1
|
Bai X, Huang X, Yi J, Yan X, Hu T, Wang L, Wang Z, Gao H. Cardiac Fibroblasts Enhance MMP2 Activity to Suppress Gap Junction Function in Cardiomyocytes. Appl Biochem Biotechnol 2024; 196:8493-8512. [PMID: 38878160 DOI: 10.1007/s12010-024-04986-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 01/04/2025]
Abstract
Although it is crucial to promptly restore blood perfusion to revive the ischemic myocardium, reperfusion itself can paradoxically contribute to the electrical instability and arrhythmias of the myocardium. Several studies have revealed that cardiac fibroblasts can impact cardiac electrophysiology through various mechanisms including the deposition of extracellular matrix, release of chemical mediators, and direct electrical coupling with myocytes. Previously, we have shown that hypoxia/reoxygenation (H/R)-treated rat fibroblasts conditional medium (H/R-FCM) could decrease the spontaneous beating frequency of rat neonatal cardiomyocytes and downregulate the expression of gap junction proteins. However, the specific mechanism by which H/R-FCM affects the gap junctions requires further investigation. H/R-FCM was obtained by culturing confluent rat cardiac fibroblasts (RCF) for 4 h under hypoxic conditions. Gap junction function, hemichannel activity, and expression of Cx43 were examined upon treatment with H/R-FCM. Gelatin zymography was performed to detect matrix metalloproteinase (MMP) activity in the conditioned medium. The effect of H/R-FCM and MMP2 inhibitors on cardiac electrophysiology and arrhythmias was investigated with an isolated rat ischemia/reperfusion (I/R) model. H/R-FCM treatment impaired gap junction function, downregulated Cx43 expression, and increased hemichannel activity in rat cardiomyocytes (H9c2). The adverse effect of H/R-FCM on gap junction, which was confirmed by the cardiomyocyte H/R model, was involved in the activation of MMP2. MMP2 inhibition could partially attenuate the detrimental effects of I/R on myocardial electrophysiological indices and arrhythmia susceptibility. Our study indicates that inhibition of MMP2 may be a promising therapeutic target for the treatment of reperfusion arrhythmia.
Collapse
Affiliation(s)
- Xue Bai
- School of Anesthesiology, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xiang Huang
- School of Anesthesiology, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Jing Yi
- School of Anesthesiology, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xu Yan
- School of Anesthesiology, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Tingju Hu
- School of Anesthesiology, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Lu Wang
- School of Anesthesiology, Guizhou Medical University, Guiyang, 550004, Guizhou, China
- Guiyang Maternal and Child Health Hospital, Guiyang, 550004, Guizhou, China
| | - Zijun Wang
- School of Anesthesiology, Guizhou Medical University, Guiyang, 550004, Guizhou, China
- Department of Anesthesiology, Guiyang Second People's Hospital, Guiyang, 550081, Guizhou, China
| | - Hong Gao
- School of Anesthesiology, Guizhou Medical University, Guiyang, 550004, Guizhou, China.
- Guizhou Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
2
|
Shu Z, Feng J, Liu L, Liao Y, Cao Y, Zeng Z, Huang Q, Li Z, Jin G, Yang Z, Xing J, Zhou S. Short-Chain Acyl-CoA Dehydrogenase as a Therapeutic Target for Cardiac Fibrosis. J Cardiovasc Pharmacol 2024; 83:410-432. [PMID: 38323905 DOI: 10.1097/fjc.0000000000001544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/29/2023] [Indexed: 02/08/2024]
Abstract
ABSTRACT Cardiac fibrosis is considered as unbalanced extracellular matrix production and degradation, contributing to heart failure. Short-chain acyl-CoA dehydrogenase (SCAD) negatively regulates pathological cardiac hypertrophy. The purpose of this study was to investigate the possible role of SCAD in cardiac fibrosis. In vivo experiments were performed on spontaneously hypertensive rats (SHR) and SCAD-knockout mice. The cardiac tissues of hypertensive patients with cardiac fibrosis were used for the measurement of SCAD expression. In vitro experiments, with angiotensin II (Ang II), SCAD siRNA and adenovirus-SCAD were performed using cardiac fibroblasts (CFs). SCAD expression was significantly decreased in the left ventricles of SHR. Notably, swim training ameliorated cardiac fibrosis in SHR in association with the elevation of SCAD. The decrease in SCAD protein and mRNA expression levels in SHR CFs were in accordance with those in the left ventricular myocardium of SHR. In addition, SCAD expression was downregulated in CFs treated with Ang II in vitro, and SCAD siRNA interference induced the same changes in cardiac fibrosis as Ang II-treated CFs, while adenovirus-SCAD treatment significantly reduced the Ang II-induced CFs proliferation, alpha smooth muscle actin (α-SMA), and collagen expression. In SHR infected with adenovirus-SCAD, the cardiac fibrosis of the left ventricle was significantly decreased. However, cardiac fibrosis occurred in conventional SCAD-knockout mice. SCAD immunofluorescence intensity of cardiac tissue in hypertensive patients with cardiac fibrosis was lower than that of healthy subjects. Altogether, the current experimental outcomes indicate that SCAD has a negative regulatory effect on cardiac fibrosis and support its potential therapeutic target for suppressing cardiac fibrosis.
Collapse
Affiliation(s)
- Zhaohui Shu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China ; and
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Jingyun Feng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China ; and
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Lanting Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China ; and
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yingqin Liao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China ; and
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuhong Cao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China ; and
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhenhua Zeng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China ; and
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Qiuju Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China ; and
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhonghong Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China ; and
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Guifang Jin
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China ; and
| | - Zhicheng Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China ; and
| | - Jieyu Xing
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China ; and
| | - Sigui Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China ; and
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
3
|
Ciampi CM, Sultana A, Ossola P, Farina A, Fragasso G, Spoladore R. Current experimental and early investigational agents for cardiac fibrosis: where are we at? Expert Opin Investig Drugs 2024; 33:389-404. [PMID: 38426439 DOI: 10.1080/13543784.2024.2326024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/28/2024] [Indexed: 03/02/2024]
Abstract
INTRODUCTION Myocardial fibrosis (MF) is induced by factors activating pro-fibrotic pathways such as acute and prolonged inflammation, myocardial ischemic events, hypertension, aging process, and genetically-linked cardiomyopathies. Dynamics and characteristics of myocardial fibrosis development are very different. The broad range of myocardial fibrosis presentations suggests the presence of multiple potential targets. AREA COVERED Heart failure treatment involves medications primarily aimed at counteracting neurohormonal activation. While these drugs have demonstrated efficacy against MF, not all specifically target inflammation or fibrosis progression with some exceptions such as RAAS inhibitors. Consequently, new therapies are being developed to address this issue. This article is aimed to describe anti-fibrotic drugs currently employed in clinical practice and emerging agents that target specific pathways, supported by evidence from both preclinical and clinical studies. EXPERT OPINION Despite various preclinical findings suggesting the potential utility of new drugs and molecules for treating cardiac fibrosis in animal models, there is a notable scarcity of clinical trials investigating these effects. However, the pathology of damage and repair in the heart muscle involves a complex network of interconnected inflammatory pathways and various types of immune cells. Our comprehension of the positive and negative roles played by specific immune cells and cytokines is an emerging area of research.
Collapse
Affiliation(s)
- Claudio M Ciampi
- Health Science Department, University of Milan Bicocca, Milano, Italy
| | - Andrea Sultana
- Health Science Department, University of Milan Bicocca, Milano, Italy
| | - Paolo Ossola
- Health Science Department, University of Milan Bicocca, Milano, Italy
| | - Andrea Farina
- Division of Cardiology, Alessandro Manzoni Hospital, ASST- Lecco, Italy
| | - Gabriele Fragasso
- Heart Failure Unit Head, Division of Cardiology, IRCCS Vita-Salute San Raffaele University Hospital, Milan, Italy
| | - Roberto Spoladore
- Division of Cardiology, Alessandro Manzoni Hospital, ASST- Lecco, Italy
| |
Collapse
|
4
|
Alonazi AS, Bin Dayel AF, Albuaijan DA, Bin Osfur AS, Hakami FM, Alzayed SS, Almotairi AR, Khan MR, Alharbi HM, Ali RA, Alamin MA, Alghibiwi HK, Alrasheed NM, Alhosaini KA. Cardioprotective Effects of the GRK2 Inhibitor Paroxetine on Isoproterenol-Induced Cardiac Remodeling by Modulating NF-κB Mediated Prohypertrophic and Profibrotic Gene Expression. Int J Mol Sci 2023; 24:17270. [PMID: 38139099 PMCID: PMC10743803 DOI: 10.3390/ijms242417270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Pathological cardiac remodeling is associated with cardiovascular disease and can lead to heart failure. Nuclear factor-kappa B (NF-κB) is upregulated in the hypertrophic heart. Moreover, the expression of the G-protein-coupled receptor kinase 2 (GRK2) is increased and linked to the progression of heart failure. The inhibitory effects of paroxetine on GRK2 have been established. However, its protective effect on IκBα/NFκB signaling has not been elucidated. This study investigated the cardioprotective effect of paroxetine in an animal model of cardiac hypertrophy (CH), focusing on its effect on GRK2-mediated NF-κB-regulated expression of prohypertrophic and profibrotic genes. Wistar albino rats were administered normal saline, paroxetine, or fluoxetine, followed by isoproterenol to induce CH. The cardioprotective effects of the treatments were determined by assessing cardiac injury, inflammatory biomarker levels, histopathological changes, and hypertrophic and fibrotic genes in cardiomyocytes. Paroxetine pre-treatment significantly decreased the HW/BW ratio (p < 0.001), and the expression of prohypertrophic and profibrotic genes Troponin-I (p < 0.001), BNP (p < 0.01), ANP (p < 0.001), hydroxyproline (p < 0.05), TGF-β1 (p < 0.05), and αSMA (p < 0.01) as well as inflammatory markers. It also markedly decreased pIκBα, NFκB(p105) subunit expression (p < 0.05) and phosphorylation. The findings suggest that paroxetine prevents pathological cardiac remodeling by inhibiting the GRK2-mediated IκBα/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Asma S. Alonazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.F.B.D.)
