1
|
Badin J, Rodenbeck S, McKenney-Drake ML, Sturek M. Multiphasic changes in smooth muscle Ca 2+ transporters during the progression of coronary atherosclerosis. CURRENT TOPICS IN MEMBRANES 2022; 90:95-121. [PMID: 36368876 DOI: 10.1016/bs.ctm.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ischemic heart disease due to macrovascular atherosclerosis and microvascular dysfunction is the major cause of death worldwide and the unabated increase in metabolic syndrome is a major reason why this will continue. Intracellular free Ca2+ ([Ca2+]i) regulates a variety of cellular functions including contraction, proliferation, migration, and transcription. It follows that studies of vascular Ca2+ regulation in reductionist models and translational animal models are vital to understanding vascular health and disease. Swine with metabolic syndrome (MetS) develop the full range of coronary atherosclerosis from mild to severe disease. Intravascular imaging enables quantitative measurement of atherosclerosis in vivo, so viable coronary smooth muscle (CSM) cells can be dispersed from the arteries to enable Ca2+ transport studies in native cells. Transition of CSM from the contractile phenotype in the healthy swine to the proliferative phenotype in mild atherosclerosis was associated with increases in SERCA activity, sarcoplasmic reticulum Ca2+, and voltage-gated Ca2+ channel function. In vitro organ culture confirmed that SERCA activation induces CSM proliferation. Transition from the proliferative to a more osteogenic phenotype was associated with decreases in all three Ca2+ transporters. Overall, there was a biphasic change in Ca2+ transporters over the progression of atherosclerosis in the swine model and this was confirmed in CSM from failing explanted hearts of humans. A major determinant of endolysosome content in human CSM is the severity of atherosclerosis. In swine CSM endolysosome Ca2+ release occurred through the TPC2 channel. We propose a multiphasic change in Ca2+ transporters over the progression of coronary atherosclerosis.
Collapse
Affiliation(s)
- Jill Badin
- ZOLL Medical Corporation, Chelmsford, MA, United States
| | - Stacey Rodenbeck
- Department of Biology, Harding University, Searcy, AR, United States
| | - Mikaela L McKenney-Drake
- Butler University, Health Sciences Department, Pharmacy and Health Sciences, Indianapolis, IN, United States
| | - Michael Sturek
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
2
|
Jackson WF. Calcium-Dependent Ion Channels and the Regulation of Arteriolar Myogenic Tone. Front Physiol 2021; 12:770450. [PMID: 34819877 PMCID: PMC8607693 DOI: 10.3389/fphys.2021.770450] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022] Open
Abstract
Arterioles in the peripheral microcirculation regulate blood flow to and within tissues and organs, control capillary blood pressure and microvascular fluid exchange, govern peripheral vascular resistance, and contribute to the regulation of blood pressure. These important microvessels display pressure-dependent myogenic tone, the steady state level of contractile activity of vascular smooth muscle cells (VSMCs) that sets resting arteriolar internal diameter such that arterioles can both dilate and constrict to meet the blood flow and pressure needs of the tissues and organs that they perfuse. This perspective will focus on the Ca2+-dependent ion channels in the plasma and endoplasmic reticulum membranes of arteriolar VSMCs and endothelial cells (ECs) that regulate arteriolar tone. In VSMCs, Ca2+-dependent negative feedback regulation of myogenic tone is mediated by Ca2+-activated K+ (BKCa) channels and also Ca2+-dependent inactivation of voltage-gated Ca2+ channels (VGCC). Transient receptor potential subfamily M, member 4 channels (TRPM4); Ca2+-activated Cl− channels (CaCCs; TMEM16A/ANO1), Ca2+-dependent inhibition of voltage-gated K+ (KV) and ATP-sensitive K+ (KATP) channels; and Ca2+-induced-Ca2+ release through inositol 1,4,5-trisphosphate receptors (IP3Rs) participate in Ca2+-dependent positive-feedback regulation of myogenic tone. Calcium release from VSMC ryanodine receptors (RyRs) provide negative-feedback through Ca2+-spark-mediated control of BKCa channel activity, or positive-feedback regulation in cooperation with IP3Rs or CaCCs. In some arterioles, VSMC RyRs are silent. In ECs, transient receptor potential vanilloid subfamily, member 4 (TRPV4) channels produce Ca2+ sparklets that activate IP3Rs and intermediate and small conductance Ca2+ activated K+ (IKCa and sKCa) channels causing membrane hyperpolarization that is conducted to overlying VSMCs producing endothelium-dependent hyperpolarization and vasodilation. Endothelial IP3Rs produce Ca2+ pulsars, Ca2+ wavelets, Ca2+ waves and increased global Ca2+ levels activating EC sKCa and IKCa channels and causing Ca2+-dependent production of endothelial vasodilator autacoids such as NO, prostaglandin I2 and epoxides of arachidonic acid that mediate negative-feedback regulation of myogenic tone. Thus, Ca2+-dependent ion channels importantly contribute to many aspects of the regulation of myogenic tone in arterioles in the microcirculation.
