1
|
Su Q, Wang J, Huangfu Y, Gao R, Kong P, Gao Y, Song H, Zhang J, Huang P, Zhang C, Feng Z, Kong D, Wang W. An Off-the-Shelf Artificial Proregenerative Macrophage for Pressure Ulcer Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2415886. [PMID: 40271715 DOI: 10.1002/advs.202415886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/27/2025] [Indexed: 04/25/2025]
Abstract
Cell therapy is a promising approach in regenerative medicine. However, maintaining the survival and function of injected or implanted therapeutic cells remains a substantial challenge to success. In vivo modulatory strategy for cell therapeutics has been recently developed, but suffers from limited regenerative efficacy in injured tissue microenvironment with chronic inflammation. Here, an off-the-shelf artificial macrophage (artM) assembled by M2 macrophages-derived lysate proteins-loaded poly (lactic-co-glycolic acid) (PLGA) microspheres coated by macrophage cell membrane is developed. The synthetic artM fabricated in batches maintains its bioactivity with long-term cryostorage. Significantly, artM recapitulates the essential inflammation-regulatory and proregenerative characteristics of endogenous macrophages, including initiating M2 macrophage polarization, resolving excessive inflammation by releasing anti-inflammatory cytokines and growth factors, neutralizing endotoxins and proinflammatory cytokines, augmenting T-helper 2 (TH2) immune response, and coordinating cell migration and proliferation. In mouse model of deep tissue pressure injury (DTPI), the artM induces tissue regeneration by modulating the inflammatory microenvironment, promoting angiogenesis, reducing scar deposition, and accelerating the renewal of skin appendages. Depletion of macrophages in mice with skin ulcers highlights the immunomodulatory and proangiogenic functions of artM as effective as autogenous macrophages. Collectively, the engineered artM represents a cell-free, proreparative alternative to immune cell therapy in chronic wound management.
Collapse
Affiliation(s)
- Qi Su
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Jingrong Wang
- Beijing Life Science Academy, Beijing, 102200, China
| | - Yini Huangfu
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Rui Gao
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Pengxu Kong
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Yu Gao
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Huijuan Song
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Ju Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Pingsheng Huang
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Chuangnian Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Zujian Feng
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Deling Kong
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Weiwei Wang
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| |
Collapse
|
2
|
Jung C, Han JW, Lee SJ, Kim KH, Oh JE, Bae S, Lee S, Nam YJ, Kim S, Dang C, Kim J, Chu N, Lee EJ, Yoon YS. Novel Directly Reprogrammed Smooth Muscle Cells Promote Vascular Regeneration as Microvascular Mural Cells. Circulation 2025; 151:1076-1094. [PMID: 39945059 PMCID: PMC11996609 DOI: 10.1161/circulationaha.124.070217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/08/2025] [Indexed: 04/16/2025]
Abstract
BACKGROUND Although cell therapy has emerged as a promising approach to promote neovascularization, its effects are mostly limited to capillaries. To generate larger or more stable vessels, layering of mural cells such as smooth muscle cells (SMCs) or pericytes is required. Recently, direct reprogramming approaches have been developed for generating SMCs. However, such reprogrammed SMCs lack genuine features of contractile SMCs, a native SMC phenotype; thus, their therapeutic and vessel-forming potential in vivo was not explored. Therefore, we aimed to directly reprogram human dermal fibroblasts toward contractile SMCs (rSMCs) and investigated their role for generating vascular mural cells in vivo and their therapeutic effects on ischemic disease. METHODS We applied myocardin and all-trans retinoic acid with specific culture conditions to directly reprogram human dermal fibroblasts into rSMCs. We characterized their phenotype as contractile SMCs through quantitative reverse-transcriptase polymerase chain reaction, flow cytometry, and immunostaining. We then explored their contractility using a vasoconstrictor, carbachol, and through transmission electron microscope and bulk RNA sequencing. Next, we evaluated whether transplantation of rSMCs improves blood flow and induces vessel formation as mural cells in a mouse model of hindlimb ischemia with laser Doppler perfusion imaging and histological analysis. We also determined their paracrine effects. RESULTS Our novel culture conditions using myocardin and all-trans retinoic acid efficiently reprogrammed human dermal fibroblasts into SMCs. These rSMCs displayed characteristics of contractile SMCs at the mRNA, protein, and cellular levels. Transplantation of rSMCs into ischemic mouse hind limbs enhanced blood flow recovery and vascular repair and improved limb salvage. Histological examination showed that vascular density was increased and the engrafted rSMCs were incorporated into the vascular wall as pericytes and vascular SMCs, thereby contributing to formation of more stable and larger microvessels. Quantitative reverse-transcriptase polymerase chain reaction analysis revealed that these transplanted rSMCs exerted pleiotropic effects, including angiogenic, arteriogenic, vessel-stabilizing, and tissue regenerative effects, on ischemic limbs. CONCLUSIONS A combination of myocardin and all-trans retinoic acid in defined culture conditions efficiently reprogrammed human fibroblasts into contractile and functional SMCs. The rSMCs were shown to be effective for vascular repair and contributed to neovascularization through mural cells and various paracrine effects. These human rSMCs could represent a novel source for cell-based therapy and research.
Collapse
Affiliation(s)
- Cholomi Jung
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Ji Woong Han
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shin-Jeong Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Kyung Hee Kim
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jee Eun Oh
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seongho Bae
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sangho Lee
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Young-Jae Nam
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Sangsung Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Chaewon Dang
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jaehyun Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Rehabilitation Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Nakhyung Chu
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Eun Jig Lee
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Endocrinology, Division of Endocrinology and Metabolism, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Young-sup Yoon
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
3
|
He Y, Bundkirchen K, Taheri S, Stauß R, Liodakis E, Neunaber C, Schilling AF, Mühlfeld C, Sehmisch S, Graulich T. Increased vascularization of the subchondral region in human osteoarthritic femoral head in the elderly. Histochem Cell Biol 2025; 163:39. [PMID: 40122994 PMCID: PMC11930877 DOI: 10.1007/s00418-025-02365-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2025] [Indexed: 03/25/2025]
Abstract
This study aimed to quantitatively analyze subchondral vascularization during the progression of osteoarthritis (OA) in the elderly, particularly regarding the timing of initial blood vessel emergence and when their density peaks. A total of 129 independent areas from 43 human femoral heads, obtained through arthroplasty for OA or hemiarthroplasty for fractures, were analyzed. The femoral heads were grouped by Kellgren-Lawrence (KL) grades: KL 1 (6 heads), KL 2 (14 heads), KL 3 (10 heads), and KL 4 (13 heads), and the Mankin score was assessed. Quantitative measurements of blood vessel length 1 mm below the tidemark, cartilage volume and thickness, chondrocyte volume, ECM volume, subchondral bone volume, and bone marrow volume were performed using stereology and immunohistochemistry. The most substantial increase in the characteristics of blood vessels within the subchondral region began at KL 3 and peaked at KL 4. Blood vessel volume increased from 6.71 ± 5.84 mm3 in group KL 1 to 156.21 ± 138.67 mm3 in group KL 4 (p < 0.001). Blood vessel surface area showed an increase from 14.78 ± 9.89 cm2 (group KL 1) to 125.20 ± 93.18 cm2 (group KL 4) (p < 0.001). Likewise, blood vessel length grew from 27.53 m (IQR 13.70-65.41 m) in group KL 1 to 112.03 ± 76.07 m in group KL 4 (p = 0.001). This study offers deeper insights into the role of vascularization in OA pathophysiology, quantifying subchondral blood vessel characteristics in the femoral head across different OA stages.
Collapse
Affiliation(s)
- Yuqi He
- Department of Trauma Surgery, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany
| | - Katrin Bundkirchen
- Department of Trauma Surgery, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany
| | - Shahed Taheri
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Robert Koch Straße 40, 37075, Göttingen, Germany
| | - Ricarda Stauß
- Department of Orthopaedic and Trauma Surgery, University of Oldenburg, Pius Hospital, Oldenburg, Germany
| | - Emmanouil Liodakis
- Department of Trauma, Hand and Reconstructive Surgery, Departments and Institutes of Surgery, Saarland University, Homburg, Germany
| | - Claudia Neunaber
- Department of Trauma Surgery, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany
| | - Arndt F Schilling
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Robert Koch Straße 40, 37075, Göttingen, Germany
| | - Christian Mühlfeld
- Hannover Medical School, Institute of Functional and Applied Anatomy, German Center for Lung Research (DZL), Hannover, Germany
| | - Stephan Sehmisch
- Department of Trauma Surgery, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany
| | - Tilman Graulich
- Department of Trauma Surgery, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
4
|
Tahmasvand R, Dehghani S, Kooshafar Z, Emami Najafi SA, Almasirad A, Salimi M. In vitro and in vivo activity of a novel oxamide-hydrazone hybrid derivative against triple-negative breast cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5119-5129. [PMID: 38240779 DOI: 10.1007/s00210-023-02931-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/25/2023] [Indexed: 06/12/2024]
Abstract
Triple-negative breast cancer is a subtype of breast cancer with poor clinical outcome, and currently, no effective targeted therapies are available. Since cancer develops owing to deregulation of apoptosis, employing therapeutic strategies with the ability to target the molecules involved in apoptosis induction would provide a valid approach to hinder tumor progression. Hydrazide-hydrazones and oxamide molecules are the subject of intense studies due to their anticancer effects via apoptosis induction. In the present study, we attempted to elucidate the mechanism of action of a synthesized compound (compound A) in inducing cell death. Annexin/PI and Western blotting analyses, DAPI staining, mitochondrial membrane potential probe, and flow cytometry were applied for the in vitro evaluations. 4T1 syngeneic mouse model and immunohistochemistry were used for the in vivo assessments. Compound A caused cell death by inducing apoptosis in MDA-MB-231 cells in a mitochondrial-dependent manner at high concentrations after 72 h of incubation. Compound A also impeded tumor growth in a 4T1 syngeneic mouse model as evidenced by hematoxylin and eosin staining of the tumors. Furthermore, it significantly diminished the expression of pro-caspase-3, Ki67, and CD31 markers in the tumor sections. Conclusively, this study for the first time reports the anti-cancer efficacy of compound A in both in vitro and in vivo models and its potential in the treatment of triple-negative breast cancer.
Collapse
Affiliation(s)
- Raheleh Tahmasvand
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Soudeh Dehghani
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Zahra Kooshafar
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Seyedeh Azadeh Emami Najafi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Almasirad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mona Salimi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
5
|
Liu LX, Liao ZK, Dong BQ, Jiang S, Lei TC. Tranexamic Acid Ameliorates Skin Hyperpigmentation by Downregulating Endothelin-1 Expression in Dermal Microvascular Endothelial Cells. Ann Dermatol 2024; 36:151-162. [PMID: 38816976 PMCID: PMC11148312 DOI: 10.5021/ad.23.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/28/2023] [Accepted: 12/25/2023] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Although reports suggest that tranexamic acid (TXA) has clinical benefits for melasma patients by oral, intralesional and topical treatment, the optimal route of TXA therapy and the underlying mechanism involved remain poorly defined. OBJECTIVE To compare the skin lightening effect between oral TXA and topical TXA and to dissect the molecular mechanisms using ultraviolet B (UVB)-induced hyperpigmentation mouse model, ex vivo cultured human skin explant, and cultured melanocytes (MCs) and endothelial cells. METHODS Melanin content and cluster of differentiation 31 (CD31)-positive cell numbers were measured in tail skins from UVB-irradiated mice treated by intragastral or topical TXA using immunofluorescent and Fontana-Masson staining. The conditioned medium (CM) was harvested from human umbilical vein endothelial cells treated with or without 3 mM TXA and was used to treat MCs for 48 hours. mRNA and protein levels of tyrosinase and microphthalmia-associated transcription factor were measured using quantitative real-time reverse transcription polymerase chain reaction and western blotting assays. HMB45- and CD31-positive cell numbers as well as melanin content were also examined in ex vivo cultured human skin explants. RESULTS The hyperpigmented phenotype were significantly mitigated in UVB-irradiated tail skin plus intragastral TXA-treated mice compared with mice treated with UVB only or with UVB plus topical TXA. CD31-positive cell numbers correlated with the anti-melanogenic activity of TXA therapy. The data from cultured cells and skin tissues showed that suppression of endothelin-1 (ET-1) in vascular endothelial cells by TXA reduced melanogenesis and MC proliferation. CONCLUSION Oral TXA outperforms topical TXA treatment in skin lightening, which contributes to suppression of ET-1 in dermal microvascular endothelial cells by TXA.
Collapse
Affiliation(s)
- Lin-Xia Liu
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi-Kai Liao
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bing-Qi Dong
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shan Jiang
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tie-Chi Lei
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
6
|
Sun J, Jia W, Qi H, Huo J, Liao X, Xu Y, Wang J, Sun Z, Liu Y, Liu J, Zhen M, Wang C, Bai C. An Antioxidative and Active Shrinkage Hydrogel Integratedly Promotes Re-Epithelization and Skin Constriction for Enhancing Wound Closure. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312440. [PMID: 38332741 DOI: 10.1002/adma.202312440] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Delayed re-epithelization and weakened skin contractions are the two primary factors that hinder wound closure in large-scale acute or chronic wounds. However, effective strategies for targeting these two aspects concurrently are still lacking. Herein, an antioxidative active-shrinkage hydrogel (AHF@AS Gel) is constructed that can integratedly promote re-epithelization and skin constriction to accelerate large-scale acute and diabetic chronic wound closure. The AHF@AS Gel is encapsulated by antioxidative amino- and hydroxyl-modified C70 fullerene (AHF) and a thermosensitive active shrinkage hydrogel (AS Gel). Specifically, AHF relieves overactivated inflammation, prevents cellular apoptosis, and promotes fibroblast migration in vitro by reducing excessive reactive oxygen species (ROS). Notably, the AHF@AS Gel achieved ≈2.7-fold and ≈1.7-fold better re-epithelization in acute wounds and chronic diabetic wounds, respectively, significantly contributing to the promotion of wound closure. Using proteomic profiling and mechanistic studies, it is identified that the AHF@AS Gel efficiently promoted the transition of the inflammatory and proliferative phases to the remodeling phase. Notably, it is demonstrated that AS Gel alone activates the mechanosensitive epidermal growth factor receptor/Akt (EGFR/Akt) pathway and promotes cell proliferation. The antioxidative active shrinkage hydrogel offers a comprehensive strategy for acute wound and diabetic chronic wound closure via biochemistry regulation integrating with mechanical forces stimulation.