| | - Anfal F. Bin Dayel
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.F.B.D.)
| | - Danah A. Albuaijan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.F.B.D.)
| | - Alhanouf S. Bin Osfur
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.F.B.D.)
| | - Fatemah M. Hakami
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.F.B.D.)
| | - Shaden S. Alzayed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.F.B.D.)
| | - Ahmad R. Almotairi
- Department of Pathology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad R. Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.F.B.D.)
| | - Hana M. Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.F.B.D.)
| | - Rehab A. Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.F.B.D.)
| | - Maha A. Alamin
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.F.B.D.)
| | - Hanan K. Alghibiwi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.F.B.D.)
| | - Nouf M. Alrasheed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.F.B.D.)
| | - Khaled A. Alhosaini
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.F.B.D.)
| |
Collapse
|
5
|
Song J, Du J, Tan X, Li Y, Yu Q, Liu W, Zhu X, Cong B. Tissue kallikrein-related peptidase8 accentuates cardiac fibrosis after myocardial ischemia-reperfusion injury via regulation of cardiac fibroblasts. Life Sci 2023; 329:121973. [PMID: 37482211 DOI: 10.1016/j.lfs.2023.121973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
AIMS Tissue kallikrein-related peptidase8 (KLK8) has been found to mitigate acute myocardial ischemia-reperfusion (IR) injury. However, the effect of KLK8 on cardiac remodeling in response to IR injury has not been determined. MATERIALS AND METHODS KLK8 overexpressing transgenic rat (KLK8-TG) was used as the animal model. IR injury was induced by ligating the left anterior descending coronary artery for 1 h and subsequent reperfusion. The functional and morphological changes of the heart were examined 14 days after the injury. Neonatal rat cardiac fibroblasts (CFs) were used to investigate the molecular mechanisms in vitro. KEY FINDINGS KLK8 overexpression enhanced cardiac diastolic dysfunction, fibrosis, and hypertrophy after IR injury, indicating that KLK8 accentuated cardiac remodeling in response to IR injury. Moreover, KLK8 overexpression increased epidermal growth factor (EGF) release and promoted the phosphorylation of EGF receptor (EGFR) and ERK1/2 in the heart after IR injury. It was interesting to find that both EGFR antagonist (AG 1478) and MEK inhibitor (PD98059) attenuated the KLK8-induced proliferation and activation of CFs in vitro, indicating that EGFR signaling might mediate the pro-fibrotic action of KLK8. SIGNIFICANCE KLK8 plays a crucial role in cardiac remodeling after myocardial infarction. KLK8 accentuates cardiac fibrosis after IR injury, possibly mediated by EGFR signaling in CFs.
Collapse
Affiliation(s)
- Jinchao Song
- Department of Anesthesiology, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China; Department of Physiology, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Jiankui Du
- Department of Physiology, Naval Medical University (Second Military Medical University), Shanghai, China; Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xing Tan
- Department of Physiology, Naval Medical University (Second Military Medical University), Shanghai, China; Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yang Li
- Department of Anesthesiology, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Qing Yu
- Department of Physiology, Naval Medical University (Second Military Medical University), Shanghai, China; Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wen Liu
- Department of Anesthesiology, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Xiaoyan Zhu
- Department of Physiology, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Binhai Cong
- Department of Physiology, Naval Medical University (Second Military Medical University), Shanghai, China.
| |
Collapse
|
6
|
Nagasaka A, Terawaki T, Noda M, Takashima M, Fujino M, Yamauchi Y, Arawaka S, Kato T, Nakaya M. GRK5-mediated inflammation and fibrosis exert cardioprotective effects during the acute phase of myocardial infarction. FEBS Open Bio 2023; 13:380-391. [PMID: 36633120 PMCID: PMC9900089 DOI: 10.1002/2211-5463.13551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/19/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
During myocardial infarction (MI), cardiac cells at the infarcted area undergo cell death. In response, cardiac myofibroblasts, which are mainly differentiated from resident fibroblasts upon inflammation, produce extracellular matrix proteins such as collagen to fill the damaged areas of the heart to prevent cardiac rupture. In this study, we identified a cardioprotective role of G-protein-coupled receptor kinase 5 (GRK5) in MI. GRK5 expression was found to increase in the mouse heart after MI and was highly expressed in cardiac fibroblasts/myofibroblasts. In fibroblasts/myofibroblasts, GRK5 promoted the expression of inflammation-related genes through nuclear factor-κB activation, leading to an increase in the expression levels of fibrosis-related genes. Bone marrow transfer experiments confirmed that GRK5 in fibroblasts/myofibroblasts, but not in infiltrated macrophages in the infarcted area, is mainly responsible for GRK5-mediated inflammation in infarcted hearts. In addition, inflammation and fibrosis at the infarcted area were significantly suppressed in GRK5 knockout mice, resulting in increased mortality compared with that in wild-type mice. These data indicate that GRK5 in cardiac fibroblasts/myofibroblasts promotes inflammation and fibrosis to ameliorate the damage after MI.
Collapse
Affiliation(s)
- Akiomi Nagasaka
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan
| | - Tsuyoshi Terawaki
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan
| | - Makoto Noda
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan
| | - Miyuki Takashima
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan
| | - Mika Fujino
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan
| | - Yuto Yamauchi
- Department of Disease control, Graduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan
| | - Shigeki Arawaka
- Division of Neurology, Department of Internal Medicine IVOsaka Medical CollegeJapan
| | - Takeo Kato
- Division of Neurology and Clinical Neuroscience, Department of Internal Medicine IIIYamagata University School of MedicineJapan
| | - Michio Nakaya
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan
- Department of Disease control, Graduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan
- AMED‐PRIMEJapan Agency for Medical Research and DevelopmentTokyoJapan
| |
Collapse
|
7
|
Chen H, Hou Y, Zhai Y, Yang J, Que L, Liu J, Lu L, Ha T, Li C, Xu Y, Li J, Li Y. Peli1 deletion in macrophages attenuates myocardial ischemia/reperfusion injury by suppressing M1 polarization. J Leukoc Biol 2023; 113:95-108. [PMID: 36822176 DOI: 10.1093/jleuko/qiac012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Indexed: 01/18/2023] Open
Abstract
The polarization of macrophages to the M1 or M2 phenotype has a pivotal role in inflammatory response following myocardial ischemia/reperfusion injury. Peli1, an E3 ubiquitin ligase, is closely associated with inflammation and autoimmunity as an important regulatory protein in the Toll-like receptor signaling pathway. We aimed to explore the function of Peli1 in macrophage polarization under myocardial ischemia/reperfusion injury and elucidate the possible mechanisms. We show here that Peli1 is upregulated in peripheral blood mononuclear cells from patients with myocardial ischemia/reperfusion, which is correlated with myocardial injury and cardiac dysfunction. We also found that the proportion of M1 macrophages was reduced and myocardial infarct size was decreased, paralleling improvement of cardiac function in mice with Peli1 deletion in hematopoietic cells or macrophages. Macrophage Peli1 deletion lessened M1 polarization and reduced the migratory ability in vitro. Mechanistically, Peli1 contributed to M1 polarization by promoting K63-linked ubiquitination and nuclear translocation of IRF5. Moreover, Peli1 deficiency in macrophages reduced the apoptosis of cardiomyocytes in vivo and in vitro. Together, our study demonstrates that Peli1 deficiency in macrophages suppresses macrophage M1 polarization and alleviates myocardial ischemia/reperfusion injury by inhibiting the nuclear translocation of IRF5, which may serve as a potential intervention target for myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Hao Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu, China
| | - Yuxing Hou
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu, China.,Department of Pathology, Wannan Medical College, 22 Wenchang West Road, Wuhu 241002, Anhui, China
| | - Yali Zhai
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu, China
| | - Jie Yang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu, China
| | - Linli Que
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu, China
| | - Jichun Liu
- Department of Cardiology, Affiliated Yijishan Hospital of Wannan Medical College, 2 Zheshan West Road, Wuhu 241001, Anhui, China
| | - Linming Lu
- Department of Pathology, Wannan Medical College, 22 Wenchang West Road, Wuhu 241002, Anhui, China
| | - Tuanzhu Ha
- Department of Surgery, East Tennessee State University, Campus Box 70575, Johnson City, TN 37614-0575, United States
| | - Chuanfu Li
- Department of Surgery, East Tennessee State University, Campus Box 70575, Johnson City, TN 37614-0575, United States
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu, China
| | - Jiantao Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu, China
| | - Yuehua Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu, China
| |
Collapse
|
8
|
Morfino P, Aimo A, Castiglione V, Gálvez-Montón C, Emdin M, Bayes-Genis A. Treatment of cardiac fibrosis: from neuro-hormonal inhibitors to CAR-T cell therapy. Heart Fail Rev 2023; 28:555-569. [PMID: 36221014 PMCID: PMC9553301 DOI: 10.1007/s10741-022-10279-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 02/05/2023]
Abstract
Cardiac fibrosis is characterized by the deposition of extracellular matrix proteins in the spaces between cardiomyocytes following both acute and chronic tissue damage events, resulting in the remodeling and stiffening of heart tissue. Fibrosis plays an important role in the pathogenesis of many cardiovascular disorders, including heart failure and myocardial infarction. Several studies have identified fibroblasts, which are induced to differentiate into myofibroblasts in response to various types of damage, as the most important cell types involved in the fibrotic process. Some drugs, such as inhibitors of the renin-angiotensin-aldosterone system, have been shown to be effective in reducing cardiac fibrosis. There are currently no drugs with primarily anti-fibrotic action approved for clinical use, as well as the evidence of a clinical efficacy of these drugs is extremely limited, despite the numerous encouraging results from experimental studies. A new approach is represented by the use of CAR-T cells engineered in vivo using lipid nanoparticles containing mRNA coding for a receptor directed against the FAP protein, expressed by cardiac myofibroblasts. This strategy has proved to be safe and effective in reducing myocardial fibrosis and improving cardiac function in mouse models of cardiac fibrosis. Clinical studies are required to test this novel approach in humans.