Collapse
Affiliation(s)
- William F Jackson
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
3
|
Climent B, Santiago E, Sánchez A, Muñoz-Picos M, Pérez-Vizcaíno F, García-Sacristán A, Rivera L, Prieto D. Metabolic syndrome inhibits store-operated Ca 2+ entry and calcium-induced calcium-release mechanism in coronary artery smooth muscle. Biochem Pharmacol 2020; 182:114222. [PMID: 32949582 DOI: 10.1016/j.bcp.2020.114222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND PURPOSE Metabolic syndrome causes adverse effects on the coronary circulation including altered vascular responsiveness and the progression of coronary artery disease (CAD). However the underlying mechanisms linking obesity with CAD are intricated. Augmented vasoconstriction, mainly due to impaired Ca2+ homeostasis in coronary vascular smooth muscle (VSM), is a critical factor for CAD. Increased calcium-induced calcium release (CICR) mechanism has been associated to pathophysiological conditions presenting persistent vasoconstriction while increased store operated calcium (SOC) entry appears to activate proliferation and migration in coronary vascular smooth muscle (VSM). We analyze here whether metabolic syndrome might alter SOC entry as well as CICR mechanism in coronary arteries, contributing thus to a defective Ca2+ handling and therefore accelerating the progression of CAD. EXPERIMENTAL APPROACH Measurements of intracellular Ca2+ ([Ca2+]i) and tension and of Ca2+ channels protein expression were performed in coronary arteries (CA) from lean Zucker rats (LZR) and obese Zucker rats (OZR). KEY RESULTS SOC entry stimulated by emptying sarcoplasmic reticulum (SR) Ca2+ store with cyclopiazonic acid (CPA) was decreased and associated to decreased STIM-1 and Orai1 protein expression in OZR CA. Further, CICR mechanism was blunted in these arteries but Ca2+ entry through voltage-dependent L-type channels was preserved contributing to maintain depolarization-induced increases in [Ca2+]i and vasoconstriction in OZR CA. These results were associated to increased expression of voltage-operated L-type Ca2+ channel alpha 1C subunit (CaV1.2) but unaltered ryanodine receptor (RyR) and sarcoendoplasmic reticulum Ca2+-ATPase (SERCA) pump protein content in OZR CA. CONCLUSION AND IMPLICATIONS The present manuscript provides evidence of impaired Ca2+ handling mechanisms in coronary arteries in metabolic syndrome where a decrease in both SOC entry and CICR mechanism but preserved vasoconstriction are reported in coronary arteries from obese Zucker rats. Remarkably, OZR CA VSM at this state of metabolic syndrome seemed to have developed a compensation mechanism for impaired CICR by overexpressing CaV1.2 channels.
Collapse
Affiliation(s)
- Belén Climent
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain.
| | - Elvira Santiago
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Ana Sánchez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Mercedes Muñoz-Picos
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | | | | | - Luis Rivera
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| |
Collapse
|
4
|
Jackson WF. Introduction to ion channels and calcium signaling in the microcirculation. CURRENT TOPICS IN MEMBRANES 2020; 85:1-18. [PMID: 32402636 DOI: 10.1016/bs.ctm.2020.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The microcirculation is the network of feed arteries, arterioles, capillaries and venules that supply and drain blood from every tissue and organ in the body. It is here that exchange of heat, oxygen, carbon dioxide, nutrients, hormones, water, cytokines, and immune cells takes place; essential functions necessary to maintenance of homeostasis throughout the life span. This chapter will outline the structure and function of each microvascular segment highlighting the critical roles played by ion channels in the microcirculation. Feed arteries upstream from the true microcirculation and arterioles within the microcirculation contribute to systemic vascular resistance and blood pressure control. They also control total blood flow to the downstream microcirculation with arterioles being responsible for distribution of blood flow within a tissue or organ dependent on the metabolic needs of the tissue. Terminal arterioles control blood flow and blood pressure to capillary units, the primary site of diffusional exchange between blood and tissues due to their large surface area. Venules collect blood from capillaries and are important sites for fluid exchange and immune cell trafficking. Ion channels in microvascular smooth muscle cells, endothelial cells and pericytes importantly contribute to all of these functions through generation of intracellular Ca2+ and membrane potential signals in these cells.