Collapse
Affiliation(s)
- Jiacheng Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wang Jia
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hedong Qi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiawei Huo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaodan Liao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zihao Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingchao Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingming Zhen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunli Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Glendenning LM, Reynero KM, Cobb BA. Glycosylation as a tracer of off-target Cre-lox activation in development. Glycobiology 2024; 34:cwae023. [PMID: 38438159 PMCID: PMC11031139 DOI: 10.1093/glycob/cwae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/25/2024] [Accepted: 02/25/2024] [Indexed: 03/06/2024] Open
Abstract
The Cre-lox system is one of the most widely used methods for lineage-specific and inducible genome editing in vivo. However, incomplete penetrance and off-target effects due to transient promoter expression in a stem or pluripotent precursor cell can be problematic and difficult to detect, especially if the target gene is not normally present in the fully differentiated but off-target cells. Yet, the loss of the target gene through the transient expression of Cre may impact the differentiation of those cells by virtue of transient expression in a precursor population. In these situations, off-target effects in an unknown precursor cell can, at best, complicate conclusions drawn from the model, and at worst, invalidate all data generated from that knockout strain. Thus, identifying Cre-driver promoter expression along entire cell lineages is crucial to improve rigor and reproducibility. As an example, transient expression in an early precursor cell has been documented in a variety of Cre strains such as the Tie2-based Cre-driver system that is used as an "endothelial cell-specific" model 1. Yet, Tie2 is now known to be transiently expressed in a stem cell upstream of both hematopoietic and endothelial cell lineages. Here, we use the Tie2 Cre-driver strain to demonstrate that due to its ubiquitous nature, plasma membrane glycans are a useful marker of both penetrance and specificity of a Cre-based knockout.
Collapse
Affiliation(s)
- Leandre M Glendenning
- Department of Pathology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-7288, United States
| | - Kalob M Reynero
- Department of Pathology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-7288, United States
| | - Brian A Cobb
- Department of Pathology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-7288, United States
| |
Collapse
|
8
|
Duan J, Chen Z, Liang X, Chen Y, Li H, Liu K, Gui L, Wang X, Li Y, Yang J. Engineering M2-type macrophages with a metal polyphenol network for peripheral artery disease treatment. Free Radic Biol Med 2024; 213:138-149. [PMID: 38218551 DOI: 10.1016/j.freeradbiomed.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/30/2023] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
Functional cell treatment for critical limb ischemia is limited by cell viability loss and dysfunction resulting from a harmful ischemic microenvironment. Metal-polyphenol networks have emerged as novel cell delivery vehicles for protecting cells from the detrimental ischemic microenvironment and prolonging the survival rate of cells in the ischemic microenvironment. M2 macrophages are closely related to tissue repair, and they secrete anti-inflammatory factors that contribute to lesion repair. However, these cells are easily metabolized in the body with low efficiency. Herein, M2 macrophages were decorated with a metal‒polyphenol network that contains copper ions and epigallocatechin gallate (Cu-EGCG@M2) to increase cell survival and therapeutic potential. Cu-EGCG@M2 synergistically promoted angiogenesis through the inherent angiogenesis effect of M2 macrophages and copper ions. We found that Cu-EGCG@M2 increased in vitro viability and strengthened the in vivo therapeutic effect on the ischemic hindlimbs of mice, which promoted the recovery of blood and muscle regeneration, resulting in superior limb salvage. These therapeutic effects were ascribed to the increased survival rate and therapeutic period of M2 macrophages, as well as the ameliorated microenvironment at the ischemic site. Additionally, Cu-EGCG exhibited antioxidant, anti-inflammatory, and proangiogenic effects. Our findings provide a feasible option for cell-based treatment of CLI.
Collapse
Affiliation(s)
- Jianwei Duan
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, PR China
| | - Zuoguan Chen
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, PR China
| | - Xiaoyu Liang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, PR China; Department of Heart Center, The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Nankai University Affiliated Third Center Hospital, Tianjin ECMO Treatment and Training Base, Artificial Cell Engineering Technology Research Center, Tianjin, 300170, PR China
| | - Youlu Chen
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, PR China
| | - Huiyang Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, PR China
| | - Kaijing Liu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, PR China
| | - Liang Gui
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, PR China
| | - Xiaoli Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, PR China
| | - Yongjun Li
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, PR China.
| | - Jing Yang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, PR China.
| |
Collapse
|
9
|
Wu HN, Li J, He Y, Georgi R, Kolberg B, Wang SY. Molecular mechanism of angiogenesis for cerebral infarction rats by acupuncture intervention based on sonic hedgehog signaling pathway. Physiol Behav 2024; 274:114420. [PMID: 38036019 DOI: 10.1016/j.physbeh.2023.114420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND To study the factors of the Sonic Hedgehog (Shh) signaling pathway after permanent cerebral ischemic and the effects by acupuncture. METHODS Male Wistar rats were divided into Electro-acupuncture (EA) group, Model Control (MC) group, and blank control (Control) group. EA and MC were divided into 9 phases, namely 1 h, 3 h, 6 h, 9 h, 12 h, 24 h, 3 d, 7 d, and 12 d after the operation. The neurological deficits and permanent cerebral ischemic volume were observed. The immunofluorescence method was used to examine the angiogenesis. (Polymerase Chain Reaction) PCR and (Immunohistochemistry) IHC were used to test the changes in Shh, Ptch, Smo, and Gli2 mRNA and proteins. RESULTS The neurological severity scores (NSS) of the Control was 0, the score of the EA group was less than that of the MC. The cerebral permanent ischemic volume of the Control was 0 %, and the EA group's was smaller than that of the MC. The expression of copositive cells in the EA group was higher than the MC's from 12 h to 12 d, and the EA group had more peripheral blood vessels. The rat brain expressions of Shh, Ptch, Smo and Gli2 mRNA and proteins in the MC was higher than that of the Control, the rat brain expression of the EA group was higher than that of the MC. CONCLUSIONS EA can upregulate the expression of the Shh signaling pathway factors, thereby promoting angiogenesis.
Collapse
Affiliation(s)
- Huan-Nan Wu
- Tianjin University of Traditional Chinese Medicine First Affiliated Hospital, Tianjin, China; National Center for Chinese Medicine Acupuncture Clinical Medicine Research, Tianjin, China
| | - Jing Li
- Tianjin University of Traditional Chinese Medicine First Affiliated Hospital, Tianjin, China; National Center for Chinese Medicine Acupuncture Clinical Medicine Research, Tianjin, China.
| | - Ying He
- Tianjin University of Traditional Chinese Medicine First Affiliated Hospital, Tianjin, China; National Center for Chinese Medicine Acupuncture Clinical Medicine Research, Tianjin, China
| | - Rainer Georgi
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Bernhard Kolberg
- Department of Internal Medicine, Mannheim Medical School of Heidelberg University, Mannheim, Germany
| | - Shu-Ya Wang
- China Academy of Chinese Medical Science, Beijing, 100700, China
| |
Collapse
|
10
|
Cho S, Xia I, Lee S, Park C, Yoon YS. Generation of Directly Reprogrammed Human Endothelial Cells. Methods Mol Biol 2024; 2835:155-164. [PMID: 39105914 DOI: 10.1007/978-1-0716-3995-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Direct reprogramming provides a novel breakthrough for generating functional endothelial cells (ECs) without the need for intermediate stem or progenitor states, offering a promising resource for cardiovascular research and treatment. ETV2 is a key transcription factor that has been identified as a pioneering factor for specifying endothelial lineage. Achieving precise ETV2 induction is essential for effective endothelial reprogramming, and maintaining the reprogrammed cellular phenotype relies on a specific combination of growth factors and small molecules. Thus, we hereby provide a straightforward and comprehensive protocol for generating two distinct types of reprogrammed ECs (rECs) from human dermal fibroblasts (HDFs). Early rECs demonstrate a robust neovascularization property but lack the mature EC phenotype, while late rECs exhibit phenotypical similarity to human postnatal ECs and have a neovascularization capacity similar to early rECs. Both cell types can be derived from human somatic source cells, making them suitable for personalized disease investigations, drug discovery, and disease therapy.
Collapse
Affiliation(s)
- Seonggeon Cho
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Iris Xia
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Sangho Lee
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Changwon Park
- Louisiana State University Health Sciences Center, Department of Molecular & Cellular Physiology, Shreveport, LA, USA
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Young-Sup Yoon
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
11
|
Inoue O, Goten C, Hashimuko D, Yamaguchi K, Takeda Y, Nomura A, Ootsuji H, Takashima S, Iino K, Takemura H, Halurkar M, Lim HW, Hwa V, Sanchez-Gurmaches J, Usui S, Takamura M. Single-cell transcriptomics identifies adipose tissue CD271 + progenitors for enhanced angiogenesis in limb ischemia. Cell Rep Med 2023; 4:101337. [PMID: 38118404 PMCID: PMC10772587 DOI: 10.1016/j.xcrm.2023.101337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/10/2023] [Accepted: 11/21/2023] [Indexed: 12/22/2023]
Abstract
Therapeutic angiogenesis using mesenchymal stem/stromal cell grafts have shown modest and controversial effects in preventing amputation for patients with critical limb ischemia. Through single-cell transcriptomic analysis of human tissues, we identify CD271+ progenitors specifically from subcutaneous adipose tissue (AT) as having the most prominent pro-angiogenic gene profile distinct from other stem cell populations. AT-CD271+ progenitors demonstrate robust in vivo angiogenic capacity over conventional adipose stromal cell grafts, characterized by long-term engraftment, augmented tissue regeneration, and significant recovery of blood flow in a xenograft model of limb ischemia. Mechanistically, the angiogenic capacity of CD271+ progenitors is dependent on functional CD271 and mTOR signaling. Notably, the number and angiogenic capacity of CD271+ progenitors are strikingly reduced in insulin-resistant donors. Our study highlights the identification of AT-CD271+ progenitors with in vivo superior efficacy for limb ischemia. Furthermore, we showcase comprehensive single-cell transcriptomics strategies for identification of suitable grafts for cell therapy.
Collapse
Affiliation(s)
- Oto Inoue
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan; Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Chiaki Goten
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Daiki Hashimuko
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kosei Yamaguchi
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yusuke Takeda
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Ayano Nomura
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Ootsuji
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Shinichiro Takashima
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kenji Iino
- Department of Thoracic, Cardiovascular and General Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hirofumi Takemura
- Department of Thoracic, Cardiovascular and General Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Manasi Halurkar
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hee-Woong Lim
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Vivian Hwa
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Premium Research Institute for Human Medicine (WPI-PRIMe), Osaka University, Osaka, Japan; Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Joan Sanchez-Gurmaches
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Soichiro Usui
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.
| | - Masayuki Takamura
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
12
|
Yang L, Wang Y, Zhang W, Liu X. One-Pot Preparation of Skin-Inspired Multifunctional Hybrid Hydrogel with Robust Wound Healing Capacity. ACS Biomater Sci Eng 2023; 9:5855-5870. [PMID: 37748138 DOI: 10.1021/acsbiomaterials.3c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Bioinspired hydrogels have demonstrated multiple superiorities over traditional wound dressings for wound healing applications. However, the fabrication of bioinspired hydrogel-based wound dressings with desired functionalities always requires multiple successive steps, time-consuming processes, and/or sophisticated protocols, plaguing their clinical applications. Here, a facile one-pot strategy is developed to prepare a skin-inspired multifunctional hydrogel within 30 min by incorporating elastin (an essential functional component of the dermal extracellular matrix), tannic acid, and chitosan into the covalently cross-linked poly(acrylamide) network through noncovalent interactions. The resulting hydrogel exhibits a Young's modulus (ca. 36 kPa) comparable to that of human skin, a high elongation-at-break (ca. 1550%), a satisfactory tensile strength (ca. 61 kPa), and excellent elastic self-restorability, enabling the hydrogel to synchronously and conformally deform with human skin when used as wound dressings. Importantly, the hydrogel displays a self-adhesive property to skin tissues with an appropriate bonding strength (ca. 55 kPa measured on intact porcine skin), endowing the hydrogel with the ability to rapidly self-adhere to intact human skin, sealing the wound surface and also easily being removed without residue left or trauma caused to the skin. The hydrogel also possesses remarkable antibacterial activity, antioxidant capability, and hemocompatibility. All of these collective beneficial properties enable the hydrogel to significantly accelerate the wound healing process, outperforming the commercial wound dressings.
Collapse
Affiliation(s)
- Liangliang Yang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Yue Wang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| | - Wei Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
- Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Xiaokong Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| |
Collapse
|
13
|
Wang Y, Zhao ZG, Chai Z, Fang JC, Chen M. Electromagnetic field and cardiovascular diseases: A state-of-the-art review of diagnostic, therapeutic, and predictive values. FASEB J 2023; 37:e23142. [PMID: 37650634 DOI: 10.1096/fj.202300201rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/20/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023]
Abstract
Despite encouraging advances in early diagnosis and treatment, cardiovascular diseases (CVDs) remained a leading cause of morbidity and mortality worldwide. Increasing evidence has shown that the electromagnetic field (EMF) influences many biological processes, which has attracted much attention for its potential therapeutic and diagnostic modalities in multiple diseases, such as musculoskeletal disorders and neurodegenerative diseases. Nonionizing EMF has been studied as a therapeutic or diagnostic tool in CVDs. In this review, we summarize the current literature ranging from in vitro to clinical studies focusing on the therapeutic potential (external EMF) and diagnostic potential (internal EMF generated from the heart) of EMF in CVDs. First, we provided an overview of the therapeutic potential of EMF and associated mechanisms in the context of CVDs, including cardiac arrhythmia, myocardial ischemia, atherosclerosis, and hypertension. Furthermore, we investigated the diagnostic and predictive value of magnetocardiography in CVDs. Finally, we discussed the critical steps necessary to translate this promising approach into clinical practice.
Collapse
Affiliation(s)
- Yan Wang
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhen-Gang Zhao
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zheng Chai
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian-Cheng Fang
- School of Instrumentation Science and Opto-Electronics Engineering, Beihang University, Beijing, China
| | - Mao Chen
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Lauterbach AL, Wallace RP, Alpar AT, Refvik KC, Reda JW, Ishihara A, Beckman TN, Slezak AJ, Mizukami Y, Mansurov A, Gomes S, Ishihara J, Hubbell JA. Topically-applied collagen-binding serum albumin-fused interleukin-4 modulates wound microenvironment in non-healing wounds. NPJ Regen Med 2023; 8:49. [PMID: 37696884 PMCID: PMC10495343 DOI: 10.1038/s41536-023-00326-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 08/31/2023] [Indexed: 09/13/2023] Open
Abstract
Non-healing wounds have a negative impact on quality of life and account for many cases of amputation and even early death among patients. Diabetic patients are the predominate population affected by these non-healing wounds. Despite the significant clinical demand, treatment with biologics has not broadly impacted clinical care. Interleukin-4 (IL-4) is a potent modulator of the immune system, capable of skewing macrophages towards a pro-regeneration phenotype (M2) and promoting angiogenesis, but can be toxic after frequent administration and is limited by its short half-life and low bioavailability. Here, we demonstrate the design and characterization of an engineered recombinant interleukin-4 construct. We utilize this collagen-binding, serum albumin-fused IL-4 variant (CBD-SA-IL-4) delivered in a hyaluronic acid (HA)-based gel for localized application of IL-4 to dermal wounds in a type 2 diabetic mouse model known for poor healing as proof-of-concept for improved tissue repair. Our studies indicate that CBD-SA-IL-4 is retained within the wound and can modulate the wound microenvironment through induction of M2 macrophages and angiogenesis. CBD-SA-IL-4 treatment significantly accelerated wound healing compared to native IL-4 and HA vehicle treatment without inducing systemic side effects. This CBD-SA-IL-4 construct can address the underlying immune dysfunction present in the non-healing wound, leading to more effective tissue healing in the clinic.