Collapse
Affiliation(s)
- Paolo Morfino
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Alberto Aimo
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy.
| | - Vincenzo Castiglione
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Carolina Gálvez-Montón
- Institut del Cor, Hospital Universitari Germans Trias I Pujol, Badalona, Spain
- CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Michele Emdin
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Antoni Bayes-Genis
- Institut del Cor, Hospital Universitari Germans Trias I Pujol, Badalona, Spain
- CIBERCV, Carlos III Institute of Health, Madrid, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
Cardiac fibroblasts and mechanosensation in heart development, health and disease. Nat Rev Cardiol 2022; 20:309-324. [PMID: 36376437 DOI: 10.1038/s41569-022-00799-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/04/2022] [Indexed: 11/16/2022]
Abstract
The term 'mechanosensation' describes the capacity of cells to translate mechanical stimuli into the coordinated regulation of intracellular signals, cellular function, gene expression and epigenetic programming. This capacity is related not only to the sensitivity of the cells to tissue motion, but also to the decryption of tissue geometric arrangement and mechanical properties. The cardiac stroma, composed of fibroblasts, has been historically considered a mechanically passive component of the heart. However, the latest research suggests that the mechanical functions of these cells are an active and necessary component of the developmental biology programme of the heart that is involved in myocardial growth and homeostasis, and a crucial determinant of cardiac repair and disease. In this Review, we discuss the general concept of cell mechanosensation and force generation as potent regulators in heart development and pathology, and describe the integration of mechanical and biohumoral pathways predisposing the heart to fibrosis and failure. Next, we address the use of 3D culture systems to integrate tissue mechanics to mimic cardiac remodelling. Finally, we highlight the potential of mechanotherapeutic strategies, including pharmacological treatment and device-mediated left ventricular unloading, to reverse remodelling in the failing heart.
Collapse
|
10
|
Fu J, Li L, Chen L, Su C, Feng X, Huang K, Zhang L, Yang X, Fu Q. PGE2 protects against heart failure through inhibiting TGF-β1 synthesis in cardiomyocytes and crosstalk between TGF-β1 and GRK2. J Mol Cell Cardiol 2022; 172:63-77. [PMID: 35934102 DOI: 10.1016/j.yjmcc.2022.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 12/14/2022]
Abstract
Inflammation plays a central role in the development of heart failure. Prostaglandin E2 (PGE2) is a key mediator of the inflammatory process in the cardiovascular system. However, the role of PGE2 in heart failure is complex and controversial. A recent report suggested that PGE2 inhibits acute β adrenergic receptor (β-AR) stimulation-enhanced cardiac contractility. The aim of this study was to characterize the influence of PGE2 on chronic β-AR stimulation-induced heart failure. Male C57BL/6 J mice received isoproterenol (ISO) or vehicle for 4 weeks. PGE2 significantly reversed ISO-induced cardiac contractile dysfunction and remodeling. Mechanically, ventricular myocytes were found to be an important source of TGF-β1 in ISO-model and PGE2 ablated TGF-β1 synthesis in cardiomyocytes through inhibition of β-AR activated PKA-CREB signaling. Furthermore, PGE2 significantly suppressed TGF-β1-GRK2 crosstalk-induced pro-hypertrophy and pro-fibrotic signaling in cardiomyocytes and cardiac fibroblasts, respectively. Pharmacological inhibition of GRK2 also attenuated contractile dysfunction and cardiac hypertrophy and fibrosis in ISO-model. These studies elucidate a novel mechanism by which PGE2 reduces TGF-β1 synthesis and its downstream signaling in heart failure and identify PGE2 or TGF-β1-GRK2 crosstalk as plausible therapeutic targets for preventing or treating heart failure induced by chronic β-AR stimulation.
Collapse
Affiliation(s)
- Jing Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430000, China
| | - Li Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430000, China
| | - Long Chen
- Clinical Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Congping Su
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430000, China
| | - Xiuling Feng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Kai Huang
- Clinical Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Laxi Zhang
- Division of Cardiology, Wenchang People's Hospital, Wenchang 571300, China.
| | - Xiaoyan Yang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430000, China.
| | - Qin Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430000, China.
| |
Collapse
|
11
|
Gong X, Huang Y, Ma Q, Jiang M, Zhan K, Zhao G. Quercetin Alleviates Lipopolysaccharide-Induced Cell Damage and Inflammation via Regulation of the TLR4/NF-κB Pathway in Bovine Intestinal Epithelial Cells. Curr Issues Mol Biol 2022; 44:5234-5246. [PMID: 36354668 PMCID: PMC9688721 DOI: 10.3390/cimb44110356] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 09/28/2023] Open
Abstract
Acute diarrhoea and intestinal inflammation represent one of the most prevalent clinical disorders of milk production, resulting in enormous annual financial damage for the dairy sector. In the context of an unsatisfactory therapeutic effect of antibiotics, the natural products of plants have been the focus of research. Quercetin is an important flavonoid found in a variety of plants, including fruits and vegetables, and has strong anti-inflammatory effects, so it has received extensive attention as a potential anti-inflammatory antioxidant. However, the underlying basis of quercetin on inflammatory reactions and oxidative tension generated by lipopolysaccharide (LPS) in bovine intestinal epithelial cells (BIECs) is currently unexplained. This research aimed to determine the influence of quercetin on LPS-induced inflammatory reactions, oxidative tension, and the barrier role of BIECs. Our findings demonstrated that BIEC viability was significantly improved in LPS-treated BIEC with 80 μg/mL quercetin compared with the control group. Indicators of oxidative overload and genes involved in barrier role revealed that 80 μg/mL quercetin efficiently rescued BIECs from oxidative and barrier impairment triggered by 5 μg/mL LPS. In addition, the mRNA expression of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6, as well as chemokines CXCL2, CXCL5, CCL5, and CXCL8, was diminished in LPS-treated BIECs with 80 μg/mL quercetin compared with LPS alone. Furthermore, the mRNA expression of toll-like receptor 4 (TLR4), CD14, myeloid differential protein-2 (MD2), and myeloid differentiation primary response protein (MyD88) genes associated with the TLR4 signal mechanism was markedly reduced by the addition of quercetin to LPS-modulated BIECs, indicating that quercetin can suppress the TLR4 signal mechanism. We performed Western blotting on the NF-κB signalling mechanism and compared it with immunofluorescence to further corroborate this conclusion. The LPS treatment enhanced the proportions of p-IκBα/GAPDH and p-p65/GAPDH. Compared with the LPS-treated group, quercetin administration decreased the proportions of p-IκBα/GAPDH and p-p65/GAPDH. In addition, immunofluorescence demonstrated that quercetin greatly reduced the LPS-induced nuclear translocation of NF-κB p65 in BIECs. The benefits of quercetin on inflammatory reactions in LPS-induced BIECs may be a result of its capacity to inhibit the TLR4-mediated NF-κB signalling mechanism. These findings suggest that quercetin can be used as an anti-inflammatory reagent to treat intestinal inflammation induced by LPS release.
Collapse
Affiliation(s)
- Xiaoxiao Gong
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yinghao Huang
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qianbo Ma
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Maocheng Jiang
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Kang Zhan
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Guoqi Zhao
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
12
|
Jin C, Gao BB, Zhou WJ, Zhao BJ, Fang X, Yang CL, Wang XH, Xia Q, Liu TT. Hydroxychloroquine attenuates autoimmune hepatitis by suppressing the interaction of GRK2 with PI3K in T lymphocytes. Front Pharmacol 2022; 13:972397. [PMID: 36188529 PMCID: PMC9520598 DOI: 10.3389/fphar.2022.972397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/15/2022] [Indexed: 11/21/2022] Open
Abstract
Hydroxychloroquine (HCQ) is derivative of the heterocyclic aromatic compound quinoline, which has been used for the treatment of autoimmune diseases. The central purpose of this study was to investigate therapeutic effects and inflammatory immunological molecular mechanism of HCQ in experimental autoimmune hepatitis (AIH). Treatment with HCQ ameliorated hepatic pathologic damage, inflammatory infiltration, while promoted regulatory T cell (Treg) and down-regulated CD8+T cell differentiation in AIH mice induced by S-100 antigen. In vitro, HCQ also suppressed pro-inflammatory cytokine (IFN-γ, TNF-α, and IL-12) secretion, promoted anti-inflammatory cytokine (TGF-β1) secretion. HCQ mainly impaired T cell lipid metabolism but not glycolysis to promote Treg differentiation and function. Mechanistically, HCQ down-regulated GRK2 membrane translocation in T cells, inhibited GRK2-PI3K interaction to reduce the PI3K recruiting to the membrane, followed by suppressing the phosphorylation of PI3K-AKT-mTOR signal. Pretreating T cells with paroxetine, a GRK2 inhibitor, disturbed HCQ effect to T cells. HCQ also reversed the activation of the PI3K-AKT axis by 740 Y-P (PI3K agonist). Meanwhile, HCQ inhibited the PI3K-AKT-mTOR, JAK2-STAT3-SOCS3 and increased the AMPK signals in the liver and T cells of AIH mice. In conclusion, HCQ exhibited specific and potent therapeutic effects on AIH and attendant liver injury, which was attributed to HCQ acted on GRK2 translocation, inhibited metabolism-related PI3K-AKT and inflammation-related JAK2-STAT3 signal in T lymphocytes, thereby modulating lipid metabolism of T cell function to regulate Treg differentiation and function.