Collapse
Affiliation(s)
- William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
5
|
Basic Concepts of the Microcirculation. Microcirculation 2020. [DOI: 10.1007/978-3-030-28199-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
Jackson WF. K V channels and the regulation of vascular smooth muscle tone. Microcirculation 2018; 25. [PMID: 28985443 DOI: 10.1111/micc.12421] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/01/2017] [Indexed: 12/31/2022]
Abstract
VSMCs in resistance arteries and arterioles express a diverse array of KV channels with members of the KV 1, KV 2 and KV 7 families being particularly important. Members of the KV channel family: (i) are highly expressed in VSMCs; (ii) are active at the resting membrane potential of VSMCs in vivo (-45 to -30 mV); (iii) contribute to the negative feedback regulation of VSMC membrane potential and myogenic tone; (iv) are activated by cAMP-related vasodilators, hydrogen sulfide and hydrogen peroxide; (v) are inhibited by increases in intracellular Ca2+ and vasoconstrictors that signal through Gq -coupled receptors; (vi) are involved in the proliferative phenotype of VSMCs; and (vii) are modulated by diseases such as hypertension, obesity, the metabolic syndrome and diabetes. Thus, KV channels participate in every aspect of the regulation of VSMC function in both health and disease.
Collapse
Affiliation(s)
- William F Jackson
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
7
|
Jackson WF, Boerman EM. Voltage-gated Ca 2+ channel activity modulates smooth muscle cell calcium waves in hamster cremaster arterioles. Am J Physiol Heart Circ Physiol 2018; 315:H871-H878. [PMID: 29957015 DOI: 10.1152/ajpheart.00292.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cremaster muscle arteriolar smooth muscle cells (SMCs) display inositol 1,4,5-trisphosphate receptor-dependent Ca2+ waves that contribute to global myoplasmic Ca2+ concentration and myogenic tone. However, the contribution made by voltage-gated Ca2+ channels (VGCCs) to arteriolar SMC Ca2+ waves is unknown. We tested the hypothesis that VGCC activity modulates SMC Ca2+ waves in pressurized (80 cmH2O/59 mmHg, 34°C) hamster cremaster muscle arterioles loaded with Fluo-4 and imaged by confocal microscopy. Removal of extracellular Ca2+ dilated arterioles (32 ± 3 to 45 ± 3 μm, n = 15, P < 0.05) and inhibited the occurrence, amplitude, and frequency of Ca2+ waves ( n = 15, P < 0.05), indicating dependence of Ca2+ waves on Ca2+ influx. Blockade of VGCCs with nifedipine (1 μM) or diltiazem (10 μM) or deactivation of VGCCs by hyperpolarization of smooth muscle with the K+ channel agonist cromakalim (10 μM) produced similar inhibition of Ca2+ waves ( P < 0.05). Conversely, depolarization of SMCs with the K+ channel blocker tetraethylammonium (1 mM) constricted arterioles from 26 ± 3 to 14 ± 2 μm ( n = 11, P < 0.05) and increased wave occurrence (9 ± 3 to 16 ± 3 waves/SMC), amplitude (1.6 ± 0.07 to 1.9 ± 0.1), and frequency (0.5 ± 0.1 to 0.9 ± 0.2 Hz, n = 10, P < 0.05), effects that were blocked by nifedipine (1 μM, P < 0.05). Similarly, the VGCC agonist Bay K8644 (5 nM) constricted arterioles from 14 ± 1 to 8 ± 1 μm and increased wave occurrence (3 ± 1 to 10 ± 1 waves/SMC) and frequency (0.2 ± 0.1 to 0.6 ± 0.1 Hz, n = 6, P < 0.05), effects that were unaltered by ryanodine (50 μM, n = 6, P > 0.05). These data support the hypothesis that Ca2+ waves in arteriolar SMCs depend, in part, on the activity of VGCCs. NEW & NOTEWORTHY Arterioles that control blood flow to and within skeletal muscle depend on Ca2+ influx through voltage-gated Ca2+ channels and release of Ca2+ from internal stores through inositol 1,4,5-trisphosphate receptors in the form of Ca2+ waves to maintain pressure-induced smooth muscle tone.