Collapse
Affiliation(s)
- Abigail L Lauterbach
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Rachel P Wallace
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Aaron T Alpar
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Kirsten C Refvik
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Joseph W Reda
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Ako Ishihara
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
- Department of Bioengineering, Imperial College London, London, W12 0BZ, UK
| | - Taryn N Beckman
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, IL, 60637, USA
| | - Anna J Slezak
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Yukari Mizukami
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Honjo, Kumamoto, Japan
| | - Aslan Mansurov
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Suzana Gomes
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Jun Ishihara
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
- Department of Bioengineering, Imperial College London, London, W12 0BZ, UK.
| | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Cancer Biology, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Immunology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
15
|
Katiyar S, Shah A, Rahman K, Tripathy NK, Kashyap R, Nityanand S, Chaturvedi CP. Analysis of Immunophenotypic Changes during Ex Vivo Human Erythropoiesis and Its Application in the Study of Normal and Defective Erythropoiesis. Cells 2023; 12:cells12091303. [PMID: 37174702 PMCID: PMC10177526 DOI: 10.3390/cells12091303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Erythropoiesis is a highly regulated process and undergoes several genotypic and phenotypic changes during differentiation. The phenotypic changes can be evaluated using a combination of cell surface markers expressed at different cellular stages of erythropoiesis using FACS. However, limited studies are available on the in-depth phenotypic characterization of progenitors from human adult hematopoietic stem and progenitor cells (HSPCs) to red blood cells. Therefore, using a set of designed marker panels, in the current study we have kinetically characterized the hematopoietic, erythroid progenitors, and terminally differentiated erythroblasts ex vivo. Furthermore, the progenitor stages were explored for expression of CD117, CD31, CD41a, CD133, and CD45, along with known key markers CD36, CD71, CD105, and GPA. Additionally, we used these marker panels to study the stage-specific phenotypic changes regulated by the epigenetic regulator; Nuclear receptor binding SET Domain protein 1 (NSD1) during erythropoiesis and to study ineffective erythropoiesis in myelodysplastic syndrome (MDS) and pure red cell aplasia (PRCA) patients. Our immunophenotyping strategy can be used to sort and study erythroid-primed hematopoietic and erythroid precursors at specified time points and to study diseases resulting from erythroid dyspoiesis. Overall, the current study explores the in-depth kinetics of phenotypic changes occurring during human erythropoiesis and applies this strategy to study normal and defective erythropoiesis.
Collapse
Affiliation(s)
- Shobhita Katiyar
- Stem Cell Research Center, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Arunim Shah
- Stem Cell Research Center, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Khaliqur Rahman
- Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Naresh Kumar Tripathy
- Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Rajesh Kashyap
- Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Soniya Nityanand
- Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Chandra Prakash Chaturvedi
- Stem Cell Research Center, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| |
Collapse
|
16
|
Miyake K, Azuma N, Rinoie C, Maeda S, Harada A, Li L, Minami I, Miyagawa S, Sawa Y. Regenerative Effect of Umbilical Cord-Derived Mesenchymal Stromal Cells in a Rat Model of Established Limb Ischemia. Circ J 2023; 87:412-420. [PMID: 36171115 DOI: 10.1253/circj.cj-22-0257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Although regenerative cell therapy is expected to be an alternative treatment for peripheral artery disease (PAD), many regenerative cell therapies have failed to show sufficient efficacy in clinical trials. Most preclinical studies have used acute ischemia models, despite PAD being a chronic disease. In addition, aging and atherosclerosis decrease the quality of a patient's stem cells. Therefore, using a non-acute ischemic preclinical model and stem cells with high regenerative potency are important for the development of effective regenerative therapy. In this study, we assessed the tissue regenerative potential of umbilical cord-derived mesenchymal stromal cells (UCMSCs), which could potentially be an ideal cell source, in a rat model of established ischemia. METHODS AND RESULTS The regenerative capacity of UCMSCs was analyzed in terms of angiogenesis and muscle regeneration. In vitro analysis showed that UCMSCs secrete high amounts of cytokines associated with angiogenesis and muscle regeneration. In vivo experiments in a rat non-acute ischemia model showed significant improvement in blood perfusion after intravenous injection of UCMSCs compared with injection of culture medium or saline. Histological analysis revealed UCMSCs injection enhanced angiogenesis, with an increased number of von Willebrand factor-positive microcapillaries, and improved muscle regeneration. CONCLUSIONS These results suggest that intravenous administration of UCMSCs may be useful for treating patients with PAD.
Collapse
Affiliation(s)
- Keisuke Miyake
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine
| | - Nobuyoshi Azuma
- Department of Vascular Surgery, Asahikawa Medical University
| | | | - Shusaku Maeda
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine
| | - Akima Harada
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine
| | - Liu Li
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine
| | | | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine
| | - Yoshiki Sawa
- Department of Future Medicine, Division of Health Science, Osaka University Graduate School of Medicine
| |
Collapse
|
17
|
Inoue O, Goten C, Hashimuko D, Yamaguchi K, Takeda Y, Nomura A, Ootsuji H, Takashima S, Iino K, Takemura H, Halurkar M, Lim HW, Hwa V, Sanchez-Gurmaches J, Usui S, Takamura M. Single cell transcriptomics identifies adipose tissue CD271+ progenitors for enhanced angiogenesis in limb ischemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527726. [PMID: 36865239 PMCID: PMC9980009 DOI: 10.1101/2023.02.09.527726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Therapeutic angiogenesis using mesenchymal stem/stromal cell grafts have shown modest and controversial effects in preventing amputation for patients with critical limb ischemia. Through single-cell transcriptomic analysis of human tissues, we identified CD271 + progenitors specifically from subcutaneous adipose tissue (AT) as having the most prominent pro-angiogenic gene profile distinct from other stem cell populations. AT-CD271 + progenitors demonstrated robust in vivo angiogenic capacity, over conventional adipose stromal cell grafts, characterized by long-term engraftment, augmented tissue regeneration, and significant recovery of blood flow in a xenograft model of limb ischemia. Mechanistically, the angiogenic capacity of CD271 + progenitors is dependent on functional CD271 and mTOR signaling. Notably, the number and angiogenic capacity of CD271 + progenitors was strikingly reduced in insulin resistant donors. Our study highlights the identification of AT-CD271 + progenitors with in vivo superior efficacy for limb ischemia. Furthermore, we showcase comprehensive single-cell transcriptomics strategies for identification of suitable grafts for cell therapy. HIGHLIGHTS Adipose tissue stromal cells have a distinct angiogenic gene profile among human cell sources. CD271 + progenitors in adipose tissue have a prominent angiogenic gene profile. CD271 + progenitors show superior therapeutic capacities for limb ischemia. CD271 + progenitors are reduced and functionally impaired in insulin resistant donors. GRAPHICAL ABSTRACT
Collapse
|
18
|
Hu L, Ge Y, Cao Z, Tian Y, Sun Q, Li Z, Ma J, Wu Y, Wang N, Tang B. Strontium-modified porous polyetheretherketone with the triple function of osteogenesis, angiogenesis, and anti-inflammatory for bone grafting. BIOMATERIALS ADVANCES 2022; 143:213160. [PMID: 36334515 DOI: 10.1016/j.bioadv.2022.213160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/26/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Polyetheretherketone (PEEK) is a potential bone repair material because of its stable chemical and good mechanical properties. However, the biological inertness of PEEK limits its clinical application. Sr2+ has multi biological functions, including promoting bone formation and blood vessel regeneration and inhibiting inflammation. In this paper, PEEK was modified with Sr2+ with the purpose to construct PEEK bone graft material with triple functions of osteogenesis, angiogenesis, and anti-inflammatory. The results showed that Sr-modified PEEK could stably release Sr2+ for a long time in the PBS solution, and indeed could promote the proliferation and differentiation of osteoblasts, promote angiogenesis, and inhibit inflammation. Therefore, it is believed that this multifunctional PEEK with Sr2+ should show great promise for clinical applications in bone repair.
Collapse
Affiliation(s)
- Liqiu Hu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yongmei Ge
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhe Cao
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ye Tian
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - QiLi Sun
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhen Li
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou, Jiangsu 213001, China
| | - Jing Ma
- Smart Biomaterial Design Lab, Southern University of Science and Technology Hospital, Shenzhen, Guangdong 518055, China
| | - Yutong Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ning Wang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, Guangdong 518055, China.
| | - Bin Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
19
|
Kamel R, El Morsy EM, Elsherbiny ME, Nour-Eldin M. Chrysin promotes angiogenesis in rat hindlimb ischemia: Impact on PI3K/Akt/mTOR signaling pathway and autophagy. Drug Dev Res 2022; 83:1226-1237. [PMID: 35662099 DOI: 10.1002/ddr.21954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/01/2022] [Accepted: 05/17/2022] [Indexed: 11/09/2022]
Abstract
Limb ischemia occurs due to obstruction of blood perfusion to lower limbs, a manifestation that is associated with peripheral artery disease (PAD). Angiogenesis is important for adequate oxygen delivery. The present study investigated a potential role for chrysin, a naturally occurring flavonoid, in promoting angiogenesis in hindlimb ischemia (HLI) rat model. Rats were allocated into four groups: (1) sham-operated control, (2) HLI: subjected to unilateral femoral artery ligation, (3) HLI + chrysin: received 100 mg/kg, i.p. chrysin immediately after HLI, and (4) HLI + chrysin + rapamycin: received 6 mg/kg/day rapamycin i.p. for 5 days then subjected to HLI and dosed with 100 mg/kg chrysin, i.p. Rats were killed 18 h later and gastrocnemius muscles were collected and divided into parts for (1) immunohistochemistry detection of CD31 and CD105, (2) qRT-PCR analysis of eNOS and VEGFR2, (3) colorimetric analysis of NO, (4) ELISA estimation of TGF-β, VEGF, ATG5 and Beclin-1, and (5) Western blot analysis of p-PI3K, PI3K, p-Akt, Akt, p-mTOR, mTOR, and HIF-1α. Chrysin significantly enhanced microvessels growth in HLI muscles as indicated by increased CD31 and CD105 levels and decreased TGF-β. Chrysin's proangiogenic effect is potentially mediated by increased VEGF, VEGFR2 and activation of PI3K/AKT/mTOR pathway, which promoted eNOS and NO levels as it was reversed by the mTOR inhibitor, rapamycin. Chrysin also inhibited autophagy as it decreased ATG5 and Beclin-1. The current study shows that chrysin possesses a proangiogenic effect in HLI rats and might be useful in patients with PAD.
Collapse
Affiliation(s)
- Rehab Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Engy M El Morsy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Marwa E Elsherbiny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Mahmoud Nour-Eldin
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Sadat City (USC), Menoufia, Egypt
| |
Collapse
|
20
|
Shi P, Liu Y, Yang H, Hu B. Breast cancer derived exosomes promoted angiogenesis of endothelial cells in microenvironment via circHIPK3/miR-124-3p/MTDH axis. Cell Signal 2022; 95:110338. [PMID: 35460835 DOI: 10.1016/j.cellsig.2022.110338] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/12/2022] [Accepted: 04/17/2022] [Indexed: 11/03/2022]
Abstract
Circular RNAs (circRNAs) are important contents in exosomes, which can regulate peripheral cell functions, thus influencing the tumor microenvironment. This work investigated the mechanisms underlying the angiogenesis in peripheral human endothelial cells (ECs) mediated by the breast cancer (BC) cells derived exosomal circRNAs and aimed to explore the biomarkers for the anti-angiogenesis therapy for BC.The BC cell derived exosomes were extracted and the expression level and the circular formation of HIPK3 enclosed was determined. To examine the impact of this exosomal circRNA on ECs, cell viability and tube formation were determined in recipient cells co-cultured with exosomes or transfected with circHIPK3 and the related controls. Target microRNAs (miRNAs) for circHIPK3 and target genes for miRNAs were predicted and confirmed by multiple assays like dual luciferase reporter assay, western blot, and qPCR assays. The existence of the circHIPK3/miR-124-3p/MTDH axis were further confirmed with rescue experiment in mice xenograft model.HIPK3s were mainly in forms of circRNAs and were highly expressed in the BC cell derived exosomes, which could be absorbed by the recipient ECs. The cell viability and angiogenesis in ECs were enhanced when treated with circHIPK3s and decreased when treated with circHIPK3-si. Furthermore, MTDH was proved to be the responsible gene in this process which was regulated by miR-124-3p, the local miRNA sponged by the exosomal circHIPK3.circHIPK3 enclosed in the BC cell-derived exosomes enhanced MTDH expression in the endothelial cell by sponging miR-124-3p, favoring the tube formation in ECs, which might serve as a therapeutic target for anti-angiogenesis therapy for breast cancer.