Collapse
Affiliation(s)
- Chao Jin
- School of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, China
| | - Bei-Bei Gao
- Department of Pharmacy, The Second Hospital of Anhui Medical University, Hefei, China
| | - Wen-Jing Zhou
- School of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, China
| | - Bao-Jing Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xing Fang
- Department of Pharmacy, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Chun-Lan Yang
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, China
| | - Xiao-Hua Wang
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, China
| | - Quan Xia
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, China
| | - Ting-Ting Liu
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, China
| |
Collapse
|
13
|
Pilgrim T, Bernhard B, Fürholz M, Vollenbroich R, Babongo Bosombo F, Losdat S, Reusser N, Windecker S, Stortecky S, Siontis GCM, Hunziker L, Lanz J, Dobner S. Paroxetine-Mediated G-Protein Receptor Kinase 2 Inhibition in Patients With Acute Anterior Myocardial Infarction: Final 1-Year Outcomes of the Randomized CARE-AMI Trial. J Am Heart Assoc 2022; 11:e026362. [PMID: 36000427 PMCID: PMC9496412 DOI: 10.1161/jaha.122.026362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Thomas Pilgrim
- Department of Cardiology, Inselspital, Bern University Hospital University of Bern Switzerland
| | - Benedikt Bernhard
- Department of Cardiology, Inselspital, Bern University Hospital University of Bern Switzerland
| | - Monika Fürholz
- Department of Cardiology, Inselspital, Bern University Hospital University of Bern Switzerland
| | - René Vollenbroich
- Department of Cardiology, Inselspital, Bern University Hospital University of Bern Switzerland
| | | | | | - Nicole Reusser
- Department of Cardiology, Inselspital, Bern University Hospital University of Bern Switzerland
| | - Stephan Windecker
- Department of Cardiology, Inselspital, Bern University Hospital University of Bern Switzerland
| | - Stefan Stortecky
- Department of Cardiology, Inselspital, Bern University Hospital University of Bern Switzerland
| | - George C M Siontis
- Department of Cardiology, Inselspital, Bern University Hospital University of Bern Switzerland
| | - Lukas Hunziker
- Department of Cardiology, Inselspital, Bern University Hospital University of Bern Switzerland
| | - Jonas Lanz
- Department of Cardiology, Inselspital, Bern University Hospital University of Bern Switzerland
| | - Stephan Dobner
- Department of Cardiology, Inselspital, Bern University Hospital University of Bern Switzerland
| |
Collapse
|
14
|
Jiang M, Lv Z, Huang Y, Cheng Z, Meng Z, Yang T, Yan Q, Lin M, Zhan K, Zhao G. Quercetin Alleviates Lipopolysaccharide-Induced Inflammatory Response in Bovine Mammary Epithelial Cells by Suppressing TLR4/NF-κB Signaling Pathway. Front Vet Sci 2022; 9:915726. [PMID: 35865878 PMCID: PMC9295012 DOI: 10.3389/fvets.2022.915726] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Bovine mastitis is one of the most common clinical diseases in dairy cows, causing huge economic losses to the dairy industry. Quercetin is an important flavonoid existing in many food resources, which has attracted widespread attention as a potential anti-inflammatory and antioxidant. However, the molecular mechanism of quercetin on inflammatory responses and oxidative stress in bovine mammary epithelial cells (BMECs) induced by lipopolysaccharide (LPS) remains unknown. The objective of this study was to investigate the effects of quercetin on inflammation responses, oxidative stress, and barrier function of BMEC induced by LPS. Our results showed that BMEC viability was not affected by treatment with 50 and 100 μg/ml of quercetin and 1 μg/ml of LPS compared with control group. The results of oxidative stress indicators and related genes of barrier function indicated that 100 μg/ml of quercetin effectively protected the BMECs from damage of oxidative and barrier induced by 1 μg/ml of LPS. Moreover, the messenger RNA (mRNA) expressions of pro-inflammatory cytokines TNF-α, IL-1β, IL-6, and chemokines CXCL2, CXCL5, CCL5, and CXCL8 were markedly decreased in the LPS-treated bovine retinal endothelial cells (BRECs) with 100 μg/ml of quercetin relatively to LPS alone. More importantly, the mRNA expressions of toll-like receptor 4 (TLR4), CD14, myeloid differential protein-2 (MD2), and myeloid differentiation primary response protein (MyD88) genes involved in TLR4 signal pathway were significantly attenuated by the addition of quercetin in LPS-treated BMEC, suggesting that quercetin can inhibit the TLR4 signal pathway. In addition, immunocytofluorescence showed that quercetin significantly inhibited the nuclear translocation of NF-κB p65 in BMEC induced by LPS. Therefore, the protective effects of quercetin on inflammatory responses in LPS-induced BMEC may be due to its ability to suppress the TLR4-mediated NF-κB signaling pathway. These findings suggest that quercetin can be used as an anti-inflammatory reagent to treat mastitis induced by exogenous or endogenous LPS release.
Collapse
Affiliation(s)
- Maocheng Jiang
- College of Animal Science and Technology, Institute of Animal Culture Collection and Application, Yangzhou University, Yangzhou, China
| | - Ziyao Lv
- Chia Tai Tianqing Pharmaceutical Group Co., Ltd., Nanjing, China
| | - Yinghao Huang
- College of Animal Science and Technology, Institute of Animal Culture Collection and Application, Yangzhou University, Yangzhou, China
| | - Zhiqiang Cheng
- College of Animal Science and Technology, Institute of Animal Culture Collection and Application, Yangzhou University, Yangzhou, China
| | - Zitong Meng
- College of Animal Science and Technology, Institute of Animal Culture Collection and Application, Yangzhou University, Yangzhou, China
| | - Tianyu Yang
- College of Animal Science and Technology, Institute of Animal Culture Collection and Application, Yangzhou University, Yangzhou, China
| | - Qi Yan
- College of Animal Science and Technology, Institute of Animal Culture Collection and Application, Yangzhou University, Yangzhou, China
| | - Miao Lin
- College of Animal Science and Technology, Institute of Animal Culture Collection and Application, Yangzhou University, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Kang Zhan
- College of Animal Science and Technology, Institute of Animal Culture Collection and Application, Yangzhou University, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
- Kang Zhan
| | - Guoqi Zhao
- College of Animal Science and Technology, Institute of Animal Culture Collection and Application, Yangzhou University, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
- *Correspondence: Guoqi Zhao
| |
Collapse
|
15
|
Li N, Shan S, Li XQ, Chen TT, Qi M, Zhang SN, Wang ZY, Zhang LL, Wei W, Sun WY. G Protein-Coupled Receptor Kinase 2 as Novel Therapeutic Target in Fibrotic Diseases. Front Immunol 2022; 12:822345. [PMID: 35111168 PMCID: PMC8801426 DOI: 10.3389/fimmu.2021.822345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
G protein-coupled receptor kinase 2 (GRK2), an important subtype of GRKs, specifically phosphorylates agonist-activated G protein-coupled receptors (GPCRs). Besides, current research confirms that it participates in multiple regulation of diverse cells via a non-phosphorylated pathway, including interacting with various non-receptor substrates and binding partners. Fibrosis is a common pathophysiological phenomenon in the repair process of many tissues due to various pathogenic factors such as inflammation, injury, drugs, etc. The characteristics of fibrosis are the activation of fibroblasts leading to myofibroblast proliferation and differentiation, subsequent aggerate excessive deposition of extracellular matrix (ECM). Then, a positive feedback loop is occurred between tissue stiffness caused by ECM and fibroblasts, ultimately resulting in distortion of organ architecture and function. At present, GRK2, which has been described as a multifunctional protein, regulates copious signaling pathways under pathophysiological conditions correlated with fibrotic diseases. Along with GRK2-mediated regulation, there are diverse effects on the growth and apoptosis of different cells, inflammatory response and deposition of ECM, which are essential in organ fibrosis progression. This review is to highlight the relationship between GRK2 and fibrotic diseases based on recent research. It is becoming more convincing that GRK2 could be considered as a potential therapeutic target in many fibrotic diseases.
Collapse
Affiliation(s)
- Nan Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Shan Shan
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Xiu-Qin Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Ting-Ting Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Meng Qi
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Sheng-Nan Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Zi-Ying Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Ling-Ling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Wu-Yi Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| |
Collapse
|
16
|
Travers JG, Tharp CA, Rubino M, McKinsey TA. Therapeutic targets for cardiac fibrosis: from old school to next-gen. J Clin Invest 2022; 132:148554. [PMID: 35229727 PMCID: PMC8884906 DOI: 10.1172/jci148554] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases remain the leading cause of death worldwide, with pathological fibrotic remodeling mediated by activated cardiac myofibroblasts representing a unifying theme across etiologies. Despite the profound contributions of myocardial fibrosis to cardiac dysfunction and heart failure, there currently exist limited clinical interventions that effectively target the cardiac fibroblast and its role in fibrotic tissue deposition. Exploration of novel strategies designed to mitigate or reverse myofibroblast activation and cardiac fibrosis will likely yield powerful therapeutic approaches for the treatment of multiple diseases of the heart, including heart failure with preserved or reduced ejection fraction, acute coronary syndrome, and cardiovascular disease linked to type 2 diabetes. In this Review, we provide an overview of classical regulators of cardiac fibrosis and highlight emerging, next-generation epigenetic regulatory targets that have the potential to revolutionize treatment of the expanding cardiovascular disease patient population.