Collapse
Affiliation(s)
- William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| | - Erika M Boerman
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| |
Collapse
|
8
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
9
|
Potassium Channels in Regulation of Vascular Smooth Muscle Contraction and Growth. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:89-144. [PMID: 28212804 DOI: 10.1016/bs.apha.2016.07.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Potassium channels importantly contribute to the regulation of vascular smooth muscle (VSM) contraction and growth. They are the dominant ion conductance of the VSM cell membrane and importantly determine and regulate membrane potential. Membrane potential, in turn, regulates the open-state probability of voltage-gated Ca2+ channels (VGCC), Ca2+ influx through VGCC, intracellular Ca2+, and VSM contraction. Membrane potential also affects release of Ca2+ from internal stores and the Ca2+ sensitivity of the contractile machinery such that K+ channels participate in all aspects of regulation of VSM contraction. Potassium channels also regulate proliferation of VSM cells through membrane potential-dependent and membrane potential-independent mechanisms. VSM cells express multiple isoforms of at least five classes of K+ channels that contribute to the regulation of contraction and cell proliferation (growth). This review will examine the structure, expression, and function of large conductance, Ca2+-activated K+ (BKCa) channels, intermediate-conductance Ca2+-activated K+ (KCa3.1) channels, multiple isoforms of voltage-gated K+ (KV) channels, ATP-sensitive K+ (KATP) channels, and inward-rectifier K+ (KIR) channels in both contractile and proliferating VSM cells.
Collapse
|
10
|
Ávila-Medina J, Calderón-Sánchez E, González-Rodríguez P, Monje-Quiroga F, Rosado JA, Castellano A, Ordóñez A, Smani T. Orai1 and TRPC1 Proteins Co-localize with CaV1.2 Channels to Form a Signal Complex in Vascular Smooth Muscle Cells. J Biol Chem 2016; 291:21148-21159. [PMID: 27535226 DOI: 10.1074/jbc.m116.742171] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Indexed: 11/06/2022] Open
Abstract
Voltage-dependent CaV1.2 L-type Ca2+ channels (LTCC) are the main route for calcium entry in vascular smooth muscle cells (VSMC). Several studies have also determined the relevant role of store-operated Ca2+ channels (SOCC) in vascular tone regulation. Nevertheless, the role of Orai1- and TRPC1-dependent SOCC in vascular tone regulation and their possible interaction with CaV1.2 are still unknown. The current study sought to characterize the co-activation of SOCC and LTCC upon stimulation by agonists, and to determine the possible crosstalk between Orai1, TRPC1, and CaV1.2. Aorta rings and isolated VSMC obtained from wild type or smooth muscle-selective conditional CaV1.2 knock-out (CaV1.2KO) mice were used to study vascular contractility, intracellular Ca2+ mobilization, and distribution of ion channels. We found that serotonin (5-HT) or store depletion with thapsigargin (TG) enhanced intracellular free Ca2+ concentration ([Ca2+]i) and stimulated aorta contraction. These responses were sensitive to LTCC and SOCC inhibitors. Also, 5-HT- and TG-induced responses were significantly attenuated in CaV1.2KO mice. Furthermore, hyperpolarization induced with cromakalim or valinomycin significantly reduced both 5-HT and TG responses, whereas these responses were enhanced with LTCC agonist Bay-K-8644. Interestingly, in situ proximity ligation assay revealed that CaV1.2 interacts with Orai1 and TRPC1 in untreated VSMC. These interactions enhanced significantly after stimulation of cells with 5-HT and TG. Therefore, these data indicate for the first time a functional interaction between Orai1, TRPC1, and CaV1.2 channels in VSMC, confirming that upon agonist stimulation, vessel contraction involves Ca2+ entry due to co-activation of Orai1- and TRPC1-dependent SOCC and LTCC.