Collapse
Affiliation(s)
- Pengfei Shi
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430013, People's Republic of China
| | - Yongjun Liu
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430013, People's Republic of China
| | - Hua Yang
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430013, People's Republic of China.
| | - Bo Hu
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430013, People's Republic of China.
| |
Collapse
|
21
|
Jana S, Datta P, Das H, Ghosh PR, Kundu B, Nandi SK. Engineering Vascularizing Electrospun Dermal Grafts by Integrating Fish Collagen and Ion-Doped Bioactive Glass. ACS Biomater Sci Eng 2022; 8:734-752. [PMID: 35015521 DOI: 10.1021/acsbiomaterials.1c01098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Utilizing bioactive molecules from organic sources in combination with inorganic materials for enhanced tissue regeneration has been a focus of recent scientific advancements. Some recent studies showed the potential of some specialized bioactive glass for healing of soft tissues; the role of Rohu (Labeo rohita) skin-derived collagen, a biopolymer in tissue regeneration and cutaneous healing, is yet to be established. So, we have fabricated four different types of electrospun mats as wound dressing materials/dermal grafts by combining locally sourced fish (Rohu) skin-derived collagen with novel composition of bioactive glass (Fcol/BAG) without and with dopants (3% and 5% Cu and Co, respectively and their binary) aimed at achieving an accelerated wound healing. FTIR and EDX mapping indicated successful integration of collagen and ion-doped bioactive glass in electrospun mats. Microfibers' architectural features and composition provided a cytocompatible and nontoxic environment conducive to adhesion, spreading, and proliferation of human dermal fibroblasts in vitro; in addition, they were hemocompatible with rabbit red blood cells. Better cutaneous wound healing in rabbits was achieved by treating with Fcol/CoBAG and Fcol/CuCoBAG microfibers with respect to improved wound closure, well-formed continuous epidermis, higher wound maturity, and regulated deposition of extracellular matrix components; mature collagen and elastin. Notably, a significantly (p < 0.01) higher density of blood vessels/positive CD 31 staining was observed in fish collagen/ion-doped bioactive glass microfibrous mat treated wounds suggesting efficient neo-vascularization during early stages of the healing process particularly attributable to copper and cobalt ions in the doped bioactive glass. Enhanced vascularizing ability of these engineered dermal composite grafts/wound dressings along with efficient remodeling of cutaneous structural components (ECM) could collectively be ascribed to bioactive properties of bioactive glass and stimulatory roles of copper, cobalt ions, and fish collagen. Our study demonstrates that a fish collagen/Cu and Co-doped bioactive glass microfibrous mat could potentially be used as a low-cost dressing material/dermal graft for augmented cutaneous wound healing.
Collapse
Affiliation(s)
- Sonali Jana
- Department of Veterinary Physiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - Pradyot Datta
- Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032, India
| | - Himanka Das
- Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032, India
| | - Prabal Ranjan Ghosh
- Department of Veterinary Physiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - Biswanath Kundu
- Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032, India
| | - Samit Kumar Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| |
Collapse
|
22
|
Kim TH, Jeon WY, Ji Y, Park EJ, Yoon DS, Lee NH, Park SM, Mandakhbayar N, Lee JH, Lee HH, Kim HW. Electricity auto-generating skin patch promotes wound healing process by activation of mechanosensitive ion channels. Biomaterials 2021; 275:120948. [PMID: 34157562 DOI: 10.1016/j.biomaterials.2021.120948] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/20/2021] [Accepted: 05/29/2021] [Indexed: 12/14/2022]
Abstract
Electricity constitutes a natural biophysical component that preserves tissue homeostasis and modulates many biological processes, including the repair of damaged tissues. Wound healing involves intricate cellular events, such as inflammation, angiogenesis, matrix synthesis, and epithelialization whereby multiple cell types sense the environmental cues to rebuild the structure and functions. Here, we report that electricity auto-generating glucose-responsive enzymatic-biofuel-cell (EBC) skin patch stimulates the wound healing process. Rat wounded-skin model and in vitro cell cultures showed that EBC accelerated wound healing by modulating inflammation while stimulating angiogenesis, fibroblast fuctionality and matrix synthesis. Of note, EBC-activated cellular bahaviors were linked to the signalings involved with calcium influx, which predominantly dependent on the mechanosensitive ion channels, primarily Piezo1. Inhibition of Piezo1-receptor impaired the EBC-induced key functions of both fibroblasts and endothelial cells in the wound healing. This study highlights the significant roles of electricity played in wound healing through activated mechanosensitive ion channels and the calcium influx, and suggests the possibility of the electricity auto-generating EBC-based skin patch for use as a wound healing device.
Collapse
Affiliation(s)
- Tae-Hyun Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Won-Yong Jeon
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; School of Chemical Engineering, Biomedical Institute for Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yunseong Ji
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Eun Ju Park
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, #08-03 Innovis, 138634, Singapore
| | - Dong Suk Yoon
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Na-Hyun Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Sung-Min Park
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
23
|
Reduced angiovasculogenic and increased inflammatory profiles of cord blood cells in severe but not mild preeclampsia. Sci Rep 2021; 11:3630. [PMID: 33574435 PMCID: PMC7878804 DOI: 10.1038/s41598-021-83146-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/22/2021] [Indexed: 11/17/2022] Open
Abstract
Preeclampsia (PE) is a prevalent pregnancy disorder that leads to high maternal and fetal morbidity and mortality. While defective vascular development and angiogenesis in placenta are known as crucial pathological findings, its pathophysiological mechanism remains elusive. To better understand the effects of PE on angio-vasculogenesis and inflammatory networks in the fetus and to identify their biological signatures, we investigated the quantitative and functional characteristics of cord blood-derived mononuclear cells (CB-MNCs) and CD31-positive MNCs. Flow cytometry analysis demonstrated that the CB-MNCs from the severe PE group had significantly decreased number of cells expressing CD3, CD11b, CD14, CD19, KDR, and CD31 compared with the normal group. Quantitative real time PCR (qRT-PCR) shows down-regulation of the major angiogenic factor VEGFA in MNCs and CD31+ MNCs in severe PE. The major inflammatory cytokines IL1 was highly upregulated in CD31+ CB-MNCs in the severe PE patients. Mild PE patients, however, did not display any significant difference in expression of all measured angiogenic genes and most inflammatory genes. These findings show distinct angiogenic and inflammatory signatures from severe PE, and they may play a significant role in the pathogenesis of vascular defects in placenta of severe PE.
Collapse
|
24
|
Wu Y, Chang T, Chen W, Wang X, Li J, Chen Y, Yu Y, Shen Z, Yu Q, Zhang Y. Release of VEGF and BMP9 from injectable alginate based composite hydrogel for treatment of myocardial infarction. Bioact Mater 2021; 6:520-528. [PMID: 32995677 PMCID: PMC7492819 DOI: 10.1016/j.bioactmat.2020.08.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/21/2020] [Accepted: 08/29/2020] [Indexed: 12/28/2022] Open
Abstract
Myocardial infarction (MI) is one of cardiovascular diseases that pose a serious threat to human health. The pathophysiology of MI is complex and contains several sequential phases including blockage of a coronary artery, necrosis of myocardial cells, inflammation, and myocardial fibrosis. Aiming at the treatment of different stages of MI, in this work, an injectable alginate based composite hydrogel is developed to load vascular endothelial active factor (VEGF) and silk fibroin (SF) microspheres containing bone morphogenetic protein 9 (BMP9) for releasing VEGF and BMP9 to realize their respective functions. The results of in vitro experiments indicate a rapid initial release of VEGF during the first few days and a relatively slow and sustained release of BMP9 for days, facilitating the formation of blood vessels in the early stage and inhibiting myocardial fibrosis in the long-term stage, respectively. Intramyocardial injection of such composite hydrogel into the infarct border zone of mice MI model via multiple points promotes angiogenesis and reduces the infarction size. Taken together, these results indicate that the dual-release of VEGF and BMP9 from the composite hydrogel results in a collaborative effect on the treatment of MI and improvement of heart function, showing a promising potential for cardiac clinical application.
Collapse
Affiliation(s)
- Yong Wu
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, 215000, PR China
| | - Tianqi Chang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, 215000, PR China
| | - Weiqian Chen
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, 215000, PR China
| | - Xiaoyu Wang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, 215000, PR China
| | - Jingjing Li
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, 215000, PR China
| | - Yueqiu Chen
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, 215000, PR China
| | - You Yu
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, 215000, PR China
| | - Zhenya Shen
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, 215000, PR China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Yanxia Zhang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, 215000, PR China
| |
Collapse
|
25
|
Rüger BM, Buchacher T, Dauber EM, Pasztorek M, Uhrin P, Fischer MB, Breuss JM, Leitner GC. De novo Vessel Formation Through Cross-Talk of Blood-Derived Cells and Mesenchymal Stromal Cells in the Absence of Pre-existing Vascular Structures. Front Bioeng Biotechnol 2020; 8:602210. [PMID: 33330432 PMCID: PMC7718010 DOI: 10.3389/fbioe.2020.602210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/26/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The generation of functional blood vessels remains a key challenge for regenerative medicine. Optimized in vitro culture set-ups mimicking the in vivo perivascular niche environment during tissue repair may provide information about the biological function and contribution of progenitor cells to postnatal vasculogenesis, thereby enhancing their therapeutic potential. AIM We established a fibrin-based xeno-free human 3D in vitro vascular niche model to study the interaction of mesenchymal stromal cells (MSC) with peripheral blood mononuclear cells (PBMC) including circulating progenitor cells in the absence of endothelial cells (EC), and to investigate the contribution of this cross-talk to neo-vessel formation. MATERIALS AND METHODS Bone marrow-derived MSC were co-cultured with whole PBMC, enriched monocytes (Mo), enriched T cells, and Mo together with T cells, respectively, obtained from leukocyte reduction chambers generated during the process of single-donor platelet apheresis. Cells were embedded in 3D fibrin matrices, using exclusively human-derived culture components without external growth factors. Cytokine secretion was analyzed in supernatants of 3D cultures by cytokine array, vascular endothelial growth factor (VEGF) secretion was quantified by ELISA. Cellular and structural re-arrangements were characterized by immunofluorescence and confocal laser-scanning microscopy of topographically intact 3D fibrin gels. RESULTS 3D co-cultures of MSC with PBMC, and enriched Mo together with enriched T cells, respectively, generated, within 2 weeks, complex CD31+/CD34+ vascular structures, surrounded by basement membrane collagen type-IV+ cells and matrix, in association with increased VEGF secretion. PBMC contained CD31+CD34+CD45dimCD14- progenitor-type cells, and EC of neo-vessels were PBMC-derived. Vascular structures showed intraluminal CD45+ cells that underwent apoptosis thereby creating a lumen. Cross-talk of MSC with enriched Mo provided a pro-angiogenic paracrine environment. MSC co-cultured with enriched T cells formed "cell-in-cell" structures generated through internalization of T cells by CD31+CD45 dim/ - cells. No vascular structures were detected in co-cultures of MSC with either Mo or T cells. CONCLUSION Our xeno-free 3D in vitro vascular niche model demonstrates that a complex synergistic network of cellular, extracellular and paracrine cross-talk can contribute to de novo vascular development through self-organization via co-operation of immune cells with blood-derived progenitor cells and MSC, and thereby may open a new perspective for advanced vascular tissue engineering in regenerative medicine.
Collapse
Affiliation(s)
- Beate M. Rüger
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Tanja Buchacher
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Eva-Maria Dauber
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Markus Pasztorek
- Department of Health Sciences, Medicine and Research, Faculty of Health and Medicine, Danube University Krems, Krems an der Donau, Austria
| | - Pavel Uhrin
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Michael B. Fischer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
- Department of Health Sciences, Medicine and Research, Faculty of Health and Medicine, Danube University Krems, Krems an der Donau, Austria
| | - Johannes M. Breuss
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Gerda C. Leitner
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
26
|
Tagliatela AC, Hempstead SC, Hibshman PS, Hockenberry MA, Brighton HE, Pecot CV, Bear JE. Coronin 1C inhibits melanoma metastasis through regulation of MT1-MMP-containing extracellular vesicle secretion. Sci Rep 2020; 10:11958. [PMID: 32686704 PMCID: PMC7371684 DOI: 10.1038/s41598-020-67465-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
Coronin 1C is overexpressed in multiple tumors, leading to the widely held view that this gene drives tumor progression, but this hypothesis has not been rigorously tested in melanoma. Here, we combined a conditional knockout of Coronin 1C with a genetically engineered mouse model of PTEN/BRAF-driven melanoma. Loss of Coronin 1C in this model increases both primary tumor growth rates and distant metastases. Coronin 1C-null cells isolated from this model are more invasive in vitro and produce more metastatic lesions in orthotopic transplants than Coronin 1C-reexpressing cells due to the shedding of extracellular vesicles (EVs) containing MT1-MMP. Interestingly, these vesicles contain melanosome markers suggesting a melanoma-specific mechanism of EV release, regulated by Coronin 1C, that contributes to the high rates of metastasis in melanoma.
Collapse
Affiliation(s)
- Alicia C Tagliatela
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Stephanie C Hempstead
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Priya S Hibshman
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Max A Hockenberry
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hailey E Brighton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Chad V Pecot
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Division of Hematology and Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - James E Bear
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
27
|
Park IS, Mahapatra C, Park JS, Dashnyam K, Kim JW, Ahn JC, Chung PS, Yoon DS, Mandakhbayar N, Singh RK, Lee JH, Leong KW, Kim HW. Revascularization and limb salvage following critical limb ischemia by nanoceria-induced Ref-1/APE1-dependent angiogenesis. Biomaterials 2020; 242:119919. [PMID: 32146371 DOI: 10.1016/j.biomaterials.2020.119919] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/06/2020] [Accepted: 02/24/2020] [Indexed: 01/10/2023]
Abstract
In critical limb ischemia (CLI), overproduction of reactive oxygen species (ROS) and impairment of neovascularization contribute to muscle damage and limb loss. Cerium oxide nanoparticles (CNP, or 'nanoceria') possess oxygen-modulating properties which have shown therapeutic utility in various disease models. Here we show that CNP exhibit pro-angiogenic activity in a mouse hindlimb ischemia model, and investigate the molecular mechanism underlying the pro-angiogenic effect. CNP were injected into a ligated region of a femoral artery, and tissue reperfusion and hindlimb salvage were monitored for 3 weeks. Tissue analysis revealed stimulation of pro-angiogenic markers, maturation of blood vessels, and remodeling of muscle tissue following CNP administration. At a dose of 0.6 mg CNP, mice showed reperfusion of blood vessels in the hindlimb and a high rate of limb salvage (71%, n = 7), while all untreated mice (n = 7) suffered foot necrosis or limb loss. In vitro, CNP promoted endothelial cell tubule formation via the Ref-1/APE1 signaling pathway, and the involvement of this pathway in the CNP response was confirmed in vivo using immunocompetent and immunodeficient mice and by siRNA knockdown of APE1. These results demonstrate that CNP provide an effective treatment of CLI with excessive ROS by scavenging ROS to improve endothelial survival and by inducing Ref-1/APE1-dependent angiogenesis to revascularize an ischemic limb.
Collapse
Affiliation(s)
- In-Su Park
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea; Beckman Laser Institute Korea, Dankook University, Cheonan, 31116, South Korea; Cell Therapy Center, Ajou University Medical Center, Suwon, South Korea
| | - Chinmaya Mahapatra
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea
| | - Ji Sun Park
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Khandmaa Dashnyam
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea
| | - Jong-Wan Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea
| | - Jin Chul Ahn
- Beckman Laser Institute Korea, Dankook University, Cheonan, 31116, South Korea; Department of Biomedical Science, Dankook University, Cheonan, 31116, South Korea; Biomedical Translational Research Institute, Dankook University, Cheonan, 31116, South Korea
| | - Phil-Sang Chung
- Beckman Laser Institute Korea, Dankook University, Cheonan, 31116, South Korea; Department of Otolaryngology-Head and Neck Surgery, Dankook University, Cheonan, 31116, South Korea
| | - Dong Suk Yoon
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea
| | - Rajendra K Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea; Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, South Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, South Korea.