Collapse
|
17
|
GSK-3β-mediated activation of NLRP3 inflammasome leads to pyroptosis and apoptosis of rat cardiomyocytes and fibroblasts. Eur J Pharmacol 2022; 920:174830. [PMID: 35182545 DOI: 10.1016/j.ejphar.2022.174830] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/28/2022] [Accepted: 02/13/2022] [Indexed: 02/01/2023]
Abstract
We previously demonstrated that GSK-3β mediates NLRP3 inflammasome activation and IL-1β production in cardiac fibroblasts (CFs) after myocardial infarction (MI). In this study, we show how GSK-3β-mediated activation of the NLRP3 inflammasome/caspase-1/IL-1β pathway leads to apoptosis and pyroptosis of cardiomyocytes (CMs) and CFs. Administration of lipopolysaccharide (LPS)/ATP to primary newborn rat cardiac fibroblasts (RCFs) led to increase in proteins of NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), caspase-1, IL-1β, and IL-18. Additionally, the expression of caspase-3 and N-terminal fragments of gasdermin D (N-GSDMD) and the Bax/Bcl-2 ratio increased. Administration of the GSK-3β inhibitor SB216763 reduced the levels of apoptosis- and pyroptosis-related proteins regulated by NLRP3 inflammasome activation in RCFs. Next, we transferred the culture supernatant of LPS/ATP-treated RCFs to in vitro primary newborn rat cardiomyocytes (RCMs). The results showed that SB216763 attenuate the upregulation of the ratios of Bax/Bcl-2 and the expression of caspase-3 and N-GSDMD in RCMs. Direct stimulation of RCMs and H9c2 cells with recombinant rat IL-1β increased the p-GSK-3β/GSK-3β and Bax/Bcl-2 ratios and the expression of caspase-3 and N-GSDMD, while both SB216763 and TLR1 (an IL-1β receptor inhibitor) markedly reduced these effects, as assessed using propidium iodide positive staining and the lactate dehydrogenase release assay. The caspase-11 inhibitor wedelolactone decreased the expression level of N-GSDMD but did not alter the p-GSK-3β/GSK-3β ratio. Lastly, we established a Sprague-Dawley rat MI model to confirm that SB216763 diminished the increase in caspase-3 and N-GSDMD expression and the Bax/Bcl-2 ratio in the ischemic area. These data demonstrate that GSK-3β regulates apoptosis and pyroptosis of RCMs and RCFs due to NLRP3 inflammasome activation in RCFs.
Collapse
|
18
|
Liu N, Xie L, Xiao P, Chen X, Kong W, Lou Q, Chen F, Lu X. Cardiac fibroblasts secrete exosome microRNA to suppress cardiomyocyte pyroptosis in myocardial ischemia/reperfusion injury. Mol Cell Biochem 2022; 477:1249-1260. [PMID: 35119583 PMCID: PMC8913441 DOI: 10.1007/s11010-021-04343-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/22/2021] [Indexed: 01/30/2023]
Abstract
Molecular mechanisms underlying myocardial ischemia/reperfusion (MI/R) injury and effective strategies to treat MI/R injury are both in shortage. Although pyroptosis of cardiomyocytes and the protective role of cardiac fibroblasts (CFs) have been well recognized as targets to reduce MI/R injury and sudden cardiac death (SCD), the connection has not yet been established. Here, we showed that CFs protected cardiomyocytes against MI/R-induced injury through suppression of pyroptosis. A novel molecular mechanism underpinning this effect was further identified. Under hypoxia/reoxygenation condition, CFs were found to secrete exosomes, which contain increased level of microRNA-133a (miR-133a). These exosomes then delivered miR-133a into cardiomyocytes to target ELAVL1 and repressed cardiomyocyte pyroptosis. Based on this finding, we successfully developed a new strategy that used exosomes derived from CFs with overexpressed miR-133a to enhance the therapeutic outcomes for the MI/R injury. Overall, our results provide a novel molecular basis for understanding and treating MI/R injury, and our study also provides novel insight for the postmortem diagnosis of MI/R injury induced SCD by using exosome biomarker in forensic.
Collapse
Affiliation(s)
- Niannian Liu
- Department of Cardiology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210031, China.,Department of Forensic Medicine, Nanjing Medical University, No. 101 Longmian Road, Jiangning District, Nanjing, 211166, Jiangsu, China
| | - Liang Xie
- Department of Cardiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210000, Jiangsu, China
| | - Pingxi Xiao
- Department of Geriatrics, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, 211166, China
| | - Xing Chen
- Department of Geriatrics, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, 211166, China
| | - Wenjie Kong
- Department of Cardiology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210031, China
| | - Qiaozhen Lou
- Department of Cardiology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210031, China
| | - Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, No. 101 Longmian Road, Jiangning District, Nanjing, 211166, Jiangsu, China.
| | - Xiang Lu
- Department of Geriatrics, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
19
|
Abstract
ABSTRACT Cardiovascular disease (CVD) remains the leading cause of death worldwide. Therefore, exploring the mechanism of CVDs and critical regulatory factors is of great significance for promoting heart repair, reversing cardiac remodeling, and reducing adverse cardiovascular events. Recently, significant progress has been made in understanding the function of protein kinases and their interactions with other regulatory proteins in myocardial biology. Protein kinases are positioned as critical regulators at the intersection of multiple signals and coordinate nearly every aspect of myocardial responses, regulating contractility, metabolism, transcription, and cellular death. Equally, reconstructing the disrupted protein kinases regulatory network will help reverse pathological progress and stimulate cardiac repair. This review summarizes recent researches concerning the function of protein kinases in CVDs, discusses their promising clinical applications, and explores potential targets for future treatments.
Collapse
|
20
|
Trimetazidine affects pyroptosis by targeting GSDMD in myocardial ischemia/reperfusion injury. Inflamm Res 2022; 71:227-241. [PMID: 34993560 DOI: 10.1007/s00011-021-01530-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 09/10/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Trimetazidine (TMZ) exerts a strong inhibitory effect on ischemia/reperfusion (I/R) injury. Inflammation plays a key role in I/R injury. We hypothesized that TMZ may protect cardiomyocytes from I/R injury by inhibiting inflammation. METHODS The left anterior descending coronary artery was ligated for 30 min followed by 6 h of reperfusion to establish a model of I/R injury. H9c2 cardiomyocytes were subjected to 2 h of hypoxia and 3 h of normoxic conditions to establish a model of hypoxia/reoxygenation (H/R) injury. We monitored the change in pyroptosis by performing Western blot analysis, microscopy and ELISA. RESULTS I/R and H/R treatment stimulated gasdermin D-N domain (GSDMD-N) expression in cardiomyocytes (sham onefold vs. I/R 2.5-fold; control onefold vs. H/R 2.0-fold). Moreover, TMZ increased the viability of H9c2 cardiomyocytes subjected to H/R treatment (H/R 65.0% vs. H/R + TMZ 85.3%) and reduced the infarct size in vivo (I/R 47.0% vs. I/R + TMZ 28.3%). H/R and I/R treatment increased the levels of TLR4, MyD88, phospho-NF-κB p65 and the NLRP3 inflammasome; however, TMZ reduced the expression of these proteins. Additionally, TMZ inhibited noncanonical inflammasome signaling induced by I/R injury. CONCLUSIONS In summary, TMZ alleviated pyroptosis induced by myocardial I/R injury through the TLR4/MyD88/NF-κB/NLRP3 inflammasome pathway. Therefore, TMZ represents an alternative treatment for myocardial I/R injury.
Collapse
|
21
|
Li Y, Sun Y, Wu N, Ma H. GRK2 promotes activation of lung fibroblast cells and contributes to pathogenesis of pulmonary fibrosis through increasing Smad3 expression. Am J Physiol Cell Physiol 2021; 322:C63-C72. [PMID: 34852209 DOI: 10.1152/ajpcell.00347.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pulmonary fibrosis is a chronic, progressive, and irreversible interstitial lung disease. Transforming growth factor beta1 (TGF-β1) plays a major role in lung fibroblast cell differentiation to myofibroblast cells and production of extracellular matrix, which are hallmarks of pulmonary fibrosis. G protein-coupled receptor kinase-2 (GRK2) has been shown to play controversial roles in TGF-β1-induced signal transduction in different cell types; however, the roles of GRK2 in TGF-β1-induced activation of lung fibroblast cells and development of pulmonary fibrosis have not been revealed. In this study, we found that GRK2 levels were induced in lungs and isolated fibroblast cells in a murine model of pulmonary fibrosis, as well as TGF-β1-treated lung fibroblasts. GRK2 levels were not changed in lungs in the injury phase of pulmonary fibrosis. Post-treatment with GRK2 inhibitor reduced ECM accumulation in lungs in bleomycin-challenged mice, suggesting that GRK2 activation contributes to the progressive phase of pulmonary fibrosis. Inhibition or downregulation of GRK2 attenuates fibronectin, collagen, and α-smooth muscle actin expression in TGF-β1-induced lung fibroblast cells or myofibroblast cells isolated from pulmonary fibrosis patients. Further, we showed that GRK2 regulates Smad3 expression, indicating that inhibition of GRK2 attenuates ECM accumulation through downregulation of Smad3 expression. This study reveals that GRK2 is a therapeutic target in treating pulmonary fibrosis and inhibition of GRK2 dampens pulmonary fibrosis by suppression of Smad3 expression, eventually attenuating TGF-β1 signal pathway and ECM accumulation.
Collapse
Affiliation(s)
- Yanhui Li
- Department of Anesthesia, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Ying Sun
- Department of Respiratory and Critical Care Medicine, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Nan Wu
- Department of Anesthesia, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Haichun Ma
- Department of Anesthesia, the First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
22
|
Jankauskas SS, Kansakar U, Varzideh F, Wilson S, Mone P, Lombardi A, Gambardella J, Santulli G. Heart failure in diabetes. Metabolism 2021; 125:154910. [PMID: 34627874 PMCID: PMC8941799 DOI: 10.1016/j.metabol.2021.154910] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022]
Abstract
Heart failure and cardiovascular disorders represent the leading cause of death in diabetic patients. Here we present a systematic review of the main mechanisms underlying the development of diabetic cardiomyopathy. We also provide an excursus on the relative contribution of cardiomyocytes, fibroblasts, endothelial and smooth muscle cells to the pathophysiology of heart failure in diabetes. After having described the preclinical tools currently available to dissect the mechanisms of this complex disease, we conclude with a section on the most recent updates of the literature on clinical management.
