1
|
CD73 Overexpression in Podocytes: A Novel Marker of Podocyte Injury in Human Kidney Disease. Int J Mol Sci 2021; 22:ijms22147642. [PMID: 34299260 PMCID: PMC8304086 DOI: 10.3390/ijms22147642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 12/23/2022] Open
Abstract
The CD73 pathway is an important anti-inflammatory mechanism in various disease settings. Observations in mouse models suggested that CD73 might have a protective role in kidney damage; however, no direct evidence of its role in human kidney disease has been described to date. Here, we hypothesized that podocyte injury in human kidney diseases alters CD73 expression that may facilitate the diagnosis of podocytopathies. We assessed the expression of CD73 and one of its functionally important targets, the C-C chemokine receptor type 2 (CCR2), in podocytes from kidney biopsies of 39 patients with podocytopathy (including focal segmental glomerulosclerosis (FSGS), minimal change disease (MCD), membranous glomerulonephritis (MGN) and amyloidosis) and a control group. Podocyte CD73 expression in each of the disease groups was significantly increased in comparison to controls (p < 0.001–p < 0.0001). Moreover, there was a marked negative correlation between CD73 and CCR2 expression, as confirmed by immunohistochemistry and immunofluorescence (Pearson r = −0.5068, p = 0.0031; Pearson r = −0.4705, p = 0.0313, respectively), thus suggesting a protective role of CD73 in kidney injury. Finally, we identify CD73 as a novel potential diagnostic marker of human podocytopathies, particularly of MCD that has been notorious for the lack of pathological features recognizable by light microscopy and immunohistochemistry.
Collapse
|
2
|
Bomfim GHS, Musial DC, Miranda-Ferreira R, Nascimento SR, Jurkiewicz A, Jurkiewicz NH, de Moura RS. Antihypertensive effects of the Vitis vinifera grape skin (ACH09) extract consumption elicited by functional improvement of P1 (A1) and P2 (P2X1) purinergic receptors in diabetic and hypertensive rats. PHARMANUTRITION 2019. [DOI: 10.1016/j.phanu.2019.100146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
3
|
Brinton M, Mandel Y, Schachar I, Palanker D. Mechanisms of electrical vasoconstriction. J Neuroeng Rehabil 2018; 15:43. [PMID: 29843762 PMCID: PMC5975571 DOI: 10.1186/s12984-018-0390-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/22/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Electrical vasoconstriction is a promising approach to control blood pressure or restrict bleeding in non-compressible wounds. We explore the neural and non-neural pathways of electrical vasoconstriction in-vivo. METHODS Charge-balanced, asymmetric pulses were delivered through a pair of metal disc electrodes. Vasoconstriction was assessed by measuring the diameter of rat saphenous vessels stimulated with low-voltage (20 V, 1 ms) and high-voltage (150 V, 10 μs) stimuli at 10 Hz for 5 min. Activation pathways were explored by topical application of a specific neural agonist (phenylephrine, alpha-1 receptor), a non-specific agonist (KCl) and neural inhibitors (phenoxybenzamine, 25 mg/ml; guanethidine, 1 mg/ml). Acute tissue damage was assessed with a membrane permeability (live-dead) fluorescent assay. The Joule heating in tissue was estimated using COMSOL Multiphysics modeling. RESULTS During stimulation, arteries constricted to 41 ± 8% and 37 ± 6% of their pre-stimulus diameter with low- and high-voltage stimuli, while veins constricted to 80 ± 18% and 40 ± 11%, respectively. In arteries, despite similar extent of constriction, the recovery time was very different: about 30 s for low-voltage and 10 min for high-voltage stimuli. Neural inhibitors significantly reduced low-voltage arterial constriction, but did not affect high-voltage arterial or venous constriction, indicating that high-voltage stimuli activate non-neural vasoconstriction pathways. Adrenergic pathways predominantly controlled low-voltage arterial but not venous constriction, which may involve a purinergic pathway. Viability staining confirmed that stimuli were below the electroporation threshold. Modeling indicates that heating of the blood vessels during stimulation (< 0.2 °C) is too low to cause vasoconstriction. CONCLUSIONS We demonstrate that low-voltage stimuli induce reversible vasoconstriction through neural pathways, while high-voltage stimuli activate non-neural pathways, likely in addition to neural stimulation. Different stimuli providing precise control over the extent of arterial and venous constriction as well as relaxation rate could be used to control bleeding, perfusion or blood pressure.