Collapse
Affiliation(s)
- Javier Ávila-Medina
- From the Departamento de Fisiología Médica y Biofísica and Groupo de Fisiopatología Cardiovascular, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Eva Calderón-Sánchez
- Groupo de Fisiopatología Cardiovascular, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | | | - Francisco Monje-Quiroga
- the Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Wien, Austria, and
| | - Juan Antonio Rosado
- the Departamento de Fisiología, Universidad de Extremadura, 10071 Cáceres, Spain
| | | | - Antonio Ordóñez
- Groupo de Fisiopatología Cardiovascular, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Tarik Smani
- From the Departamento de Fisiología Médica y Biofísica and Groupo de Fisiopatología Cardiovascular, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain,
| |
Collapse
|
11
|
Porras-González C, González-Rodríguez P, Calderón-Sánchez E, López-Barneo J, Ureña J. Low-dose combination of Rho kinase and L-type Ca2+ channel antagonists for selective inhibition of depolarization-induced sustained arterial contraction. Eur J Pharmacol 2014; 732:130-8. [DOI: 10.1016/j.ejphar.2014.02.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/27/2014] [Accepted: 02/23/2014] [Indexed: 11/29/2022]
|
12
|
Kudryavtseva O, Herum KM, Dam VS, Straarup MS, Kamaev D, Briggs Boedtkjer DM, Matchkov VV, Aalkjær C. Downregulation of L-type Ca2+ channel in rat mesenteric arteries leads to loss of smooth muscle contractile phenotype and inward hypertrophic remodeling. Am J Physiol Heart Circ Physiol 2014; 306:H1287-301. [DOI: 10.1152/ajpheart.00503.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
L-type Ca2+ channels (LTCCs) are important for vascular smooth muscle cell (VSMC) contraction, as well as VSMC differentiation, as indicated by loss of LTCCs during VSMC dedifferentiation. However, it is not clear whether loss of LTCCs is a primary event underlying phenotypic modulation or whether loss of LTCCs has significance for vascular structure. We used small interference RNA (siRNA) transfection in vivo to investigate the role of LTCCs in VSMC phenotypic expression and structure of rat mesenteric arteries. siRNA reduced LTCC mRNA and protein expression in rat mesenteric arteries 3 days after siRNA transfection to 12.7 ± 0.7% and 47.3 ± 13%, respectively: this was associated with an increased resting intracellular Ca2+ concentration ([Ca2+]i). Despite the high [Ca2+]i, the contractility was reduced (tension development to norepinephrine was 3.5 ± 0.2 N/m and 0.8 ± 0.2 N/m for sham-transfected and downregulated arteries respectively; P < 0.05). Expression of contractile phenotype marker genes was reduced in arteries downregulated for LTCCs. Phenotypic changes were associated with a 45% increase in number of VSMCs and a consequent increase of media thickness and media area. Ten days after siRNA transfection arterial structure was again normalized. The contractile responses of LTCC-siRNA transfected arteries were elevated in comparison with matched controls 10 days after transfection. The study provides strong evidence for causal relationships between LTCC expression and VSMC contractile phenotype, as well as novel data addressing the complex relationship between VSMC contractility, phenotype, and vascular structure. These findings are relevant for understanding diseases, associated with phenotype changes of VSMC and vascular remodeling, such as atherosclerosis and hypertension.
Collapse
Affiliation(s)
- Olga Kudryavtseva
- Department of Biomedicine, Membranes, Aarhus University, Aarhus C, Denmark; and
| | - Kate Møller Herum
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Vibeke Secher Dam
- Department of Biomedicine, Membranes, Aarhus University, Aarhus C, Denmark; and
| | | | - Dmitry Kamaev
- Department of Biomedicine, Membranes, Aarhus University, Aarhus C, Denmark; and
| | | | | | - Christian Aalkjær
- Department of Biomedicine, Membranes, Aarhus University, Aarhus C, Denmark; and
| |
Collapse
|
13
|
Hofmann F, Flockerzi V, Kahl S, Wegener JW. L-type CaV1.2 calcium channels: from in vitro findings to in vivo function. Physiol Rev 2014; 94:303-26. [PMID: 24382889 DOI: 10.1152/physrev.00016.2013] [Citation(s) in RCA: 248] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The L-type Cav1.2 calcium channel is present throughout the animal kingdom and is essential for some aspects of CNS function, cardiac and smooth muscle contractility, neuroendocrine regulation, and multiple other processes. The L-type CaV1.2 channel is built by up to four subunits; all subunits exist in various splice variants that potentially affect the biophysical and biological functions of the channel. Many of the CaV1.2 channel properties have been analyzed in heterologous expression systems including regulation of the L-type CaV1.2 channel by Ca(2+) itself and protein kinases. However, targeted mutations of the calcium channel genes confirmed only some of these in vitro findings. Substitution of the respective serines by alanine showed that β-adrenergic upregulation of the cardiac CaV1.2 channel did not depend on the phosphorylation of the in vitro specified amino acids. Moreover, well-established in vitro phosphorylation sites of the CaVβ2 subunit of the cardiac L-type CaV1.2 channel were found to be irrelevant for the in vivo regulation of the channel. However, the molecular basis of some kinetic properties, such as Ca(2+)-dependent inactivation and facilitation, has been approved by in vivo mutagenesis of the CaV1.2α1 gene. This article summarizes recent findings on the in vivo relevance of well-established in vitro results.