Collapse
Affiliation(s)
- Stanislovas S Jankauskas
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Urna Kansakar
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Fahimeh Varzideh
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Scott Wilson
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Pasquale Mone
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Angela Lombardi
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Jessica Gambardella
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; International Translational Research and Medical Education (ITME), Department of Advanced Biomedical Science, "Federico II" University, 80131 Naples, Italy
| | - Gaetano Santulli
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; International Translational Research and Medical Education (ITME), Department of Advanced Biomedical Science, "Federico II" University, 80131 Naples, Italy.
| |
Collapse
|
23
|
Rivaroxaban attenuates cardiac hypertrophy by inhibiting protease-activated receptor-2 signaling in renin-overexpressing hypertensive mice. Hypertens Res 2021; 44:1261-1273. [PMID: 34285375 DOI: 10.1038/s41440-021-00700-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 03/07/2021] [Accepted: 03/28/2021] [Indexed: 02/07/2023]
Abstract
Rivaroxaban (Riv), a direct factor Xa (FXa) inhibitor, exerts anti-inflammatory effects in addition to anticoagulation. However, its role in cardiovascular remodeling is largely unknown. We tested the hypothesis that Riv attenuates the progression of cardiac hypertrophy and fibrosis induced by continuous activation of the renin-angiotensin system (RAS) in renin-overexpressing hypertensive transgenic (Ren-Tg) mice. We treated 12-week-old male Ren-Tg and wild-type (WT) mice with a diet containing Riv (12 mg/kg/day) or a regular diet for 4 weeks. After this, FXa in plasma significantly increased in Ren-Tg mice compared with WT mice, and Riv inhibited this increase. Left ventricular wall thickness (LVWT) and the area of cardiac fibrosis evaluated by Masson's trichrome staining were greater in Ren-Tg mice than in WT mice, and Riv decreased them. Cardiac expression levels of the protease-activated receptor (PAR)-2, tumor necrosis factor-α, transforming growth factor (TGF)-β1, and collagen type 3 α1 (COL3A1) genes were all greater in Ren-Tg mice than in WT mice, and Riv attenuated these increases. To investigate the possible involvement of PAR-2, we treated Ren-Tg mice with a continuous subcutaneous infusion of 10 μg/kg/day of the PAR-2 antagonist FSLLRY for 4 weeks. FSLLRY significantly decreased LVWT and cardiac expression of PAR-2, TGF-β1, and COL3A1. In isolated cardiac fibroblasts (CFs), Riv or FSLLRY pretreatment inhibited the FXa-induced increase in the phosphorylation of extracellular signal-regulated kinases. In addition, Riv or FSLLRY inhibited FXa-stimulated wound closure in CFs. Riv exerts a protective effect against cardiac hypertrophy and fibrosis development induced by continuous activation of the RAS, partly by inhibiting PAR-2.
Collapse
|
24
|
Umbarkar P, Ejantkar S, Tousif S, Lal H. Mechanisms of Fibroblast Activation and Myocardial Fibrosis: Lessons Learned from FB-Specific Conditional Mouse Models. Cells 2021; 10:cells10092412. [PMID: 34572061 PMCID: PMC8471002 DOI: 10.3390/cells10092412] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 01/26/2023] Open
Abstract
Heart failure (HF) is a leading cause of morbidity and mortality across the world. Cardiac fibrosis is associated with HF progression. Fibrosis is characterized by the excessive accumulation of extracellular matrix components. This is a physiological response to tissue injury. However, uncontrolled fibrosis leads to adverse cardiac remodeling and contributes significantly to cardiac dysfunction. Fibroblasts (FBs) are the primary drivers of myocardial fibrosis. However, until recently, FBs were thought to play a secondary role in cardiac pathophysiology. This review article will present the evolving story of fibroblast biology and fibrosis in cardiac diseases, emphasizing their recent shift from a supporting to a leading role in our understanding of the pathogenesis of cardiac diseases. Indeed, this story only became possible because of the emergence of FB-specific mouse models. This study includes an update on the advancements in the generation of FB-specific mouse models. Regarding the underlying mechanisms of myocardial fibrosis, we will focus on the pathways that have been validated using FB-specific, in vivo mouse models. These pathways include the TGF-β/SMAD3, p38 MAPK, Wnt/β-Catenin, G-protein-coupled receptor kinase (GRK), and Hippo signaling. A better understanding of the mechanisms underlying fibroblast activation and fibrosis may provide a novel therapeutic target for the management of adverse fibrotic remodeling in the diseased heart.
Collapse
Affiliation(s)
- Prachi Umbarkar
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Correspondence: (P.U.); (H.L.); Tel.: +1-205-996-4248 (P.U.); +1-205-996-4219 (H.L.); Fax: +1-205-975-5104 (H.L.)
| | - Suma Ejantkar
- School of Health Professions, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Sultan Tousif
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Hind Lal
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Correspondence: (P.U.); (H.L.); Tel.: +1-205-996-4248 (P.U.); +1-205-996-4219 (H.L.); Fax: +1-205-975-5104 (H.L.)
| |
Collapse
|
25
|
Pilgrim T, Vollenbroich R, Deckarm S, Gräni C, Dobner S, Stark AW, Erne SA, Babongo Bosombo F, Fischer K, Stortecky S, Reusser N, Fürholz M, Siontis GCM, Heg D, Hunziker L, Windecker S, Lanz J. Effect of Paroxetine-Mediated G-Protein Receptor Kinase 2 Inhibition vs Placebo in Patients With Anterior Myocardial Infarction: A Randomized Clinical Trial. JAMA Cardiol 2021; 6:1171-1176. [PMID: 34259826 DOI: 10.1001/jamacardio.2021.2247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Importance Left ventricular remodeling following acute myocardial infarction results in progressive myocardial dysfunction and adversely affects prognosis. Objective To investigate the efficacy of paroxetine-mediated G-protein-coupled receptor kinase 2 inhibition to mitigate adverse left ventricular remodeling in patients presenting with acute myocardial infarction. Design, Setting, and Participants This double-blind, placebo-controlled randomized clinical trial was conducted at Bern University Hospital, Bern, Switzerland. Patients with acute anterior ST-segment elevation myocardial infarction with left ventricular ejection fraction (LVEF) of 45% or less were randomly allocated to 2 study arms between October 26, 2017, and September 21, 2020. Interventions Patients in the experimental arm received 20 mg of paroxetine daily; patients in the control group received a placebo daily. Both treatments were provided for 12 weeks. Main Outcomes and Measures The primary end point was the difference in patient-level improvement of LVEF between baseline and 12 weeks as assessed by cardiac magnetic resonance tomography. Secondary end points were changes in left ventricular dimensions and late gadolinium enhancement between baseline and follow-up. Results Fifty patients (mean [SD] age, 62 [13] years; 41 men [82%]) with acute anterior myocardial infarction were randomly allocated to paroxetine or placebo, of whom 38 patients underwent cardiac magnetic resonance imaging both at baseline and 12 weeks. There was no difference in recovery of LVEF between the experimental group (mean [SD] change, 4.0% [7.0%]) and the control group (mean [SD] change, 6.3% [6.3%]; mean difference, -2.4% [95% CI, -6.8% to 2.1%]; P = .29) or changes in left ventricular end-diastolic volume (mean difference, 13.4 [95% CI, -12.3 to 39.0] mL; P = .30) and end-systolic volume (mean difference, 11.4 [95% CI, -3.6 to 26.4] mL; P = .13). Late gadolinium enhancement as a percentage of the total left ventricular mass decreased to a larger extent in the experimental group (mean [SD], -13.6% [12.9%]) compared with the control group (mean [SD], -4.5% [9.5%]; mean difference, -9.1% [95% CI, -16.6% to -1.6%]; P = .02). Conclusions and Relevance In this trial, treatment with paroxetine did not improve LVEF after myocardial infarction compared with placebo. Trial Registration ClinicalTrials.gov Identifier: NCT03274752.
Collapse
Affiliation(s)
- Thomas Pilgrim
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - René Vollenbroich
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sarah Deckarm
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christoph Gräni
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Stephan Dobner
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Anselm W Stark
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sophie A Erne
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Kady Fischer
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Stefan Stortecky
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nicole Reusser
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Monika Fürholz
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - George C M Siontis
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Dik Heg
- Clinical Trials Unit, University of Bern, Bern, Switzerland
| | - Lukas Hunziker
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Stephan Windecker
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jonas Lanz
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
26
|
Cardiac Fibrosis and Fibroblasts. Cells 2021; 10:cells10071716. [PMID: 34359886 PMCID: PMC8306806 DOI: 10.3390/cells10071716] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 12/24/2022] Open
Abstract
Cardiac fibrosis is the excess deposition of extracellular matrix (ECM), such as collagen. Myofibroblasts are major players in the production of collagen, and are differentiated primarily from resident fibroblasts. Collagen can compensate for the dead cells produced by injury. The appropriate production of collagen is beneficial for preserving the structural integrity of the heart, and protects the heart from cardiac rupture. However, excessive deposition of collagen causes cardiac dysfunction. Recent studies have demonstrated that myofibroblasts can change their phenotypes. In addition, myofibroblasts are found to have functions other than ECM production. Myofibroblasts have macrophage-like functions, in which they engulf dead cells and secrete anti-inflammatory cytokines. Research into fibroblasts has been delayed due to the lack of selective markers for the identification of fibroblasts. In recent years, it has become possible to genetically label fibroblasts and perform sequencing at single-cell levels. Based on new technologies, the origins of fibroblasts and myofibroblasts, time-dependent changes in fibroblast states after injury, and fibroblast heterogeneity have been demonstrated. In this paper, recent advances in fibroblast and myofibroblast research are reviewed.