Collapse
Affiliation(s)
- Mark Brinton
- Department of Bioengineering, University of Utah, 20 S. 2030 E., Salt Lake City, UT, 84112, USA.
| | - Yossi Mandel
- Faculty of Life Sciences, Bar Ilan University, 5290002, Ramat-Gan, Israel
| | - Ira Schachar
- Department of Ophthalmology, Stanford University, 2452 Watson Court Palo Alto, Stanford, CA, 94303, USA
| | - Daniel Palanker
- Department of Ophthalmology, Stanford University, 2452 Watson Court Palo Alto, Stanford, CA, 94303, USA.,Hansen Experimental Physics Laboratory, Stanford University, 452 Lomita Mall, Stanford, CA, 94305, USA
| |
Collapse
|
4
|
Burnstock G. Purinergic Signaling in the Cardiovascular System. Circ Res 2017; 120:207-228. [PMID: 28057794 DOI: 10.1161/circresaha.116.309726] [Citation(s) in RCA: 281] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 02/07/2023]
Abstract
There is nervous control of the heart by ATP as a cotransmitter in sympathetic, parasympathetic, and sensory-motor nerves, as well as in intracardiac neurons. Centers in the brain control heart activities and vagal cardiovascular reflexes involve purines. Adenine nucleotides and nucleosides act on purinoceptors on cardiomyocytes, AV and SA nodes, cardiac fibroblasts, and coronary blood vessels. Vascular tone is controlled by a dual mechanism. ATP, released from perivascular sympathetic nerves, causes vasoconstriction largely via P2X1 receptors. Endothelial cells release ATP in response to changes in blood flow (via shear stress) or hypoxia, to act on P2 receptors on endothelial cells to produce nitric oxide, endothelium-derived hyperpolarizing factor, or prostaglandins to cause vasodilation. ATP is also released from sensory-motor nerves during antidromic reflex activity, to produce relaxation of some blood vessels. Purinergic signaling is involved in the physiology of erythrocytes, platelets, and leukocytes. ATP is released from erythrocytes and platelets, and purinoceptors and ectonucleotidases are expressed by these cells. P1, P2Y1, P2Y12, and P2X1 receptors are expressed on platelets, which mediate platelet aggregation and shape change. Long-term (trophic) actions of purine and pyrimidine nucleosides and nucleotides promote migration and proliferation of vascular smooth muscle and endothelial cells via P1 and P2Y receptors during angiogenesis, vessel remodeling during restenosis after angioplasty and atherosclerosis. The involvement of purinergic signaling in cardiovascular pathophysiology and its therapeutic potential are discussed, including heart failure, infarction, arrhythmias, syncope, cardiomyopathy, angina, heart transplantation and coronary bypass grafts, coronary artery disease, diabetic cardiomyopathy, hypertension, ischemia, thrombosis, diabetes mellitus, and migraine.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- From the Autonomic Neuroscience Institute, Royal Free and University College Medical School, London, United Kingdom.