Collapse
|
14
|
Intracellular Ca2+ remodeling during the phenotypic journey of human coronary smooth muscle cells. Cell Calcium 2013; 54:375-85. [DOI: 10.1016/j.ceca.2013.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/26/2013] [Accepted: 08/31/2013] [Indexed: 11/23/2022]
|
15
|
Park WS, Heo SC, Jeon ES, Hong DH, Son YK, Ko JH, Kim HK, Lee SY, Kim JH, Han J. Functional expression of smooth muscle-specific ion channels in TGF-β(1)-treated human adipose-derived mesenchymal stem cells. Am J Physiol Cell Physiol 2013; 305:C377-91. [PMID: 23761629 DOI: 10.1152/ajpcell.00404.2012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Human adipose tissue-derived mesenchymal stem cells (hASCs) have the power to differentiate into various cell types including chondrocytes, osteocytes, adipocytes, neurons, cardiomyocytes, and smooth muscle cells. We characterized the functional expression of ion channels after transforming growth factor-β1 (TGF-β1)-induced differentiation of hASCs, providing insights into the differentiation of vascular smooth muscle cells. The treatment of hASCs with TGF-β1 dramatically increased the contraction of a collagen-gel lattice and the expression levels of specific genes for smooth muscle including α-smooth muscle actin, calponin, smooth mucle-myosin heavy chain, smoothelin-B, myocardin, and h-caldesmon. We observed Ca(2+), big-conductance Ca(2+)-activated K(+) (BKCa), and voltage-dependent K(+) (Kv) currents in TGF-β1-induced, differentiated hASCs and not in undifferentiated hASCs. The currents share the characteristics of vascular smooth muscle cells (SMCs). RT-PCR and Western blotting revealed that the L-type (Cav1.2) and T-type (Cav3.1, 3.2, and 3.3), known to be expressed in vascular SMCs, dramatically increased along with the Cavβ1 and Cavβ3 subtypes in TGF-β1-induced, differentiated hASCs. Although the expression-level changes of the β-subtype BKCa channels varied, the major α-subtype BKCa channel (KCa1.1) clearly increased in the TGF-β1-induced, differentiated hASCs. Most of the Kv subtypes, also known to be expressed in vascular SMCs, dramatically increased in the TGF-β1-induced, differentiated hASCs. Our results suggest that TGF-β1 induces the increased expression of vascular SMC-like ion channels and the differentiation of hASCs into contractile vascular SMCs.
Collapse
Affiliation(s)
- Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ozkan MH, Ozturk EI, Uma S. Electrical field stimulation (EFS)-induced relaxations turn into contractions upon removal of extracellular calcium in rat mesenteric artery. Pharmacol Res 2013; 70:60-5. [DOI: 10.1016/j.phrs.2013.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 12/03/2012] [Accepted: 01/04/2013] [Indexed: 10/27/2022]
|
17
|
Abstract
Genetically modified mouse models have unparalleled power to determine the mechanisms behind different processes involved in the molecular and physiologic etiology of various classes of human pulmonary hypertension (PH). Processes known to be involved in PH for which there are extensive mouse models available include the following: (1) Regulation of vascular tone through secreted vasoactive factors; (2) regulation of vascular tone through potassium and calcium channels; (3) regulation of vascular remodeling through alteration in metabolic processes, either through alteration in substrate usage or through circulating factors; (4) spontaneous vascular remodeling either before or after development of elevated pulmonary pressures; and (5) models in which changes in tone and remodeling are primarily driven by inflammation. PH development in mice is of necessity faster and with different physiologic ramifications than found in human disease, and so mice make poor models of natural history of PH. However, transgenic mouse models are a perfect tool for studying the processes involved in pulmonary vascular function and disease, and can effectively be used to test interventions designed against particular molecular pathways and processes involved in disease.