Collapse
|
27
|
Pluijmert NJ, Atsma DE, Quax PHA. Post-ischemic Myocardial Inflammatory Response: A Complex and Dynamic Process Susceptible to Immunomodulatory Therapies. Front Cardiovasc Med 2021; 8:647785. [PMID: 33996944 PMCID: PMC8113407 DOI: 10.3389/fcvm.2021.647785] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/02/2021] [Indexed: 01/04/2023] Open
Abstract
Following acute occlusion of a coronary artery causing myocardial ischemia and implementing first-line treatment involving rapid reperfusion, a dynamic and balanced inflammatory response is initiated to repair and remove damaged cells. Paradoxically, restoration of myocardial blood flow exacerbates cell damage as a result of myocardial ischemia-reperfusion (MI-R) injury, which eventually provokes accelerated apoptosis. In the end, the infarct size still corresponds to the subsequent risk of developing heart failure. Therefore, true understanding of the mechanisms regarding MI-R injury, and its contribution to cell damage and cell death, are of the utmost importance in the search for successful therapeutic interventions to finally prevent the onset of heart failure. This review focuses on the role of innate immunity, chemokines, cytokines, and inflammatory cells in all three overlapping phases following experimental, mainly murine, MI-R injury known as the inflammatory, reparative, and maturation phase. It provides a complete state-of-the-art overview including most current research of all post-ischemic processes and phases and additionally summarizes the use of immunomodulatory therapies translated into clinical practice.
Collapse
Affiliation(s)
- Niek J Pluijmert
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Douwe E Atsma
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Paul H A Quax
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
28
|
Eguchi A, Coleman R, Gresham K, Gao E, Ibetti J, Chuprun JK, Koch WJ. GRK5 is a regulator of fibroblast activation and cardiac fibrosis. Proc Natl Acad Sci U S A 2021; 118:e2012854118. [PMID: 33500351 PMCID: PMC7865138 DOI: 10.1073/pnas.2012854118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pathological remodeling of the heart is a hallmark of chronic heart failure (HF) and these structural changes further perpetuate the disease. Cardiac fibroblasts are the critical cell type that is responsible for maintaining the structural integrity of the heart. Stress conditions, such as a myocardial infarction (MI), can activate quiescent fibroblasts into synthetic and contractile myofibroblasts. G protein-coupled receptor kinase 5 (GRK5) is an important mediator of cardiovascular homeostasis through dampening of GPCR signaling, and is expressed in the heart and up-regulated in human HF. Of note, GRK5 has been demonstrated to translocate to the nucleus in cardiomyocytes in a calcium-calmodulin (Ca2+-CAM)-dependent manner, promoting hypertrophic gene transcription through activation of nuclear factor of activated T cells (NFAT). Interestingly, NFAT is also involved in fibroblast activation. GRK5 is highly expressed and active in cardiac fibroblasts; however, its pathophysiological role in these crucial cardiac cells is unknown. We demonstrate using adult cardiac fibroblasts that genetic deletion of GRK5 inhibits angiotensin II (AngII)-mediated fibroblast activation. Fibroblast-specific deletion of GRK5 in mice led to decreased fibrosis and cardiac hypertrophy after chronic AngII infusion or after ischemic injury compared to nontransgenic littermate controls (NLCs). Mechanistically, we show that nuclear translocation of GRK5 is involved in fibroblast activation. These data demonstrate that GRK5 is a regulator of fibroblast activation in vitro and cardiac fibrosis in vivo. This adds to previously published data which demonstrate the potential beneficial effects of GRK5 inhibition in the context of cardiac disease.
Collapse
Affiliation(s)
- Akito Eguchi
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - Ryan Coleman
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - Kenneth Gresham
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - Erhe Gao
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - Jessica Ibetti
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - J Kurt Chuprun
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - Walter J Koch
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140;
- Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| |
Collapse
|
29
|
Liu Y, Yin Z, Xu X, Liu C, Duan X, Song Q, Tuo Y, Wang C, Yang J, Yin S. Crosstalk between the activated Slit2-Robo1 pathway and TGF-β1 signalling promotes cardiac fibrosis. ESC Heart Fail 2021; 8:447-460. [PMID: 33236535 PMCID: PMC7835586 DOI: 10.1002/ehf2.13095] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/27/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022] Open
Abstract
AIMS Previous reports indicated that the Slit2-Robo signalling pathway is involved in embryonic heart development and fibrosis in other solid organs, but its function in adult cardiac fibrosis has not been investigated. Here, we investigate the role of the Slit2-Robo1 signalling pathway in cardiac fibrosis. METHODS AND RESULTS The right atrial tissue samples were obtained from patients with valvular heart disease complicated by atrial fibrillation during heart valve surgery and from healthy heart donors. The fibrotic animal model is created by performing transverse aortic constriction (TAC) surgery. The Robo1, Slit2, TGF-β1, and collagen I expression levels in human and animal samples were evaluated by immunohistochemistry and western blot analysis. Echocardiography measured the changes in heart size and cardiac functions of animals. Angiotensin II (Ang II), Slit2-siRNA, TGF-β1-siRNA, recombinant Slit2, and recombinant TGF-β1 were transfected to cardiac fibroblasts (CFs) respectively to observe their effects on collagen I expression level. The right atrial appendage of patients with valvular heart disease complicated by atrial fibrillation found significantly up-regulated Slit2, Robo1, TGF-β1, and collagen I expression levels. TAC surgery leads to heart enlargement, cardiac fibrosis, and up-regulation of Slit2, Robo1, TGF-β1, and collagen I expression levels in animal model. Robo1 antagonist R5 and TGF-β1 antagonist SB431542 suppressed cardiac fibrosis in TAC mice. Treatment with 100 nM Ang II in CFs caused significantly increased Slit2, Robo1, Smad2/3, TGF-β1, collagen I, PI3K, and Akt expression levels. Transfecting Slit2-siRNA and TGF-β1-siRNA, respectively, into rat CFs significantly down-regulated Smad2/3 and collagen I expression, inhibiting the effects of Ang II. Recombinant Slit2 activated the TGF-β1/Smad signalling pathway in CFs and up-regulated Periostin, Robo1, and collagen I expression. CONCLUSIONS The Slit2-Robo1 signalling pathway interfered with the TGF-β1/Smad pathway and promoted cardiac fibrosis. Blockade of Slit2-Robo1 might be a new treatment for cardiac fibrosis.
Collapse
Affiliation(s)
- Yunqi Liu
- Department of Cardiac Surgery, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- NCH Key Laboratory of Assisted CirculationSun Yat‐sen UniversityGuangzhouChina
| | - Ziwei Yin
- Division of BiosciencesUniversity College LondonLondonUK
| | - Xueqin Xu
- Department of Cardiac Surgery, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- NCH Key Laboratory of Assisted CirculationSun Yat‐sen UniversityGuangzhouChina
| | - Chen Liu
- NCH Key Laboratory of Assisted CirculationSun Yat‐sen UniversityGuangzhouChina
- Department of Cardiology, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Xiaoying Duan
- Department of Cardiac Surgery, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- NCH Key Laboratory of Assisted CirculationSun Yat‐sen UniversityGuangzhouChina
| | - Qinlan Song
- Department of Cardiac Surgery, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- NCH Key Laboratory of Assisted CirculationSun Yat‐sen UniversityGuangzhouChina
| | - Ying Tuo
- Department of Pathology, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Cuiping Wang
- Department of Cardiothoracic Surgery ICU, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Jing Yang
- Department of Pediatric Dentistry, Stomatological HospitalSouthern Medical UniversityGuangzhouChina
| | - Shengli Yin
- Department of Cardiac Surgery, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- NCH Key Laboratory of Assisted CirculationSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
30
|
Yang Y, Schena GJ, Wang T, Houser SR. Postsurgery echocardiography can predict the amount of ischemia-reperfusion injury and the resultant scar size. Am J Physiol Heart Circ Physiol 2021; 320:H690-H698. [PMID: 33356964 DOI: 10.1152/ajpheart.00672.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 11/22/2022]
Abstract
Despite advances in the diagnosis and treatment of ischemic heart disease (IHD), it remains the leading cause of death globally. Thus, there is a need to investigate the underlying pathophysiology and develop new therapies for the prevention and treatment of IHD. Murine models are widely used in IHD research because they are readily available, relatively inexpensive, and can be genetically modified to explore mechanistic questions. Ischemia-reperfusion (I/R)-induced myocardial infarction in mice is produced by the blockage followed by reperfusion of the left anterior descending branch (LAD) to imitate human IHD disease and its treatment. This I/R model can be widely used to investigate the potential reparative effect of putative treatments in the setting of reperfusion. However, the surgical technique is demanding and can produce an inconsistent amount of damage, which can make identification of treatment effects challenging. Therefore, determining which hearts have been significantly damaged by I/R is an important consideration in studies designed to either explore the mechanisms of disrupted function or test possible therapies. Noninvasive echocardiography (ECHO) is often used to determine structural and functional changes in the mouse heart following injury. In the present study, we determined that ECHO performed 3 days post I/R surgery could predict the permanent injury produced by the ischemic insult.NEW & NOTEWORTHY We believe our work is noteworthy due to its creation of standards for early evaluation of the level of myocardial injury in mouse models of ischemia-reperfusion. This improvement to study design could reduce the sample sizes used in evaluating therapeutics and lead to increased confidence in conclusions drawn regarding the therapeutic efficacy of treatments tested in these translational mouse models.