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA; Department of System Biology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea; Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, South Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, South Korea.
| |
Collapse
|
28
|
Skeletal unloading reduces cluster of differentiation (CD) 38 expression in the bone marrow and osteoblasts of mice. J Orthop Sci 2020; 25:331-337. [PMID: 31072650 DOI: 10.1016/j.jos.2019.03.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/05/2019] [Accepted: 03/25/2019] [Indexed: 01/31/2023]
Abstract
BACKGROUND Mechanical unloading induces bone loss in human weight-loaded bones. The findings of recent studies have revealed that cluster of differentiation 38 knockout mice display bone loss similar to that observed in osteoporosis. This study aimed to determine whether the expression of cluster of differentiation 38 is implicated in skeletal unloading and reloading. METHODS Eight-week-old male C57BL/6J mice were assigned to control, tail-suspension, or reloading after tail-suspension groups. In the tail-suspension group, tail suspension elevated the hind limbs for 1 week. The bilateral femurs and tibias from the groups were evaluated for cluster of differentiation 38 immunocytochemistry, and the cluster of differentiation 38 messenger ribonucleic acid levels and the expression of cluster of differentiation 38 and other cell-surface antigens were evaluated using quantitative real-time polymerase chain reaction and flow cytometric analyses. RESULTS In the tail-suspension group, the alkaline phosphatase reactivity, cluster of differentiation 38 immunoreactivity in the bone marrow and osteoblasts, and the expression of cluster of differentiation 38 messenger ribonucleic acid and that of other cell-surface antigens were significantly lower than those in the control group. In the reloading after tail-suspension group, the level of cluster of differentiation 38 expression was restored to the same level as that in the control group. CONCLUSIONS Cluster of differentiation 38 expression declined after skeletal unloading and recovered to normal levels after reloading. In the bone marrow, cluster of differentiation 38 expression plays a crucial role in bone formation in response to mechanical stress.
Collapse
|
29
|
Park SY, Lee H, Kwon YW, Park MR, Kim JH, Kim JB. Etv2- and Fli1-Induced Vascular Progenitor Cells Enhance Functional Recovery in Ischemic Vascular Disease Model-Brief Report. Arterioscler Thromb Vasc Biol 2020; 40:e105-e113. [PMID: 32075417 DOI: 10.1161/atvbaha.119.313684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Vascular progenitor cells (VPCs), which are able to differentiate into both endothelial cells and smooth muscle cells, have the potential for treatment of ischemic diseases. Generated by pluripotent stem cells, VPCs carry the risk of tumorigenicity in clinical application. This issue could be resolved by direct lineage conversion, the induction of functional cells from another lineage by using only lineage-restricted transcription factors. Here, we show that induced VPCs (iVPCs) can be generated from fibroblasts by ETS (E-twenty six) transcription factors, Etv2 and Fli1. Approach and Results: Mouse fibroblasts were infected with lentivirus encoding Etv2 and Fli1. Cell colonies appeared in Fli1- and Etv2/Fli1-infected groups and were mechanically picked. The identity of cell colonies was confirmed by proliferation assay and reverse-transcription polymerase chain reaction with vascular markers. Etv2/Fli1- infected cell colonies were sorted by CD144 (also known as CDH5, VE-cadherin). We defined that CD144-positive iVPCs maintained its own population and expanded stably at multiple passages. iVPCs could differentiate into functional endothelial cells and smooth muscle cells by a defined medium. The functionalities of iVPC-derived endothelial cells and smooth muscle cells were confirmed by analyzing LDL (low-density lipoprotein) uptake, carbachol-induced contraction, and tube formation in vitro. Transplantation of iVPCs into the ischemic hindlimb model enhanced blood flow without tumor formation in vivo. Human iVPCs were generated by human ETS transcription factors ETV2 and FLI1. CONCLUSIONS We demonstrate that ischemic disease curable iVPCs, which have self-renewal and bipotency, can be generated from mouse fibroblasts by enforced ETS family transcription factors, Etv2 and Fli1 expression. Our simple strategy opens insights into stem cell-based ischemic disease therapy.
Collapse
Affiliation(s)
- Soo Yong Park
- From the Hans Schöler Stem Cell Research Center, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), South Korea (S.Y.P., H.L., M.R.P., J.B.K.)
| | - Hyunah Lee
- From the Hans Schöler Stem Cell Research Center, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), South Korea (S.Y.P., H.L., M.R.P., J.B.K.)
| | - Yang Woo Kwon
- Department of Physiology, Pusan National University School of Medicine, Yangsan, South Korea (Y.W.K., J.H.K.)
| | - Myung Rae Park
- From the Hans Schöler Stem Cell Research Center, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), South Korea (S.Y.P., H.L., M.R.P., J.B.K.)
| | - Jae Ho Kim
- Department of Physiology, Pusan National University School of Medicine, Yangsan, South Korea (Y.W.K., J.H.K.)
| | - Jeong Beom Kim
- From the Hans Schöler Stem Cell Research Center, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), South Korea (S.Y.P., H.L., M.R.P., J.B.K.)
| |
Collapse
|
30
|
Duan Y, Prasad R, Feng D, Beli E, Li Calzi S, Longhini ALF, Lamendella R, Floyd JL, Dupont M, Noothi SK, Sreejit G, Athmanathan B, Wright J, Jensen AR, Oudit GY, Markel TA, Nagareddy PR, Obukhov AG, Grant MB. Bone Marrow-Derived Cells Restore Functional Integrity of the Gut Epithelial and Vascular Barriers in a Model of Diabetes and ACE2 Deficiency. Circ Res 2019; 125:969-988. [PMID: 31610731 DOI: 10.1161/circresaha.119.315743] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RATIONALE There is incomplete knowledge of the impact of bone marrow cells on the gut microbiome and gut barrier function. OBJECTIVE We postulated that diabetes mellitus and systemic ACE2 (angiotensin-converting enzyme 2) deficiency would synergize to adversely impact both the microbiome and gut barrier function. METHODS AND RESULTS Bacterial 16S rRNA sequencing and metatranscriptomic analysis were performed on fecal samples from wild-type, ACE2-/y, Akita (type 1 diabetes mellitus), and ACE2-/y-Akita mice. Gut barrier integrity was assessed by immunofluorescence, and bone marrow cell extravasation into the small intestine was evaluated by flow cytometry. In the ACE2-/y-Akita or Akita mice, the disrupted barrier was associated with reduced levels of myeloid angiogenic cells, but no increase in inflammatory monocytes was observed within the gut parenchyma. Genomic and metatranscriptomic analysis of the microbiome of ACE2-/y-Akita mice demonstrated a marked increase in peptidoglycan-producing bacteria. When compared with control cohorts treated with saline, intraperitoneal administration of myeloid angiogenic cells significantly decreased the microbiome gene expression associated with peptidoglycan biosynthesis and restored epithelial and endothelial gut barrier integrity. Also indicative of diabetic gut barrier dysfunction, increased levels of peptidoglycan and FABP-2 (intestinal fatty acid-binding protein 2) were observed in plasma of human subjects with type 1 diabetes mellitus (n=21) and type 2 diabetes mellitus (n=23) compared with nondiabetic controls (n=23). Using human retinal endothelial cells, we determined that peptidoglycan activates a noncanonical TLR-2 (Toll-like receptor 2) associated MyD88 (myeloid differentiation primary response protein 88)-ARNO (ADP-ribosylation factor nucleotide-binding site opener)-ARF6 (ADP-ribosylation factor 6) signaling cascade, resulting in destabilization of p120-catenin and internalization of VE-cadherin as a mechanism of deleterious impact of peptidoglycan on the endothelium. CONCLUSIONS We demonstrate for the first time that the defect in gut barrier function and dysbiosis in ACE2-/y-Akita mice can be favorably impacted by exogenous administration of myeloid angiogenic cells.
Collapse
Affiliation(s)
- Yaqian Duan
- From the Department of Anatomy, Cell Biology and Physiology (Y.D., A.G.O.), Indiana University School of Medicine, Indianapolis.,Department of Endocrinology, The Second Affiliated Hospital of Chongqing Medical University, China (Y.D.)
| | - Ram Prasad
- Department of Ophthalmology and Visual Sciences (R.P., S.L.C., A.L.F.L., J.L.F., M.D., S.K.N., M.B.G.), University of Alabama at Birmingham
| | - Dongni Feng
- Department of Ophthalmology, The Eugene and Marilyn Glick Eye Institute (D.F., E.B.), Indiana University School of Medicine, Indianapolis
| | - Eleni Beli
- Department of Ophthalmology, The Eugene and Marilyn Glick Eye Institute (D.F., E.B.), Indiana University School of Medicine, Indianapolis
| | - Sergio Li Calzi
- Department of Ophthalmology and Visual Sciences (R.P., S.L.C., A.L.F.L., J.L.F., M.D., S.K.N., M.B.G.), University of Alabama at Birmingham
| | - Ana Leda F Longhini
- Department of Ophthalmology and Visual Sciences (R.P., S.L.C., A.L.F.L., J.L.F., M.D., S.K.N., M.B.G.), University of Alabama at Birmingham
| | - Regina Lamendella
- Ohio State University, Wright Labs, LLC, Huntingdon, PA (R.L., J.W.)
| | - Jason L Floyd
- Department of Ophthalmology and Visual Sciences (R.P., S.L.C., A.L.F.L., J.L.F., M.D., S.K.N., M.B.G.), University of Alabama at Birmingham
| | - Mariana Dupont
- Department of Ophthalmology and Visual Sciences (R.P., S.L.C., A.L.F.L., J.L.F., M.D., S.K.N., M.B.G.), University of Alabama at Birmingham
| | - Sunil K Noothi
- Department of Ophthalmology and Visual Sciences (R.P., S.L.C., A.L.F.L., J.L.F., M.D., S.K.N., M.B.G.), University of Alabama at Birmingham
| | | | | | - Justin Wright
- Ohio State University, Wright Labs, LLC, Huntingdon, PA (R.L., J.W.)
| | - Amanda R Jensen
- Riley Hospital for Children, Pediatric Surgery (A.R.J., T.A.M.), Indiana University School of Medicine, Indianapolis
| | - Gavin Y Oudit
- Ohio State University, Wright Labs, LLC, Huntingdon, PA (R.L., J.W.)
| | - Troy A Markel
- Riley Hospital for Children, Pediatric Surgery (A.R.J., T.A.M.), Indiana University School of Medicine, Indianapolis
| | | | - Alexander G Obukhov
- From the Department of Anatomy, Cell Biology and Physiology (Y.D., A.G.O.), Indiana University School of Medicine, Indianapolis
| | - Maria B Grant
- Department of Ophthalmology and Visual Sciences (R.P., S.L.C., A.L.F.L., J.L.F., M.D., S.K.N., M.B.G.), University of Alabama at Birmingham
| |
Collapse
|
31
|
Bloodworth NC, Clark CR, West JD, Snider JC, Gaskill C, Shay S, Scott C, Bastarache J, Gladson S, Moore C, D'Amico R, Brittain EL, Tanjore H, Blackwell TS, Majka SM, Merryman WD. Bone Marrow-Derived Proangiogenic Cells Mediate Pulmonary Arteriole Stiffening via Serotonin 2B Receptor Dependent Mechanism. Circ Res 2019; 123:e51-e64. [PMID: 30566041 DOI: 10.1161/circresaha.118.313397] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RATIONALE Pulmonary arterial hypertension is a deadly disease of the pulmonary vasculature for which no disease-modifying therapies exist. Small-vessel stiffening and remodeling are fundamental pathological features of pulmonary arterial hypertension that occur early and drive further endovascular cell dysfunction. Bone marrow (BM)-derived proangiogenic cells (PACs), a specialized heterogeneous subpopulation of myeloid lineage cells, are thought to play an important role in pathogenesis. OBJECTIVE To determine whether BM-derived PACs directly contributed to experimental pulmonary hypertension (PH) by promoting small-vessel stiffening through 5-HT2B (serotonin 2B receptor)-mediated signaling. METHODS AND RESULTS We performed BM transplants using transgenic donor animals expressing diphtheria toxin secondary to activation of an endothelial-specific tamoxifen-inducible Cre and induced experimental PH using hypoxia with SU5416 to enhance endovascular injury and ablated BM-derived PACs, after which we measured right ventricular systolic pressures in a closed-chest procedure. BM-derived PAC lineage tracing was accomplished by transplanting BM from transgenic donor animals with fluorescently labeled hematopoietic cells and treating mice with a 5-HT2B antagonist. BM-derived PAC ablation both prevented and reversed experimental PH with SU5416-enhanced endovascular injury, reducing the number of muscularized pulmonary arterioles and normalizing arteriole stiffness as measured by atomic force microscopy. Similarly, treatment with a pharmacological antagonist of 5-HT2B also prevented experimental PH, reducing the number and stiffness of muscularized pulmonary arterioles. PACs accelerated pulmonary microvascular endothelial cell injury response in vitro, and the presence of BM-derived PACs significantly correlated with stiffer pulmonary arterioles in pulmonary arterial hypertension patients and mice with experimental PH. RNA sequencing of BM-derived PACs showed that 5-HT2B antagonism significantly altered biologic pathways regulating cell proliferation, locomotion and migration, and cytokine production and response to cytokine stimulus. CONCLUSIONS Together, our findings illustrate that BM-derived PACs directly contribute to experimental PH with SU5416-enhanced endovascular injury by mediating small-vessel stiffening and remodeling in a 5-HT2B signaling-dependent manner.