| |
Collapse
|
5
|
Stark CKJ, Tarkia M, Kentala R, Malmberg M, Vähäsilta T, Savo M, Hynninen VV, Helenius M, Ruohonen S, Jalkanen J, Taimen P, Alastalo TP, Saraste A, Knuuti J, Savunen T, Koskenvuo J. Systemic Dosing of Thymosin Beta 4 before and after Ischemia Does Not Attenuate Global Myocardial Ischemia-Reperfusion Injury in Pigs. Front Pharmacol 2016; 7:115. [PMID: 27199757 PMCID: PMC4853610 DOI: 10.3389/fphar.2016.00115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/18/2016] [Indexed: 12/30/2022] Open
Abstract
The use of cardiopulmonary bypass (CPB) and aortic cross-clamping causes myocardial ischemia-reperfusion injury (I-RI) and can lead to reduced postoperative cardiac function. We investigated whether this injury could be attenuated by thymosin beta 4 (TB4), a peptide which has showed cardioprotective effects. Pigs received either TB4 or vehicle and underwent CPB and aortic cross-clamping for 60 min with cold intermittent blood-cardioplegia and were then followed for 30 h. Myocardial function and blood flow was studied by cardiac magnetic resonance and PET imaging. Tissue and plasma samples were analyzed to determine the amount of cardiomyocyte necrosis and apoptosis as well as pharmacokinetics of the peptide. In vitro studies were performed to assess its influence on blood coagulation and vasomotor tone. Serum levels of the peptide were increased after administration compared to control samples. TB4 did not decrease the amount of cell death. Cardiac function and global myocardial blood flow was similar between the study groups. At high doses a vasoconstrictor effect on mesentery arteries and a vasodilator effect on coronary arteries was observed and blood clot firmness was reduced when tested in the presence of an antiplatelet agent. Despite promising results in previous trials the cardioprotective effect of TB4 was not demonstrated in this model for global myocardial I-RI.
Collapse
Affiliation(s)
- Christoffer K-J Stark
- Research Center of Applied and Preventive Cardiovascular Medicine, University of TurkuTurku, Finland; Heart Center, Turku University Hospital and University of TurkuTurku, Finland
| | - Miikka Tarkia
- Turku PET Centre, Turku University Hospital and University of Turku Turku, Finland
| | - Rasmus Kentala
- Research Center of Applied and Preventive Cardiovascular Medicine, University of Turku Turku, Finland
| | - Markus Malmberg
- Heart Center, Turku University Hospital and University of Turku Turku, Finland
| | - Tommi Vähäsilta
- Research Center of Applied and Preventive Cardiovascular Medicine, University of TurkuTurku, Finland; Heart Center, Turku University Hospital and University of TurkuTurku, Finland
| | - Matti Savo
- Research Center of Applied and Preventive Cardiovascular Medicine, University of Turku Turku, Finland
| | - Ville-Veikko Hynninen
- Department of Anesthesiology, Intensive Care, Emergency Care and Pain Medicine, Turku University Hospital Turku, Finland
| | - Mikko Helenius
- Children's Hospital, Pediatric Cardiology, Helsinki University Hospital Helsinki, Finland
| | - Saku Ruohonen
- Research Center of Applied and Preventive Cardiovascular Medicine, University of Turku Turku, Finland
| | - Juho Jalkanen
- Department of Vascular Surgery, Turku University Hospital and University of Turku Turku, Finland
| | - Pekka Taimen
- Department of Pathology, Turku University Hospital and University of Turku Turku, Finland
| | - Tero-Pekka Alastalo
- Children's Hospital, Pediatric Cardiology, Helsinki University Hospital Helsinki, Finland
| | - Antti Saraste
- Turku PET Centre, Turku University Hospital and University of Turku Turku, Finland
| | - Juhani Knuuti
- Turku PET Centre, Turku University Hospital and University of Turku Turku, Finland
| | - Timo Savunen
- Research Center of Applied and Preventive Cardiovascular Medicine, University of Turku Turku, Finland
| | - Juha Koskenvuo
- Research Center of Applied and Preventive Cardiovascular Medicine, University of Turku Turku, Finland
| |
Collapse
|
6
|
Stone AJ, Evanson KW, Kluess HA. ATP metabolism in skeletal muscle arterioles. Physiol Rep 2014; 2:e00207. [PMID: 24744886 PMCID: PMC3967690 DOI: 10.1002/phy2.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/04/2014] [Accepted: 01/07/2014] [Indexed: 11/15/2022] Open