Collapse
Affiliation(s)
- Mita Das
- Department of Internal Medicine, University of Arkansas Medical Sciences, Little Rock, Arkansas, USA
| | | | | | | |
Collapse
|
18
|
Fernández-Tenorio M, Porras-González C, Castellano A, López-Barneo J, Ureña J. Tonic arterial contraction mediated by L-type Ca2+ channels requires sustained Ca2+ influx, G protein-associated Ca2+ release, and RhoA/ROCK activation. Eur J Pharmacol 2012; 697:88-96. [PMID: 23051677 DOI: 10.1016/j.ejphar.2012.09.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 09/20/2012] [Accepted: 09/21/2012] [Indexed: 11/25/2022]
Abstract
KCl-evoked sustained contraction requires L-type Ca(2+) channel activation, metabotropic Ca(2+) release from the sarcoplasmic reticulum (mechanism denoted calcium channel-induced Ca(2+) release) and RhoA/Rho associated kinase activation. Although high K(+) solutions are used to depolarize myocytes, these solutions can stimulate other signaling pathways such as those triggered by the activation of muscarinic and purinergic receptors. The present study examines the functional role of calcium channel-induced Ca(2+) release under pharmacological activation of L-type Ca(2+) channel without significant membrane depolarization. It also analyzes the role of the "steady-state" Ca(2+) influx through L-type Ca(2+) channels on myocyte sustained contraction. Measurement of contractility in arterial rings was done on a vessel myograph. Membrane potential was measured by fluorescence techniques loading intact myocytes with a membrane potential sensitive dye, and a reversible permeabilization method was used to load myocytes in intact arteries with GDPβS and Ca(v)1.2 siRNA. Application of an L-type Ca(2+) channel agonist, without effect on membrane potential, evoked sustained contraction via G-protein induced Ca(2+) release from the sarcoplasmic reticulum and RhoA/Rho associated kinase activation. Tonic myocyte contractions mediated by L-type Ca(2+) channel activation required sustained Ca(2+) influx through the channels and Ca(2+) uptake by the sarcoplasmic reticulum. Because L-type Ca(2+) channels participate in numerous pathophysiological processes mediated by maintained arterial contraction, our data could help to optimize therapeutic treatment of arterial vasospasm.
Collapse
Affiliation(s)
- Miguel Fernández-Tenorio
- Instituto de Biomedicina de Sevilla and Dpto. Fisiología Médica y Biofísica, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | | | | | | | | |
Collapse
|
19
|
Circulation Research
Thematic Synopsis. Circ Res 2012. [DOI: 10.1161/circresaha.112.280024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Ureña J, López-Barneo J. Metabotropic regulation of RhoA/Rho-associated kinase by L-type Ca2+ channels. Trends Cardiovasc Med 2012; 22:155-60. [PMID: 22902183 DOI: 10.1016/j.tcm.2012.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/16/2012] [Accepted: 07/17/2012] [Indexed: 01/17/2023]
Abstract
Sustained vascular smooth muscle contraction can be mediated by several mechanisms, including the influx of extracellular Ca(2+) through L-type voltage-gated Ca(2+) channels (LTCCs) and by RhoA/Rho-associated kinase (ROCK)-dependent Ca(2+) sensitization of the contractile machinery. Conformational changes in the LTCC following depolarization can also trigger an ion-independent metabotropic pathway that involves G protein/phospholipase C activation, giving rise to inositol 1,4,5-trisphosphate synthesis and subsequent Ca(2+) release from the sarcoplasmic reticulum (SR) (calcium channel-induced Ca(2+) release or calcium channel-induced calcium release [CCICR]). In this review, we summarize recent data suggesting that LTCC activation and subsequent metabotropic Ca(2+) release from the SR participate in depolarization-evoked RhoA/ROCK activity and sustained arterial contraction. During protracted depolarizations, refilling of the SR stores by a residual influx of extracellular Ca(2+) through LTCCs helps maintain RhoA activity and contractile activation. These findings suggest that CCICR plays a major role in tonic vascular smooth muscle contraction, providing a link between membrane depolarization-induced LTCC activation and metabotropic Ca(2+) release and RhoA/ROCK stimulation.