Collapse
Affiliation(s)
- Nathaniel C Bloodworth
- From the Department of Biomedical Engineering (N.C.B., C.R.C., J.C.S., C.S., R.D., W.D.M.), Vanderbilt University Medical Center, Nashville, TN
| | - Cynthia R Clark
- From the Department of Biomedical Engineering (N.C.B., C.R.C., J.C.S., C.S., R.D., W.D.M.), Vanderbilt University Medical Center, Nashville, TN
| | - James D West
- Division of Allergy, Pulmonary, and Critical Care, Department of Medicine (J.D.W., C.G., S.S., J.B., S.G., C.M., H.T., T.S.B., S.M.M.), Vanderbilt University Medical Center, Nashville, TN
| | - J Caleb Snider
- From the Department of Biomedical Engineering (N.C.B., C.R.C., J.C.S., C.S., R.D., W.D.M.), Vanderbilt University Medical Center, Nashville, TN
| | - Christa Gaskill
- Division of Allergy, Pulmonary, and Critical Care, Department of Medicine (J.D.W., C.G., S.S., J.B., S.G., C.M., H.T., T.S.B., S.M.M.), Vanderbilt University Medical Center, Nashville, TN
| | - Sheila Shay
- Division of Allergy, Pulmonary, and Critical Care, Department of Medicine (J.D.W., C.G., S.S., J.B., S.G., C.M., H.T., T.S.B., S.M.M.), Vanderbilt University Medical Center, Nashville, TN
| | - Christine Scott
- From the Department of Biomedical Engineering (N.C.B., C.R.C., J.C.S., C.S., R.D., W.D.M.), Vanderbilt University Medical Center, Nashville, TN
| | - Julie Bastarache
- Division of Allergy, Pulmonary, and Critical Care, Department of Medicine (J.D.W., C.G., S.S., J.B., S.G., C.M., H.T., T.S.B., S.M.M.), Vanderbilt University Medical Center, Nashville, TN
| | - Santhi Gladson
- Division of Allergy, Pulmonary, and Critical Care, Department of Medicine (J.D.W., C.G., S.S., J.B., S.G., C.M., H.T., T.S.B., S.M.M.), Vanderbilt University Medical Center, Nashville, TN
| | - Christy Moore
- Division of Allergy, Pulmonary, and Critical Care, Department of Medicine (J.D.W., C.G., S.S., J.B., S.G., C.M., H.T., T.S.B., S.M.M.), Vanderbilt University Medical Center, Nashville, TN
| | - Reid D'Amico
- From the Department of Biomedical Engineering (N.C.B., C.R.C., J.C.S., C.S., R.D., W.D.M.), Vanderbilt University Medical Center, Nashville, TN
| | - Evan L Brittain
- Division of Cardiovascular Medicine, Department of Medicine (E.L.B.), Vanderbilt University Medical Center, Nashville, TN
| | - Harikrishna Tanjore
- Division of Allergy, Pulmonary, and Critical Care, Department of Medicine (J.D.W., C.G., S.S., J.B., S.G., C.M., H.T., T.S.B., S.M.M.), Vanderbilt University Medical Center, Nashville, TN
| | - Timothy S Blackwell
- Division of Allergy, Pulmonary, and Critical Care, Department of Medicine (J.D.W., C.G., S.S., J.B., S.G., C.M., H.T., T.S.B., S.M.M.), Vanderbilt University Medical Center, Nashville, TN.,Department of Veterans Affairs Medical Center, Nashville, TN (T.S.B.)
| | - Susan M Majka
- Division of Allergy, Pulmonary, and Critical Care, Department of Medicine (J.D.W., C.G., S.S., J.B., S.G., C.M., H.T., T.S.B., S.M.M.), Vanderbilt University Medical Center, Nashville, TN
| | - W David Merryman
- From the Department of Biomedical Engineering (N.C.B., C.R.C., J.C.S., C.S., R.D., W.D.M.), Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
32
|
Yellowley CE, Toupadakis CA, Vapniarsky N, Wong A. Circulating progenitor cells and the expression of Cxcl12, Cxcr4 and angiopoietin-like 4 during wound healing in the murine ear. PLoS One 2019; 14:e0222462. [PMID: 31513647 PMCID: PMC6742462 DOI: 10.1371/journal.pone.0222462] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/29/2019] [Indexed: 01/16/2023] Open
Abstract
Migration of cells from both local and systemic sources is essential for the inflammatory and regenerative processes that occur during normal wound healing. CXCL12 is considered a critical regulator of CXCR4-positive cell migration during tissue regeneration. In this study, we investigated the expression of Cxcl12 and Cxcr4 during healing of a murine full thickness ear wound. We also investigated the expression of angiopoietin-like 4, which has been shown to participate in wound angiogenesis and reepithelialization. At time points up to 48hrs, complete blood counts were performed using automated hematology analysis, and the numbers of circulating stem and progenitor cells quantified using flow cytometry. Expression of both Cxcr4 and Angptl4 was significantly elevated within 3 days of wounding, and both were strongly expressed in cells of the epidermis. ANGPTL4 protein expression remained elevated in the epithelium through day 14. Cxcl12 expression was increased significantly at day 3, and remained elevated through day 21. Faint Cxcl12 staining was detectable in the epithelium at day 1, and thereafter staining was faint and more generalized. There were significantly fewer circulating total white blood cells and lymphocytes 1hr following ear punching. Similarly, there was a significant early (1hr) reduction in the number of circulating endothelial progenitor cells. Further studies are warranted to investigate whether ANGPTL4 and CXCL12/CXCR4 interact or synergize to facilitate cell recruitment and migration, and to potentiate reepithelialization and wound healing.
Collapse
Affiliation(s)
- Clare E Yellowley
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Chrisoula A Toupadakis
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Natalia Vapniarsky
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Alice Wong
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| |
Collapse
|
33
|
Zhou K, Tian R, Li G, Qiu X, Xu L, Guo M, Chigan D, Zhang Y, Chen X, He G. Cationic Chalcogenoviologen Derivatives for Photodynamic Antimicrobial Therapy and Skin Regeneration. Chemistry 2019; 25:13472-13478. [DOI: 10.1002/chem.201903278] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Kun Zhou
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Ran Tian
- School of Chemical Engineering and TechnologyShaanxi Key Laboratory of Energy Chemical Process IntensificationInstitute of Polymer Science in Chemical EngineeringXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Guoping Li
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Xinyu Qiu
- Center for Tissue Engineering, School of StomatologyFourth Military Medical University Xi'an Shaanxi Province 710032 China
| | - Letian Xu
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Mengying Guo
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Dongdong Chigan
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Yanfeng Zhang
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Xin Chen
- School of Chemical Engineering and TechnologyShaanxi Key Laboratory of Energy Chemical Process IntensificationInstitute of Polymer Science in Chemical EngineeringXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Gang He
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| |
Collapse
|
34
|
Kim JY, Lee JY, Ha KS, Han ET, Park WS, Min CK, Hong SH. Perivascular Cells and NADPH Oxidase Inhibition Partially Restore Hyperglycemia-Induced Alterations in Hematopoietic Stem Cell and Myeloid-Derived Suppressor Cell Populations in the Bone Marrow. Int J Stem Cells 2019; 12:63-72. [PMID: 30595009 PMCID: PMC6457702 DOI: 10.15283/ijsc18097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 10/19/2018] [Accepted: 11/25/2018] [Indexed: 12/31/2022] Open
Abstract
Background and Objectives Patients suffer from long-term diabetes can result in severe complications in multiple organs through induction of vascular dysfunctions. However, the effects of chronic hyperglycemic conditions on hematopoiesis and the microenvironment in the bone marrow (BM) are not yet well understood. Methods BM cells were harvested from femurs of mice and analyzed using flow cytometry. Human PVCs were cultured in serum-free α-MEM. After 24hrs, PVC-CM was collected and filtered through a 0.22 μm filter. Results In this study, we showed that hyperglycemia alters hematopoietic composition in the BM, which can partially be restored via paracrine mechanisms, including perivascular cells (PVCs) and NADPH oxidase (NOX) inhibition in mice with streptozotocin-induced diabetes. Prolonged hyperglycemic conditions resulted in an increase in the frequency and number of long-term hematopoietic stem cells as well as the number of total BM cells. The altered hematopoiesis in the BM was partially recovered by treatment with PVC-derived conditioned medium (CM). Long-term diabetes also increased the number of myeloid-derived suppressor cells in the BM, which was partially restored by the administration of PVC-CM and diphenyleneiodonium (DPI), a NOX inhibitor. We further showed the downregulation of ERK and p38 phosphorylation in BM cells of diabetic mice treated with PVC-CM and DPI. This may be associated with dysfunction of hematopoietic cells and promotion of subsequent diabetic complications. Conclusions Our data suggested that alterations in BM hematopoietic composition due to prolonged hyperglycemic conditions might be restored by improvement of the hematopoietic microenvironment and modulation of NOX activity.
Collapse
Affiliation(s)
- Ji-Young Kim
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Ji Yoon Lee
- Department of Biomedical Sciences, Stem Cell Institute, CHA University, Seongnam, Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Won Sun Park
- Department of Physiology, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Chang-Ki Min
- Department of Hematology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea.,Leukemia Research Institute, The Catholic University of Korea, Seoul, Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
35
|
Landers-Ramos RQ, Sapp RM, Shill DD, Hagberg JM, Prior SJ. Exercise and Cardiovascular Progenitor Cells. Compr Physiol 2019; 9:767-797. [PMID: 30892694 DOI: 10.1002/cphy.c180030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autologous stem/progenitor cell-based methods to restore blood flow and function to ischemic tissues are clinically appealing for the substantial proportion of the population with cardiovascular diseases. Early preclinical and case studies established the therapeutic potential of autologous cell therapies for neovascularization in ischemic tissues. However, trials over the past ∼15 years reveal the benefits of such therapies to be much smaller than originally estimated and a definitive clinical benefit is yet to be established. Recently, there has been an emphasis on improving the number and function of cells [herein generally referred to as circulating angiogenic cells (CACs)] used for autologous cell therapies. CACs include of several subsets of circulating cells, including endothelial progenitor cells, with proangiogenic potential that is largely exerted through paracrine functions. As exercise is known to improve CV outcomes such as angiogenesis and endothelial function, much attention is being given to exercise to improve the number and function of CACs. Accordingly, there is a growing body of evidence that acute, short-term, and chronic exercise have beneficial effects on the number and function of different subsets of CACs. In particular, recent studies show that aerobic exercise training can increase the number of CACs in circulation and enhance the function of isolated CACs as assessed in ex vivo assays. This review summarizes the roles of different subsets of CACs and the effects of acute and chronic exercise on CAC number and function, with a focus on the number and paracrine function of circulating CD34+ cells, CD31+ cells, and CD62E+ cells. © 2019 American Physiological Society. Compr Physiol 9:767-797, 2019.
Collapse
Affiliation(s)
- Rian Q Landers-Ramos
- University of Maryland School of Public Health, Department of Kinesiology, College Park, Maryland, USA.,Education and Clinical Center, Baltimore Veterans Affairs Geriatric Research, Baltimore, Maryland, USA.,University of Maryland School of Medicine, Department of Medicine, Baltimore, Maryland, USA
| | - Ryan M Sapp
- University of Maryland School of Public Health, Department of Kinesiology, College Park, Maryland, USA
| | - Daniel D Shill
- University of Maryland School of Public Health, Department of Kinesiology, College Park, Maryland, USA
| | - James M Hagberg
- University of Maryland School of Public Health, Department of Kinesiology, College Park, Maryland, USA
| | - Steven J Prior
- University of Maryland School of Public Health, Department of Kinesiology, College Park, Maryland, USA.,Education and Clinical Center, Baltimore Veterans Affairs Geriatric Research, Baltimore, Maryland, USA.,University of Maryland School of Medicine, Department of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
36
|
Lee JY, Kim M, Heo HR, Ha KS, Han ET, Park WS, Yang SR, Hong SH. Inhibition of MicroRNA-221 and 222 Enhances Hematopoietic Differentiation from Human Pluripotent Stem Cells via c-KIT Upregulation. Mol Cells 2018; 41:971-978. [PMID: 30396237 PMCID: PMC6277561 DOI: 10.14348/molcells.2018.0244] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/27/2018] [Accepted: 10/10/2018] [Indexed: 01/01/2023] Open
Abstract
The stem cell factor (SCF)/c-KIT axis plays an important role in the hematopoietic differentiation of human pluripotent stem cells (hPSCs), but its regulatory mechanisms involving microRNAs (miRs) are not fully elucidated. Here, we demonstrated that supplementation with SCF increases the hematopoietic differentiation of hPSCs via the interaction with its receptor tyrosine kinase c-KIT, which is modulated by miR-221 and miR-222. c-KIT is comparably expressed in undifferentiated human embryonic and induced pluripotent stem cells. The inhibition of SCF signaling via treatment with a c-KIT antagonist (imatinib) during hPSC-derived hematopoiesis resulted in reductions in the yield and multi-lineage potential of hematopoietic progenitors. We found that the transcript levels of miR-221 and miR-222 targeting c-KIT were significantly lower in the pluripotent state than they were in terminally differentiated somatic cells. Furthermore, suppression of miR-221 and miR-222 in undifferentiated hPSC cultures induced more hematopoiesis by increasing c-KIT expression. Collectively, our data implied that the modulation of c-KIT by miRs may provide further potential strategies to expedite the generation of functional blood cells for therapeutic approaches and the study of the cellular machinery related to hematologic malignant diseases such as leukemia.
Collapse
Affiliation(s)
- Ji Yoon Lee
- Department of Biomedical Sciences, Stem Cell Institute, CHA University, Seongnam,
Korea
| | - MyungJoo Kim
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341,
Korea
| | - Hye-Ryeon Heo
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341,
Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon 24341,
Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon 24341,
Korea
| | - Won Sun Park
- Department of Physiology, School of Medicine, Kangwon National University, Chuncheon 24341,
Korea
| | - Se-Ran Yang
- Department of Thoracic & Cardiovascular Surgery, School of Medicine, Kangwon National University, Chuncheon 24341,
Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341,
Korea
| |
Collapse
|
37
|
Boesch M, Cosma A, Sopper S. Flow Cytometry: To Dump or Not To Dump. THE JOURNAL OF IMMUNOLOGY 2018; 201:1813-1815. [DOI: 10.4049/jimmunol.1801037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 07/26/2018] [Indexed: 12/20/2022]
|
38
|
Razavi SM, Yahyaabadi R. Comparative Study of Correlation between Angiogenesis Markers (CD31) and Ki67 Marker with Behavior of Aggressive and Nonaggressive Central Giant Cell Granuloma with Immunohistochemistry Technique. Asian Pac J Cancer Prev 2018; 19:2279-2283. [PMID: 30139237 PMCID: PMC6171410 DOI: 10.22034/apjcp.2018.19.8.2279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background: The central giant cell granuloma (CGCG) is generally considered a non-neoplastic lesion. However, some cases show aggressive behavior like neoplasms. Based on clinical observations, a number of researchers have classified this lesion into aggressive and non- aggressive types. This study was aimed to investigate the association between clinical behavior and histopathological features using immunohistochemical vascular CD31 and cellular proliferation Ki67 markers. Materials and methods: In this descriptive-analytical, clinicopathological and immunohistochemical study, 50 CGCGs, including 25 aggressive and 25 non-aggressive types were selected according to Chuong’s classification. The samples were then subjected to immunohistochemical staining to analyze positivity for CD31 and Ki67 markers. Numbers of blood vessels and percentage proliferation of underlying fibroendothelial cells were assessed, and the obtained results were analyzed with the t-test and the Mann-Whitney test. Results: The results showed a significant difference between aggressive and non-aggressive CGCG lesions in the mean incidences of Ki67 (p=0.044). and CD31 (p=0.003) positivity. Conclusion: The present evaluation of expression rates for the vascular CD31 and cellular proliferation Ki67 markers showed there might be a positive relation between the clinical features and histopathology of CGCG. Furthermore, clinical behavior may be predicted based on features such as the number of blood vessels and proliferation of fibroendothelial cells.