Abstract
The purpose of this study was to investigate the metabolism of Adenosine triphosphate (ATP) in skeletal muscle resistance arterioles and to determine whether this metabolism is altered during the rapid growth phase of the rat. We attempted to quantify ATP metabolism in gastrocnemius first‐order arterioles from 8‐, 10‐, and 12‐week‐old rats. We measured ATP metabolism using an ATPase/GTPase assay with whole vessel segments as well as using a real‐time adenosine biosensor following electric field stimulation. Our first method of measuring ATP metabolism allowed us to measure the amount of free phosphate produced with ATP as a substrate. When ecto‐nucleotidase activity was inhibited by ARL67156, pyridoxal phosphate‐6‐azophenly‐2′, 4′‐disulfonic acid (PPADS), or suramin prior to adding ATP, we found that the rate of phosphate production was significantly reduced by 27%, 21%, and 22%, respectively (P < 0.05). Our second method of measuring ATP metabolism allowed us to measure the amount of adenosine produced following electric field stimulation of the arteriole with and without nucleotidase inhibitors. Surprisingly, we found that adenosine overflow was not attenuated by nucleotidase inhibitors. We concluded that ecto‐phosphodieterase/phyrophophatase (E‐NPP), ecto‐diadenosine polyphosphatase (ApnA), NTPDase1 and 2, and E5NT may be present on the gastrocnemius 1A arteriole and do play a role in ATP metabolism. Between the ages of 8 weeks and 12 weeks, however, overall ATP metabolism may not change. The purpose of this study was to investigate the metabolism of Adenosine triphosphate (ATP) in skeletal muscle resistance arterioles and whether it is altered during the rapid growth phase of the rat. We concluded that ecto‐phosphodieterase/phyrophophatase (E‐NPP), ecto‐diadenosine polyphosphatase (ApnA), NTPDase1 and 2, and E5NT may be present on the gastrocnemius 1A arteriole and do play a role in ATP metabolism. Between the ages of 8 weeks and 12 weeks, however, overall ATP metabolism may not change.
Collapse
Affiliation(s)
- Audrey J. Stone
- Department of Health Science, Kinesiology, Recreation and Dance; University of Arkansas; Fayetteville Arkansas
- Pennsylvania State University College of Medicine; Hershey Pennsylvania
| | - Kirk W. Evanson
- Department of Health Science, Kinesiology, Recreation and Dance; University of Arkansas; Fayetteville Arkansas
| | - Heidi A. Kluess
- Department of Health Science, Kinesiology, Recreation and Dance; University of Arkansas; Fayetteville Arkansas
- School of Kinesiology; Auburn University; Auburn Alabama
| |
Collapse
|
7
|
Burnstock G, Ralevic V. Purinergic signaling and blood vessels in health and disease. Pharmacol Rev 2013; 66:102-92. [PMID: 24335194 DOI: 10.1124/pr.113.008029] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purinergic signaling plays important roles in control of vascular tone and remodeling. There is dual control of vascular tone by ATP released as a cotransmitter with noradrenaline from perivascular sympathetic nerves to cause vasoconstriction via P2X1 receptors, whereas ATP released from endothelial cells in response to changes in blood flow (producing shear stress) or hypoxia acts on P2X and P2Y receptors on endothelial cells to produce nitric oxide and endothelium-derived hyperpolarizing factor, which dilates vessels. ATP is also released from sensory-motor nerves during antidromic reflex activity to produce relaxation of some blood vessels. In this review, we stress the differences in neural and endothelial factors in purinergic control of different blood vessels. The long-term (trophic) actions of purine and pyrimidine nucleosides and nucleotides in promoting migration and proliferation of both vascular smooth muscle and endothelial cells via P1 and P2Y receptors during angiogenesis and vessel remodeling during restenosis after angioplasty are described. The pathophysiology of blood vessels and therapeutic potential of purinergic agents in diseases, including hypertension, atherosclerosis, ischemia, thrombosis and stroke, diabetes, and migraine, is discussed.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London NW3 2PF, UK; and Department of Pharmacology, The University of Melbourne, Australia.
