairments. METHODS BMSCs were isolated, cultured from bone marrow of rats and stained with the cross-linkable membrane dye in vitro. One week after, a PH model was induced by subcutaneous injection of monocrotaline, the animals were randomly divided into 4 groups (n = 20 in each group): I, control; II, MSCs implantation; III, PH and IV, PH + MSCs implantation. Two weeks after MSCs implantation, the authors observed the MSC survival and transformation by immunofluorescence microscopy. On the other hand, RV hypertrophy and the elevation of systolic pressure were detected by echocardiography. RESULT Three weeks after monocrotaline injection, RV systolic pressure, mean right ventricular pressure and mean pulmonary arterial pressure were significantly elevated in group III than in group I and II (P < 0.05) but significantly lower in group IV than in group III (P < 0.05). These results showed that implantation of MSCs could improve RV impairments caused by experimental PH. Histochemical results confirmed that transplanted MSCs were still alive after 2 weeks and part of the cells could differentiate into pulmonary vascular endothelial cells. CONCLUSION Intravenous implantation of MSCs could significantly reduce or even reverse the progression of MCT-induced PH, improve cardiac function and hemodynamics.
Collapse
|
15
|
Association of CD14+ monocyte-derived progenitor cells with cardiac allograft vasculopathy. J Thorac Cardiovasc Surg 2011; 142:1246-53. [PMID: 22014346 PMCID: PMC3202640 DOI: 10.1016/j.jtcvs.2011.07.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 04/27/2011] [Accepted: 07/19/2011] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The pathogenesis of cardiac allograft vasculopathy after heart transplant remains controversial. Histologically, cardiac allograft vasculopathy is characterized by intimal hyperplasia of the coronary arteries induced by infiltrating cells. The origin of these infiltrating cells in cardiac allograft vasculopathy is unclear. Endothelial progenitor cells are reportedly involved in cardiac allograft vasculopathy; however, the role of CD14(+) monocyte-derived progenitor cells in cardiac allograft vasculopathy pathogenesis remains unknown. METHODS Monocyte-derived progenitor cells were isolated from blood mononuclear cell fractions obtained from 25 patients with cardiac allograft vasculopathy and 25 patients without cardiac allograft vasculopathy. RESULTS Both patients with cardiac allograft vasculopathy and those without cardiac allograft vasculopathy had CD45(+), CD34(+), CD14(+), CD141(-), CD31(-) monocyte-derived progenitor cells that differentiated into mesenchymal lineages. Monocyte-derived progenitor cells formed significantly higher numbers of colonies in patients with cardiac allograft vasculopathy than in those without cardiac allograft vasculopathy; this correlated with posttransplant follow-up time. Importantly, monocyte-derived progenitor cells from patients with cardiac allograft vasculopathy expressed significantly more α smooth muscle actin and proliferated at a higher rate than did monocyte-derived progenitor cells of patients without cardiac allograft vasculopathy. In vitro experiments suggested a paracrine control mechanism in proliferation of monocyte-derived progenitor cells in cardiac allograft vasculopathy. CONCLUSIONS These results indicate that monocyte-derived progenitor cells are associated with cardiac allograft vasculopathy, have the ability to transdifferentiate into smooth muscle cells, and thus may contribute to intimal hyperplasia of coronary arteries in cardiac allograft vasculopathy. Targeting monocyte-derived progenitor cell recruitment could be beneficial in cardiac allograft vasculopathy treatment.
Collapse
|
16
|
The facial autologous muscular injection (FAMI) procedure: an anatomically targeted deep multiplane autologous fat-grafting technique using principles of facial fat injection. Aesthetic Plast Surg 2011; 35:502-10. [PMID: 21298265 DOI: 10.1007/s00266-010-9645-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Accepted: 11/19/2010] [Indexed: 10/18/2022]
Abstract
BACKGROUND As widely described in the medical literature, facial fat grafting has been limited to the subcutaneous plane, with only vague reference to the muscular plane and deeper tissues. Local infiltration, with or without general anesthesia, is commonly used. The challenges of maintaining volumetric correction, symmetry, and predictability have limited practitioners' confidence in obtaining a desirable result when fat grafting the face. The authors describe a technique for facial fat grafting that targets specific anatomic structures and tissue beds, in effect making the patient's underlying anatomy the template for rejuvenation. Engrafting the muscles of facial expression improves graft retention and therefore predictability and symmetry. The ability to target anatomic structures other than muscle lends itself to the prospect of greater therapeutic advances using adipose-derived stem cells (ADSCs). A set of principles guiding the technique intended to promote successful cellular engraftment is presented. METHODS Three illustrative cases are presented, each the result of a single session: two from a 10-year experience of 700 patients by the lead author and one by the corresponding author. RESULTS The majority of cases (80-90%) needed only a single session for creation of permanent improvement in facial volumes and contours. CONCLUSIONS The facial autologous muscular injection (FAMI) technique offers an anatomically based approach to facial fat grafting with greater predictability and efficiency than current techniques. The principles of the technique put forth apply equally to volumetric enhancements obtained through successful fat grafting and to the promise of ADSCs.
Collapse
|
17
|
Du M, Yan X, Tong JF, Zhao J, Zhu MJ. Maternal obesity, inflammation, and fetal skeletal muscle development. Biol Reprod 2009; 82:4-12. [PMID: 19516021 DOI: 10.1095/biolreprod.109.077099] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Maternal obesity coupled with Western-style high-energy diets represents a special problem that can result in poor fetal development, leading to harmful, persistent effects on offspring, including predisposition to obesity and type 2 diabetes. Mechanisms linking maternal obesity to the increased incidence of obesity and other metabolic diseases in offspring remain poorly defined. Because skeletal muscle is the principal site for glucose and fatty acid utilization and composes 40%-50% of total body mass, changes in the properties of offspring skeletal muscle and its mass resulting from maternal obesity may be responsible for the increase in type 2 diabetes and obesity. Fetal stage is crucial for skeletal muscle development because there is no net increase in the muscle fiber number after birth. Fetal skeletal muscle development involves myogenesis, adipogenesis, and fibrogenesis, which are all derived from mesenchymal stem cells (MSCs). Shifting commitment of MSCs from myogenesis to adipogenesis and fibrogenesis will result in increased intramuscular fat and connective tissue, as well as reduced numbers of muscle fiber and/or diameter, all of which have lasting negative effects on offspring muscle function and properties. Maternal obesity leads to low-grade inflammation, which changes the commitment of MSCs in fetal muscle through several possible mechanisms: 1) inflammation downregulates wingless and int (WNT) signaling, which attenuates myogenesis; 2) inflammation inhibits AMP-activated protein kinase, which promotes adipogenesis; and 3) inflammation may induce epigenetic modification through polycomb group proteins. More studies are needed to further explore the underlying mechanisms associated with maternal obesity, inflammation, and the commitment of MSCs.
Collapse
Affiliation(s)
- Min Du
- Department of Animal Science, University of Wyoming, Laramie, Wyoming 82071, USA.
| | | | | | | | | |
Collapse
|