Collapse
Affiliation(s)
- Seyed Mohammad Razavi
- Dental Material Research Center. Department of Oral and Maxillofacial, Dental School, Isfahan University of Medical Sciences, Isfahan, Iran.
| | | |
Collapse
|
39
|
Chen Y, George A. TRIP-1 Promotes the Assembly of an ECM That Contains Extracellular Vesicles and Factors That Modulate Angiogenesis. Front Physiol 2018; 9:1092. [PMID: 30158875 PMCID: PMC6104305 DOI: 10.3389/fphys.2018.01092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/23/2018] [Indexed: 01/14/2023] Open
Abstract
Transforming growth factor beta receptor II interacting protein-1 (TRIP-1) was recently localized in the mineralized matrices of bone and dentin. The function of TRIP-1 in the ECM is enigmatic, as it is known to function as an intracellular endoplasmic reticulum protein during protein synthesis. Based on its localization pattern in bones and teeth, we posited that TRIP-1 must function as a regulatory protein with multiple functions during mineralization. In this study, we determined the in vivo function of TRIP-1 by an implantation assay performed using recombinant TRIP-1 and TRIP-1 overexpressing and knocked down cells embedded in a 3D biomimetic scaffold. After 4 weeks, the subcutaneous tissues from TRIP-1 overexpressing cells and scaffolds containing recombinant TRIP-1 showed higher expression levels of several ECM proteins such as fibronectin and collagen I. Picrosirius red and polarized microscopy was used to identify the birefringence of the collagen fibrils in the extracellular matrix (ECM). Interestingly, knockdown of TRIP-1 resulted in lower fibronectin and downregulation of the activation of the ERK MAP kinase. We further demonstrate that TRIP-1 overexpression leads to higher expression of pro-angiogenic marker VEGF and downregulation of anti-angiogenic factors such as pigment epithelium-derived factor and thrombospondin. Field emission scanning electron microscope results demonstrated that TRIP-1 overexpressing cells released large amount of extracellular microvesicles which were localized on the fibrillar matrix in the ECM. Overall, this study demonstrates that TRIP-1 can promote secretion of extracellular vesicles, synthesis of key osteogenic ECM matrix proteins and promote angiogenesis.
Collapse
Affiliation(s)
- Yinghua Chen
- Brodie Tooth Development Genetics and Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Anne George
- Brodie Tooth Development Genetics and Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
40
|
Petrova ES. Differentiation Potential of Mesenchymal Stem Cells and Stimulation of Nerve Regeneration. Russ J Dev Biol 2018. [DOI: 10.1134/s1062360418040033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
41
|
Ribeiro-Rodrigues TM, Laundos TL, Pereira-Carvalho R, Batista-Almeida D, Pereira R, Coelho-Santos V, Silva AP, Fernandes R, Zuzarte M, Enguita FJ, Costa MC, Pinto-do-Ó P, Pinto MT, Gouveia P, Ferreira L, Mason JC, Pereira P, Kwak BR, Nascimento DS, Girão H. Exosomes secreted by cardiomyocytes subjected to ischaemia promote cardiac angiogenesis. Cardiovasc Res 2018; 113:1338-1350. [PMID: 28859292 DOI: 10.1093/cvr/cvx118] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 06/15/2017] [Indexed: 12/31/2022] Open
Abstract
Aims Myocardial infarction (MI) is the leading cause of morbidity and mortality worldwide and results from an obstruction in the blood supply to a region of the heart. In an attempt to replenish oxygen and nutrients to the deprived area, affected cells release signals to promote the development of new vessels and confer protection against MI. However, the mechanisms underlying the growth of new vessels in an ischaemic scenario remain poorly understood. Here, we show that cardiomyocytes subjected to ischaemia release exosomes that elicit an angiogenic response of endothelial cells (ECs). Methods and results Exosomes secreted by H9c2 myocardial cells and primary cardiomyocytes, cultured either in control or ischaemic conditions were isolated and added to ECs. We show that ischaemic exosomes, in comparison with control exosomes, confer protection against oxidative-induced lesion, promote proliferation, and sprouting of ECs, stimulate the formation of capillary-like structures and strengthen adhesion complexes and barrier properties. Moreover, ischaemic exosomes display higher levels of metalloproteases (MMP) and promote the secretion of MMP by ECs. We demonstrate that miR-222 and miR-143, the relatively most abundant miRs in ischaemic exosomes, partially recapitulate the angiogenic effect of exosomes. Additionally, we show that ischaemic exosomes stimulate the formation of new functional vessels in vivo using in ovo and Matrigel plug assays. Finally, we demonstrate that intramyocardial delivery of ischaemic exosomes improves neovascularization following MI. Conclusions This study establishes that exosomes secreted by cardiomyocytes under ischaemic conditions promote heart angiogenesis, which may pave the way towards the development of add-on therapies to enhance myocardial blood supply.
Collapse
Affiliation(s)
- Teresa M Ribeiro-Rodrigues
- Institute for Biomedical Imaging and Life Sciences (IBILI), University of Coimbra, Azinhaga de Sta Comba, 3000-354 Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Portugal
| | - Tiago L Laundos
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Rita Pereira-Carvalho
- Institute for Biomedical Imaging and Life Sciences (IBILI), University of Coimbra, Azinhaga de Sta Comba, 3000-354 Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Portugal
| | - Daniela Batista-Almeida
- Institute for Biomedical Imaging and Life Sciences (IBILI), University of Coimbra, Azinhaga de Sta Comba, 3000-354 Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Portugal
| | - Ricardo Pereira
- Institute for Biomedical Imaging and Life Sciences (IBILI), University of Coimbra, Azinhaga de Sta Comba, 3000-354 Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Portugal
| | - Vanessa Coelho-Santos
- Institute for Biomedical Imaging and Life Sciences (IBILI), University of Coimbra, Azinhaga de Sta Comba, 3000-354 Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Portugal.,Institute of Pharmacology and Experimental Therapeutics, University of Coimbra, Azinhaga de Sta Comba, 3000-354 Coimbra, Portugal
| | - Ana P Silva
- Institute for Biomedical Imaging and Life Sciences (IBILI), University of Coimbra, Azinhaga de Sta Comba, 3000-354 Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Portugal.,Institute of Pharmacology and Experimental Therapeutics, University of Coimbra, Azinhaga de Sta Comba, 3000-354 Coimbra, Portugal
| | - Rosa Fernandes
- Institute for Biomedical Imaging and Life Sciences (IBILI), University of Coimbra, Azinhaga de Sta Comba, 3000-354 Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Portugal
| | - Monica Zuzarte
- Institute for Biomedical Imaging and Life Sciences (IBILI), University of Coimbra, Azinhaga de Sta Comba, 3000-354 Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Portugal
| | - Francisco J Enguita
- Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, 1649-028 Lisboa, Portugal
| | - Marina C Costa
- Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, 1649-028 Lisboa, Portugal
| | - Perpetua Pinto-do-Ó
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Marta T Pinto
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology (Ipatimup), University of Porto, Portugal
| | - Pedro Gouveia
- CNC.IBILI, University of Coimbra, Portugal.,CNC-Center for Neurosciences and Cell Biology, University of Coimbra, 3000 Coimbra, Portugal
| | - Lino Ferreira
- CNC.IBILI, University of Coimbra, Portugal.,CNC-Center for Neurosciences and Cell Biology, University of Coimbra, 3000 Coimbra, Portugal
| | - Justin C Mason
- Vascular Sciences Unit, Imperial Centre for Translational & Experimental Medicine, Imperial College London, London, UK
| | - Paulo Pereira
- Institute for Biomedical Imaging and Life Sciences (IBILI), University of Coimbra, Azinhaga de Sta Comba, 3000-354 Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Portugal.,CEDOC, NOVA Medical School, NOVA University of Lisbon, Lisboa 1169-056, Portugal
| | - Brenda R Kwak
- Department of Pathology and Immunology, and Department of Medical Specialties-Cardiology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Diana S Nascimento
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Henrique Girão
- Institute for Biomedical Imaging and Life Sciences (IBILI), University of Coimbra, Azinhaga de Sta Comba, 3000-354 Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Portugal
| |
Collapse
|
42
|
Yoshiba N, Edanami N, Tohma A, Takeuchi R, Ohkura N, Hosoya A, Noiri Y, Nakamura H, Yoshiba K. Detection of bone marrow-derived fibrocytes in human dental pulp repair. Int Endod J 2018; 51:1187-1195. [DOI: 10.1111/iej.12940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/12/2018] [Indexed: 01/01/2023]
Affiliation(s)
- N. Yoshiba
- Division of Cariology, Operative Dentistry and Endodontics; Department of Oral Health Science; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| | - N. Edanami
- Division of Cariology, Operative Dentistry and Endodontics; Department of Oral Health Science; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| | - A. Tohma
- Division of Cariology, Operative Dentistry and Endodontics; Department of Oral Health Science; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| | - R. Takeuchi
- Division of Cariology, Operative Dentistry and Endodontics; Department of Oral Health Science; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| | - N. Ohkura
- Division of Cariology, Operative Dentistry and Endodontics; Department of Oral Health Science; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| | - A. Hosoya
- Division of Histology; Department of Oral Growth and Development; School of Dentistry; Health Sciences University of Hokkaido; Ishikari-gun Hokkaido Japan
| | - Y. Noiri
- Division of Cariology, Operative Dentistry and Endodontics; Department of Oral Health Science; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| | - H. Nakamura
- Department of Oral Histology; Institute for Dental Science; Matsumoto Dental University; Shiojiri Nagano Japan
| | - K. Yoshiba
- Division of Cariology, Operative Dentistry and Endodontics; Department of Oral Health Science; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| |
Collapse
|
43
|
Basile DP, Collett JA, Yoder MC. Endothelial colony-forming cells and pro-angiogenic cells: clarifying definitions and their potential role in mitigating acute kidney injury. Acta Physiol (Oxf) 2018; 222:10.1111/apha.12914. [PMID: 28656611 PMCID: PMC5745310 DOI: 10.1111/apha.12914] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 05/10/2017] [Accepted: 06/21/2017] [Indexed: 12/12/2022]
Abstract
Acute kidney injury (AKI) represents a significant clinical concern that is associated with high mortality rates and also represents a significant risk factor for the development of chronic kidney disease (CKD). This article will consider alterations in renal endothelial function in the setting of AKI that may underlie impairment in renal perfusion and how inefficient vascular repair may manifest post-AKI and contribute to the potential transition to CKD. We provide updated terminology for cells previously classified as 'endothelial progenitor' that may mediate vascular repair such as pro-angiogenic cells and endothelial colony-forming cells. We consider how endothelial repair may be mediated by these different cell types following vascular injury, particularly in models of AKI. We further summarize the potential ability of these different cells to mitigate the severity of AKI, improve perfusion and maintain vascular structure in pre-clinical studies.
Collapse
Affiliation(s)
- David P. Basile
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine
| | - Jason A. Collett
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine
| | - Mervin C. Yoder
- Department of Pediatrics, Indiana University School of Medicine
| |
Collapse
|
44
|
Autologous Bone Marrow-Derived Stem Cells for Treating Diabetic Neuropathy in Metabolic Syndrome. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8945310. [PMID: 29098161 PMCID: PMC5643093 DOI: 10.1155/2017/8945310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/23/2017] [Indexed: 01/08/2023]
Abstract
Diabetic neuropathy is one of the most common and serious complications of diabetes mellitus and metabolic syndrome. The current therapy strategies, including glucose control and pain management, are not effective for most patients. Growing evidence suggests that infiltration of inflammation factors and deficiency of local neurotrophic and angiogenic factors contribute significantly to the pathologies of diabetic neuropathy. Experimental and clinical studies have shown that bone marrow-derived stem cells (BMCs) therapy represents a novel and promising strategy for tissue repair through paracrine secretion of multiple cytokines, which has a potential to inhibit inflammation and promote angiogenesis and neurotrophy in diabetic neuropathy. In this review, we discuss the clinical practice in diabetic neuropathy and the therapeutic effect of BMC. We subsequently illustrate the functional impairment of autologous BMCs due to the interrupted bone marrow niche in diabetic neuropathy. We anticipate that the functional restoration of BMCs could improve their therapeutic effect and enable their wide applications in diabetic neuropathy.
Collapse
|
45
|
Lee SJ, Sohn YD, Andukuri A, Kim S, Byun J, Han JW, Park IH, Jun HW, Yoon YS. Enhanced Therapeutic and Long-Term Dynamic Vascularization Effects of Human Pluripotent Stem Cell-Derived Endothelial Cells Encapsulated in a Nanomatrix Gel. Circulation 2017; 136:1939-1954. [PMID: 28972000 DOI: 10.1161/circulationaha.116.026329] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 09/06/2017] [Indexed: 01/07/2023]
Abstract
BACKGROUND Human pluripotent stem cell (hPSC)-derived endothelial cells (ECs) have limited clinical utility because of undefined components in the differentiation system and poor cell survival in vivo. Here, we aimed to develop a fully defined and clinically compatible system to differentiate hPSCs into ECs. Furthermore, we aimed to enhance cell survival, vessel formation, and therapeutic potential by encapsulating hPSC-ECs with a peptide amphiphile (PA) nanomatrix gel. METHODS We induced differentiation of hPSCs into the mesodermal lineage by culturing on collagen-coated plates with a glycogen synthase kinase 3β inhibitor. Next, vascular endothelial growth factor, endothelial growth factor, and basic fibroblast growth factor were added for endothelial lineage differentiation, followed by sorting for CDH5 (VE-cadherin). We constructed an extracellular matrix-mimicking PA nanomatrix gel (PA-RGDS) by incorporating the cell adhesive ligand Arg-Gly-Asp-Ser (RGDS) and a matrix metalloproteinase-2-degradable sequence. We then evaluated whether the encapsulation of hPSC-CDH5+ cells in PA-RGDS could enhance long-term cell survival and vascular regenerative effects in a hind-limb ischemia model with laser Doppler perfusion imaging, bioluminescence imaging, real-time reverse transcription-polymerase chain reaction, and histological analysis. RESULTS The resultant hPSC-derived CDH5+ cells (hPSC-ECs) showed highly enriched and genuine EC characteristics and proangiogenic activities. When injected into ischemic hind limbs, hPSC-ECs showed better perfusion recovery and higher vessel-forming capacity compared with media-, PA-RGDS-, or human umbilical vein EC-injected groups. However, the group receiving the PA-RGDS-encapsulated hPSC-ECs showed better perfusion recovery, more robust and longer cell survival (> 10 months), and higher and prolonged angiogenic and vascular incorporation capabilities than the bare hPSC-EC-injected group. Surprisingly, the engrafted hPSC-ECs demonstrated previously unknown sustained and dynamic vessel-forming behavior: initial perivascular concentration, a guiding role for new vessel formation, and progressive incorporation into the vessels over 10 months. CONCLUSIONS We generated highly enriched hPSC-ECs via a clinically compatible system. Furthermore, this study demonstrated that a biocompatible PA-RGDS nanomatrix gel substantially improved long-term survival of hPSC-ECs in an ischemic environment and improved neovascularization effects of hPSC-ECs via prolonged and unique angiogenic and vessel-forming properties. This PA-RGDS-mediated transplantation of hPSC-ECs can serve as a novel platform for cell-based therapy and investigation of long-term behavior of hPSC-ECs.