| | | |
Collapse
|
8
|
Abstract
Metabolic stimuli, pressure, and fluid shear stress (FSS) are major mediators of vascular plasticity. The exposure of the vessel wall to increased laminar FSS is the main trigger of arteriogenesis, the remodelling of pre-existent arterio-arteriolar anastomoses to functional conductance arteries. In this study, we have used an in vitro bioreactor to investigate cell-specific interactions, molecular mechanisms as well as time-dependent effects under laminar FSS conditions. This bioreactor termed “artificial artery” can be used for screening potential arterio-protective substances, pro-arteriogenic factors, and for investigating biomarkers of cardiovascular diseases such as cardiac diseases. The bioreactor is built up out of 14 hollow fiber membranes colonized with endothelial cells (HUVECs) on the inside and smooth muscle cells (HUASMCs) on the outside. By means of Hoechst 33342 staining as well as immunocytochemistry of ß-catenin and α-smooth-muscle-actin, a microporous polypropylene membrane was characterized as being the appropriate polymer for co-colonization. Defined arterial flow conditions (0.1 N/m2 and 3 N/m2), metabolic exchange, and cross-talk of HUVECs and HUASMCs through hollow fibers mimic physiological in vivo conditions of the vasculature. Analysing mono- and co-culture secretomes by MALDI-TOF-TOF mass spectrometry, we could show that HUVECs secreted Up4A upon 3 N/m2. A constant cellular secretion of randomly chosen peptides verified viability of the “artificial artery” for a cultivation period up to five days. qRT-PCR analyses revealed an up-regulation of KLF2 and TIMP1 as mechano-regulated genes and demonstrated arterio-protective, homeostatic FSS conditions by a down-regulation of EDN1. Expression analyses of VWF and EDN1 furthermore confirmed that RNA of both cell types could separately be isolated without cross-contamination. CCND1 mRNA expression in HUVECs did not change upon FSS indicating a quiescent endothelial phenotype. Taken together, the “artificial artery” provides a solid in vitro model to test pharmacological active compounds for their impact on arterio-damaging or arterio-protective properties on vascular response.
Collapse
|
9
|
Kabanova NV, Vassilevski AA, Rogachevskaja OA, Bystrova MF, Korolkova YV, Pluzhnikov KA, Romanov RA, Grishin EV, Kolesnikov SS. Modulation of P2X3 receptors by spider toxins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2868-75. [PMID: 22842000 DOI: 10.1016/j.bbamem.2012.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/18/2012] [Accepted: 07/20/2012] [Indexed: 12/17/2022]
Abstract
Recently, the novel peptide named purotoxin-1 (PT1) has been identified in the venom of the spider Geolycosa sp. and shown to exert marked modulatory effects on P2X3 receptors in rat sensory neurons. Here we studied another polypeptide from the same spider venom, purotoxin-2 (PT2), and demonstrated that it also affected activity of mammalian P2X3 receptors. The murine and human P2X3 receptors were heterologously expressed in cells of the CHO line, and nucleotide-gated currents were stimulated by CTP and ATP, respectively. Both PT1 and PT2 negligibly affected P2X3-mediated currents elicited by brief pulses of the particular nucleotide. When subthreshold CTP or ATP was added to the bath to exert the high-affinity desensitization of P2X3 receptors, both spider toxins strongly enhanced the desensitizing action of the ambient nucleotides. At the concentration of 50nM, PT1 and PT2 elicited 3-4-fold decrease in the IC(50) dose of ambient CTP or ATP. In contrast, 100nM PT1 and PT2 negligibly affected nucleotide-gated currents mediated by mP2X2 receptors or mP2X2/mP2X3 heteromers. Altogether, our data point out that the PT1 and PT2 toxins specifically target the fast-desensitizing P2X3 receptor, thus representing a unique tool to manipulate its activity.
Collapse
Affiliation(s)
- Natalia V Kabanova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Corriden R, Insel PA. Basal release of ATP: an autocrine-paracrine mechanism for cell regulation. Sci Signal 2010; 3:re1. [PMID: 20068232 DOI: 10.1126/scisignal.3104re1] [Citation(s) in RCA: 268] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cells release adenosine triphosphate (ATP), which activates plasma membrane-localized P2X and P2Y receptors and thereby modulates cellular function in an autocrine or paracrine manner. Release of ATP and the subsequent activation of P2 receptors help establish the basal level of activation (sometimes termed "the set point") for signal transduction pathways and regulate a wide array of responses that include tissue blood flow, ion transport, cell volume regulation, neuronal signaling, and host-pathogen interactions. Basal release and autocrine or paracrine responses to ATP are multifunctional, evolutionarily conserved, and provide an economical means for the modulation of cell, tissue, and organismal biology.
Collapse
Affiliation(s)
- Ross Corriden
- Departments of Pharmacology and Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|