Collapse
Affiliation(s)
- Juan Ureña
- Instituto de Biomedicina de Sevilla (IBiS) and Departamento de Fisiología Médica y Biofísica, Hospital Universitario Virgen de Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain.
| | | |
Collapse
|
21
|
Félétou M. The Endothelium, Part I: Multiple Functions of the Endothelial Cells -- Focus on Endothelium-Derived Vasoactive Mediators. ACTA ACUST UNITED AC 2011. [DOI: 10.4199/c00031ed1v01y201105isp019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
|
23
|
Fernández-Tenorio M, Porras-González C, Castellano A, Del Valle-Rodríguez A, López-Barneo J, Ureña J. Metabotropic regulation of RhoA/Rho-associated kinase by L-type Ca2+ channels: new mechanism for depolarization-evoked mammalian arterial contraction. Circ Res 2011; 108:1348-57. [PMID: 21493898 DOI: 10.1161/circresaha.111.240127] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Sustained vascular smooth muscle contraction is mediated by extracellular Ca(2+) influx through L-type voltage-gated Ca(2+) channels (VGCC) and RhoA/Rho-associated kinase (ROCK)-dependent Ca(2+) sensitization of the contractile machinery. VGCC activation can also trigger an ion-independent metabotropic pathway that involves G-protein/phospholipase C activation, inositol 1,4,5-trisphosphate synthesis, and Ca(2+) release from the sarcoplasmic reticulum (calcium channel-induced Ca(2+) release). We have studied the functional role of calcium channel-induced Ca(2+) release and the inter-relations between Ca(2+) channel and RhoA/ROCK activation. METHODS AND RESULTS We have used normal and genetically modified animals to study single myocyte electrophysiology and fluorimetry as well as cytosolic Ca(2+) and diameter in intact arteries. These analyses were complemented with measurement of tension and RhoA activity in normal and reversibly permeabilized arterial rings. We have found that, unexpectedly, L-type Ca(2+) channel activation and subsequent metabotropic Ca(2+) release from sarcoplasmic reticulum participate in depolarization-evoked RhoA/ROCK activity and sustained arterial contraction. We show that these phenomena do not depend on the change in the membrane potential itself, or the mere release of Ca(2+) from the sarcoplasmic reticulum, but they require the simultaneous activation of VGCC and the downstream metabotropic pathway with concomitant Ca(2+) release. During protracted depolarizations, refilling of the stores by a residual extracellular Ca(2+) influx through VGCC helps maintaining RhoA activity and sustained arterial contraction. CONCLUSIONS These findings reveal that calcium channel-induced Ca(2+) release has a major role in tonic vascular smooth muscle contractility because it links membrane depolarization and Ca(2+) channel activation with metabotropic Ca(2+) release and sensitization (RhoA/ROCK stimulation).
Collapse
Affiliation(s)
- Miguel Fernández-Tenorio
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
24
|
Fu Y, Westenbroek RE, Yu FH, Clark JP, Marshall MR, Scheuer T, Catterall WA. Deletion of the distal C terminus of CaV1.2 channels leads to loss of beta-adrenergic regulation and heart failure in vivo. J Biol Chem 2011; 286:12617-26. [PMID: 21216955 DOI: 10.1074/jbc.m110.175307] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
L-type calcium currents conducted by CaV1.2 channels initiate excitation-contraction coupling in cardiac and vascular smooth muscle. In the heart, the distal portion of the C terminus (DCT) is proteolytically processed in vivo and serves as a noncovalently associated autoinhibitor of CaV1.2 channel activity. This autoinhibitory complex, with A-kinase anchoring protein-15 (AKAP15) bound to the DCT, is hypothesized to serve as the substrate for β-adrenergic regulation in the fight-or-flight response. Mice expressing CaV1.2 channels with the distal C terminus deleted (DCT-/-) develop cardiac hypertrophy and die prematurely after E15. Cardiac hypertrophy and survival rate were improved by drug treatments that reduce peripheral vascular resistance and hypertension, consistent with the hypothesis that CaV1.2 hyperactivity in vascular smooth muscle causes hypertension, hypertrophy, and premature death. However, in contrast to expectation, L-type Ca2+ currents in cardiac myocytes from DCT-/- mice were dramatically reduced due to decreased cell-surface expression of CaV1.2 protein, and the voltage dependence of activation and the kinetics of inactivation were altered. CaV1.2 channels in DCT-/- myocytes fail to respond to activation of adenylyl cyclase by forskolin, and the localized expression of AKAP15 is reduced. Therefore, we conclude that the DCT of CaV1.2 channels is required in vivo for normal vascular regulation, cell-surface expression of CaV1.2 channels in cardiac myocytes, and β-adrenergic stimulation of L-type Ca2+ currents in the heart.
Collapse
Affiliation(s)
- Ying Fu
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7280, USA
| | | | | | | | | | | | | |
Collapse
|