Collapse
Affiliation(s)
- Shin-Jeong Lee
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (S.-J.L., Y.-D.S., A.A., S.K., J.B., J.W.H., Y.-S.Y.).,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea (S.-J.L., Y.-S.Y.)
| | - Young-Doug Sohn
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (S.-J.L., Y.-D.S., A.A., S.K., J.B., J.W.H., Y.-S.Y.)
| | - Adinarayana Andukuri
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (S.-J.L., Y.-D.S., A.A., S.K., J.B., J.W.H., Y.-S.Y.)
| | - Sangsung Kim
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (S.-J.L., Y.-D.S., A.A., S.K., J.B., J.W.H., Y.-S.Y.)
| | - Jaemin Byun
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (S.-J.L., Y.-D.S., A.A., S.K., J.B., J.W.H., Y.-S.Y.)
| | - Ji Woong Han
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (S.-J.L., Y.-D.S., A.A., S.K., J.B., J.W.H., Y.-S.Y.)
| | - In-Hyun Park
- Department of Genetics, Yale University School of Medicine, New Haven, CT (I.-H.P.)
| | - Ho-Wook Jun
- Department of Biomedical Engineering, University of Alabama at Birmingham (H.-W.J.)
| | - Young-Sup Yoon
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (S.-J.L., Y.-D.S., A.A., S.K., J.B., J.W.H., Y.-S.Y.). .,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea (S.-J.L., Y.-S.Y.)
| |
Collapse
|
46
|
Rottensteiner-Brandl U, Distel L, Stumpf M, Fey T, Köhn K, Bertram U, Lingens LF, Greil P, Horch RE, Arkudas A. Influence of Different Irradiation Protocols on Vascularization and Bone Formation Parameters in Rat Femora. Tissue Eng Part C Methods 2017; 23:583-591. [PMID: 28741426 DOI: 10.1089/ten.tec.2017.0170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aim of the present study was the establishment of an efficient and reproducible model for irradiation of rat femora as a model for impaired osteogenesis and angiogenesis. Four different irradiation protocols were compared: single irradiation of the left femur with 20 Gy and explantation after 4 or 8 weeks (group A, B) and three irradiation fractions at 3-4 days intervals with 10 Gy and explantation after 4 or 8 weeks (group C, D). The contralateral, unirradiated femur served as control. Evaluation included histology, microcomputertomography (μCT), and real-time polymerase chain reaction. Histology showed a pronounced increase of vacuoles in bone marrow after irradiation, especially after 4 weeks (group A and C), demonstrating bone marrow edema and fatty degeneration. Irradiation provoked a decrease of total cell numbers in cortical bone and of hypoxia-inducible factor 1 alpha (HIF1α)-positive cells in bone marrow. The expression of several markers (osteocalcin [OCN], runt-related transcription factor 2 [RUNX2], transforming growth factor beta 1 [TGFβ1], tumor necrosis factor alpha [TNFα], vascular endothelial growth factor A [VEGFA], and HIF1α) was decreased in group A after irradiation. This might suggest a decreased metabolism after irradiation. A significant decrease in small-sized vessels was seen in μCT evaluation in group A and D. Single irradiation with 20 Gy had the most severe and reproducible impact on osteogenesis and angiogenesis after 4 weeks while being well tolerated by all animals, thus making it an excellent model for evaluation of bone healing and vascularization in irradiated tissue.
Collapse
Affiliation(s)
- Ulrike Rottensteiner-Brandl
- 1 Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg FAU , Erlangen, Germany .,2 Department of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg FAU , Erlangen, Germany
| | - Luitpold Distel
- 3 Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg FAU , Erlangen, Germany
| | - Martin Stumpf
- 4 Department of Materials Science (Glass and Ceramics), Friedrich-Alexander-University Erlangen-Nürnberg FAU , Erlangen, Germany
| | - Tobias Fey
- 4 Department of Materials Science (Glass and Ceramics), Friedrich-Alexander-University Erlangen-Nürnberg FAU , Erlangen, Germany
| | - Katrin Köhn
- 1 Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg FAU , Erlangen, Germany
| | - Ulf Bertram
- 1 Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg FAU , Erlangen, Germany
| | - Lara F Lingens
- 1 Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg FAU , Erlangen, Germany
| | - Peter Greil
- 4 Department of Materials Science (Glass and Ceramics), Friedrich-Alexander-University Erlangen-Nürnberg FAU , Erlangen, Germany
| | - Raymund E Horch
- 1 Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg FAU , Erlangen, Germany
| | - Andreas Arkudas
- 1 Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg FAU , Erlangen, Germany
| |
Collapse
|
47
|
Joly P, Schaus T, Sass A, Dienelt A, Cheung AS, Duda GN, Mooney DJ. Biophysical induction of cell release for minimally manipulative cell enrichment strategies. PLoS One 2017; 12:e0180568. [PMID: 28665971 PMCID: PMC5493423 DOI: 10.1371/journal.pone.0180568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 06/16/2017] [Indexed: 11/28/2022] Open
Abstract
The use of autologous cells harvested and subsequently transplanted in an intraoperative environment constitutes a new approach to promote regeneration. Usually cells are isolated by selection methods such as fluorescence- or magnetic- activated cell sorting with residual binding of the antibodies or beads. Thus, cell-based therapies would benefit from the development of new devices for cell isolation that minimally manipulate the target cell population. In the clinic, 5 to 10 percent of fractures do not heal properly and CD31+ cells have been identified as promising candidates to support bone regeneration. The aim of this project was to develop and prototype a simple system to facilitate the enrichment of CD31+ cells from whole blood. After validating the specificity of a commercially available aptamer for CD31, we combined this aptamer with traditional magnetic bead strategies, which led to enrichment of CD31+ cells with a purity of 91±10%. Subsequently, the aptamer was attached to agarose beads (Ø = 100–165 um) that were incorporated into a column-based system to enable capture and subsequent release of the CD31+ enriched cells. Different parameters were investigated to allow a biophysical-based cell release from beads, and a simple mixing was found sufficient to release initially bound cells from the optimized column without the need for any chemicals that promote disassociation. The system led to a significant enrichment of CD31+ cells (initial population: 63±9%, released: 87±3%) with excellent cell viability (released: 97±1%). The composition of the released CD31+ fraction indicated an enrichment of the monocyte population. The angiogenic and osteogenic potential of the released cell population were confirmed in vitro. These results and the simplicity of this system highlight the potential of such approach to enable cell enrichment strategies in intraoperative settings.
Collapse
Affiliation(s)
- Pascal Joly
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, United States of America.,Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Schaus
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, United States of America
| | - Andrea Sass
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-University Medicine, Berlin, Germany
| | - Anke Dienelt
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-University Medicine, Berlin, Germany
| | - Alexander S Cheung
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, United States of America.,School of Engineering and Applied Sciences, Harvard University, Cambridge, United States of America
| | - Georg N Duda
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, United States of America.,Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-University Medicine, Berlin, Germany
| | - David J Mooney
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, United States of America.,School of Engineering and Applied Sciences, Harvard University, Cambridge, United States of America
| |
Collapse
|
48
|
Liao KH, Chang SJ, Chang HC, Chien CL, Huang TS, Feng TC, Lin WW, Shih CC, Yang MH, Yang SH, Lin CH, Hwang WL, Lee OK. Endothelial angiogenesis is directed by RUNX1T1-regulated VEGFA, BMP4 and TGF-β2 expression. PLoS One 2017. [PMID: 28640846 PMCID: PMC5481149 DOI: 10.1371/journal.pone.0179758] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tissue angiogenesis is intimately regulated during embryogenesis and postnatal development. Defected angiogenesis contributes to aberrant development and is the main complication associated with ischemia-related diseases. We previously identified the increased expression of RUNX1T1 in umbilical cord blood-derived endothelial colony-forming cells (ECFCs) by gene expression microarray. However, the biological relevance of RUNX1T1 in endothelial lineage is not defined clearly. Here, we demonstrate RUNX1T1 regulates the survival, motility and tube forming capability of ECFCs and EA.hy926 endothelial cells by loss-and gain-of function assays, respectively. Second, embryonic vasculatures and quantity of bone marrow-derived angiogenic progenitors are found to be reduced in the established Runx1t1 heterozygous knockout mice. Finally, a central RUNX1T1-regulated signature is uncovered and VEGFA, BMP4 as well as TGF-β2 are demonstrated to mediate RUNX1T1-orchested angiogenic activities. Taken together, our results reveal that RUNX1T1 serves as a common angiogenic driver for vaculogenesis and functionality of endothelial lineage cells. Therefore, the discovery and application of pharmaceutical activators for RUNX1T1 will improve therapeutic efficacy toward ischemia by promoting neovascularization.
Collapse
Affiliation(s)
- Ko-Hsun Liao
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Shing-Jyh Chang
- Department of Obstetrics and Gynecology, Hsinchu Mackay Memorial Hospital, Hsinchu, Taiwan
| | - Hsin-Chuan Chang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Chen-Li Chien
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Tse-Shun Huang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Te-Chia Feng
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wen-Wei Lin
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Chuan-Chi Shih
- Department of Obstetrics and Gynecology, Hsinchu Mackay Memorial Hospital, Hsinchu, Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Immunity and Inflammation Research Center, National Yang-Ming University, Taipei, Taiwan
- Cancer Research Center, National Yang-Ming University, Taipei, Taiwan
- Division of Hematology-Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Genomic Research Center, Academia Sinica, Taipei, Taiwan
| | - Shung-Haur Yang
- Department of Surgery, Taipei-Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Chi-Hung Lin
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Lun Hwang
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- * E-mail: (OKL); (WLH)
| | - Oscar K. Lee
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Taipei City Hospital, Taipei, Taiwan
- * E-mail: (OKL); (WLH)
| |
Collapse
|
49
|
Hidmark A, Spanidis I, Fleming TH, Volk N, Eckstein V, Groener JB, Kopf S, Nawroth PP, Oikonomou D. Electrical Muscle Stimulation Induces an Increase of VEGFR2 on Circulating Hematopoietic Stem Cells in Patients With Diabetes. Clin Ther 2017; 39:1132-1144.e2. [DOI: 10.1016/j.clinthera.2017.05.340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 10/19/2022]
|
50
|
Sass FA, Schmidt-Bleek K, Ellinghaus A, Filter S, Rose A, Preininger B, Reinke S, Geissler S, Volk HD, Duda GN, Dienelt A. CD31+ Cells From Peripheral Blood Facilitate Bone Regeneration in Biologically Impaired Conditions Through Combined Effects on Immunomodulation and Angiogenesis. J Bone Miner Res 2017; 32:902-912. [PMID: 27976803 DOI: 10.1002/jbmr.3062] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 12/07/2016] [Accepted: 12/12/2016] [Indexed: 12/30/2022]
Abstract
Controlled revascularization and inflammation are key elements regulating endogenous regeneration after (bone) tissue trauma. Peripheral blood-derived cell subsets, such as regulatory T-helper cells and circulating (endothelial) progenitor cells, respectively, can support endogenous tissue healing, whereas effector T cells that are associated with an aged immune system can hinder bone regeneration. CD31 is expressed by diverse leukocytes and is well recognized as a marker of circulating endothelial (precursor) cells; however, CD31 is absent from the surface of differentiated effector T cells. Thus, we hypothesized that by separating the inhibitory fractions from the supportive fractions of circulating cells within the peripheral blood (PB) using the CD31 marker, bone regeneration in biologically compromised conditions, such as those observed in aged patients, could be improved. In support of our hypothesis, we detected an inverse correlation between CD31+ cells and effector T cells in the hematomas of human fracture patients, dependent on the age of the patient. Furthermore, we demonstrated the regenerative capacity of human PB-CD31+ cells in vitro. These findings were translated to a clinically relevant rat model of impaired bone healing. The transplantation of rat PB-CD31+ cells advanced bone tissue restoration in vivo and was associated with an early anti-inflammatory response, the stimulation of (re)vascularization, and reduced fibrosis. Interestingly, the depletion or enrichment of the highly abundant CD31+/14+ monocytes from the mixed CD31+ cell population diminished tissue regeneration at different levels, suggesting combined effects within the PB-CD31+ subsets. In summary, an intraoperative enrichment of PB-CD31+ cells might be a novel option to facilitate endogenous regeneration under biologically impaired situations by supporting immunomodulation and vascularization. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- F Andrea Sass
- Julius Wolff Institute (JWI) and Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - University Medicine Berlin, Berlin, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute (JWI) and Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - University Medicine Berlin, Berlin, Germany
| | - Agnes Ellinghaus
- Julius Wolff Institute (JWI) and Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Berlin, Germany
| | - Sebastian Filter
- Julius Wolff Institute (JWI) and Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Berlin, Germany
| | - Alexander Rose
- Julius Wolff Institute (JWI) and Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Berlin, Germany
| | - Bernd Preininger
- Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Berlin, Germany
| | - Simon Reinke
- Julius Wolff Institute (JWI) and Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - University Medicine Berlin, Berlin, Germany
| | - Sven Geissler
- Julius Wolff Institute (JWI) and Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - University Medicine Berlin, Berlin, Germany
| | - Hans-Dieter Volk
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - University Medicine Berlin, Berlin, Germany.,Institute of Medical Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Georg N Duda
- Julius Wolff Institute (JWI) and Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - University Medicine Berlin, Berlin, Germany
| | - Anke Dienelt
- Julius Wolff Institute (JWI) and Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - University Medicine Berlin, Berlin, Germany
| |
Collapse
|