Collapse
Affiliation(s)
- Yijun Yang
- Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Giana J Schena
- Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Tao Wang
- Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Steven R Houser
- Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
31
|
Arcones AC, Murga C, Penela P, Inserte J, Mayor F. G protein–coupled receptor kinase 2 at crossroads of metabolic and cardiovascular diseases. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2021; 16:75-85. [DOI: 10.1016/j.coemr.2020.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
32
|
Wang Y, Wu Y, Zhou M, Wang P, Luo J, Rui Y. GRK2 deletion improves the function of skin flap following ischemia-reperfusion injury by regulating Drp1. Am J Transl Res 2021; 13:223-233. [PMID: 33527020 PMCID: PMC7847531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
Skin flap ischemia-reperfusion (IR) injury is the key factor to the success rate of skin transplantation, the molecular mechanism of flap IR injury needs to be continuously explored to provide new ideas for its clinical treatment. G protein-coupled receptor kinase 2 (GRK2) was reported to be involved in regulating mitochondrial function, and mitochondria were essential in the process of flap IR. Thus, we aimed to investigate the function of GRK2 in flap ischemia-reperfusion injury and further explore the underlying mechanism. Sixty male C57BL/6 mice were randomly divided into four groups: sham, IR+sh-NC, IR+sh-GRK2 and IR+sh-GRK2+ dynamin-related GTPase 1 (Drp1). Flap function and mitochondrial function were determined after ischemia for 3 hours and reperfusion for 72 hours. Comparing with sham group, GRK2 was increased in flap after IR injury. Loss of GRK2 inhibited cell apoptosis and promoted cell proliferation of flap after IR injury. And deficiency of GRK2 promoted mitochondrial function in flap after IR injury. IR injury up-regulated Drp1 expression in flap, while sh-GRK2 down-regulated Drp1 expression. Furthermore, overexpression of Drp1 removed the protective effect of sh-GRK2. In conclusion, our study revealed that GRK2 deletion improved flap function and mitochondrial function by inhibiting Drp1 expression, which may provide a new insight for the clinical treatment of flap ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Yapeng Wang
- Department of Orthopaedics Surgery, Wuxi No. 9 People's Hospital Affiliated to Soochow University Wuxi 214000, China
| | - Yongwei Wu
- Department of Orthopaedics Surgery, Wuxi No. 9 People's Hospital Affiliated to Soochow University Wuxi 214000, China
| | - Ming Zhou
- Department of Orthopaedics Surgery, Wuxi No. 9 People's Hospital Affiliated to Soochow University Wuxi 214000, China
| | - Peng Wang
- Department of Orthopaedics Surgery, Wuxi No. 9 People's Hospital Affiliated to Soochow University Wuxi 214000, China
| | - Junhao Luo
- Department of Orthopaedics Surgery, Wuxi No. 9 People's Hospital Affiliated to Soochow University Wuxi 214000, China
| | - Yongjun Rui
- Department of Orthopaedics Surgery, Wuxi No. 9 People's Hospital Affiliated to Soochow University Wuxi 214000, China
| |
Collapse
|
33
|
Abstract
Myocardial fibrosis, the expansion of the cardiac interstitium through deposition of extracellular matrix proteins, is a common pathophysiologic companion of many different myocardial conditions. Fibrosis may reflect activation of reparative or maladaptive processes. Activated fibroblasts and myofibroblasts are the central cellular effectors in cardiac fibrosis, serving as the main source of matrix proteins. Immune cells, vascular cells and cardiomyocytes may also acquire a fibrogenic phenotype under conditions of stress, activating fibroblast populations. Fibrogenic growth factors (such as transforming growth factor-β and platelet-derived growth factors), cytokines [including tumour necrosis factor-α, interleukin (IL)-1, IL-6, IL-10, and IL-4], and neurohumoral pathways trigger fibrogenic signalling cascades through binding to surface receptors, and activation of downstream signalling cascades. In addition, matricellular macromolecules are deposited in the remodelling myocardium and regulate matrix assembly, while modulating signal transduction cascades and protease or growth factor activity. Cardiac fibroblasts can also sense mechanical stress through mechanosensitive receptors, ion channels and integrins, activating intracellular fibrogenic cascades that contribute to fibrosis in response to pressure overload. Although subpopulations of fibroblast-like cells may exert important protective actions in both reparative and interstitial/perivascular fibrosis, ultimately fibrotic changes perturb systolic and diastolic function, and may play an important role in the pathogenesis of arrhythmias. This review article discusses the molecular mechanisms involved in the pathogenesis of cardiac fibrosis in various myocardial diseases, including myocardial infarction, heart failure with reduced or preserved ejection fraction, genetic cardiomyopathies, and diabetic heart disease. Development of fibrosis-targeting therapies for patients with myocardial diseases will require not only understanding of the functional pluralism of cardiac fibroblasts and dissection of the molecular basis for fibrotic remodelling, but also appreciation of the pathophysiologic heterogeneity of fibrosis-associated myocardial disease.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| |
Collapse
|
34
|
Han X, Zhao ZA, Yan S, Lei W, Wu H, Lu XA, Chen Y, Li J, Wang Y, Yu M, Wang Y, Zheng Y, Wang H, Shen Z, Hu S. CXADR-like membrane protein protects against heart injury by preventing excessive pyroptosis after myocardial infarction. J Cell Mol Med 2020; 24:13775-13788. [PMID: 33084169 PMCID: PMC7753842 DOI: 10.1111/jcmm.15955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/24/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
Myocardial infarction (MI) results in cardiomyocyte death and ultimately leads to heart failure. Pyroptosis is a type of the inflammatory programmed cell death that has been found in various diseased tissues. However, the role of pyroptosis in MI heart remains unknown. Here, we showed that CXADR‐like membrane protein (CLMP) was involved in pyroptosis in the mouse MI heart. Our data showed that CLMP was strongly expressed in fibroblasts of the infarcted mouse hearts. The Clmp+/− mice showed more serious myocardial fibrosis and ventricular dysfunction post‐MI than wild‐type (Clmp+/+) mice, indicating a protective effect of the fibroblast‐expressed CLMP against MI‐induced heart damage. Transcriptome analyses by RNA sequencing indicated that Il‐1β mRNA was significantly increased in the MI heart of Clmp+/− mouse, which indicated a more serious inflammatory response. Meanwhile, cleaved caspase‐1 and Gasdermin D were significantly increased in the Clmp+/− MI heart, which demonstrated enhanced pyroptosis in the Clmp knockdown heart. Further analysis revealed that the pyroptosis mainly occurred in cardiac fibroblasts (CFs). Compared to wild‐type fibroblasts, Clmp+/− CFs showed more serious pyroptosis and inflammatory after LPS plus nigericin treatment. Collectively, our results indicate that CLMP participates in the pyroptotic and inflammatory response of CFs in MI heart. We have provided a novel pyroptotic insight into the ischaemic heart, which might hold substantial potential for the treatment of MI.
Collapse
Affiliation(s)
- Xinglong Han
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Zhen-Ao Zhao
- Institute of Microcirculation & Department of Pathophysiology of Basic Medical College, Hebei North University, Zhangjiakou, China.,Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Zhangjiakou, China
| | - Shiping Yan
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Hongchun Wu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Xing-Ai Lu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Yueqiu Chen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Jingjing Li
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Yaning Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Miao Yu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Yongming Wang
- MOE Key Laboratory of Contemporary Anthropology at School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yufang Zheng
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Institute of Developmental Biology & Molecular Medicine, Fudan University, Shanghai, China
| | - Hongyan Wang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, China.,Children's Hospital of Fudan University, Shanghai, China
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| |
Collapse
|
35
|
Sorriento D, Iaccarino G. Commentary: Studies in Zebrafish Demonstrate That CNNM2 and NT5C2 Are Most Likely the Causal Genes at the Blood Pressure-Associated Locus on Human Chromosome 10q24.32. Front Cardiovasc Med 2020; 7:582101. [PMID: 33195469 PMCID: PMC7604340 DOI: 10.3389/fcvm.2020.582101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/15/2020] [Indexed: 11/23/2022] Open
|
36
|
Rukavina Mikusic NL, Silva MG, Pineda AM, Gironacci MM. Angiotensin Receptors Heterodimerization and Trafficking: How Much Do They Influence Their Biological Function? Front Pharmacol 2020; 11:1179. [PMID: 32848782 PMCID: PMC7417933 DOI: 10.3389/fphar.2020.01179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/20/2020] [Indexed: 01/03/2023] Open
Abstract
G-protein–coupled receptors (GPCRs) are targets for around one third of currently approved and clinical prescribed drugs and represent the largest and most structurally diverse family of transmembrane signaling proteins, with almost 1000 members identified in the human genome. Upon agonist stimulation, GPCRs are internalized and trafficked inside the cell: they may be targeted to different organelles, recycled back to the plasma membrane or be degraded. Once inside the cell, the receptors may initiate other signaling pathways leading to different biological responses. GPCRs’ biological function may also be influenced by interaction with other receptors. Thus, the ultimate cellular response may depend not only on the activation of the receptor from the cell membrane, but also from receptor trafficking and/or the interaction with other receptors. This review is focused on angiotensin receptors and how their biological function is influenced by trafficking and interaction with others receptors.
Collapse
Affiliation(s)
- Natalia L Rukavina Mikusic
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | - Mauro G Silva
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | - Angélica M Pineda
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | - Mariela M Gironacci
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| |
Collapse
|
37
|
Liu W, Wang Y, Qiu Z, Zhao R, Liu Z, Chen W, Ge J, Shi B. CircHIPK3 regulates cardiac fibroblast proliferation, migration and phenotypic switching through the miR-152-3p/TGF-β2 axis under hypoxia. PeerJ 2020; 8:e9796. [PMID: 32904464 PMCID: PMC7453924 DOI: 10.7717/peerj.9796] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/01/2020] [Indexed: 12/28/2022] Open
Abstract
Background The occurrence of pathological cardiac fibrosis is attributed to tissue hypoxia. Circular RNAs play significant regulatory roles in multiple cardiovascular diseases and are involved in the regulation of physiological and pathophysiological processes. CircHIPK3 has been identified as the one of the most crucial regulators in cardiac fibrosis. However, the mechanisms by which circHIPK3 regulates cardiac fibrosis under hypoxia remain unclear. Our study aimed to determine circHIPK3 expression in cardiac fibroblasts (CFs) and investigate the functions of circHIPK3 in hypoxia environment. Methods The expression level of circHIPK3 in CFs under hypoxia (1% O2) was analyzed by qRT-PCR. The role of circHIPK3 on the proliferation and migration of CFs were determined by EdU, cell wound scratch assay and cell cycle. The expression of proteins associated with phenotypic transformation in CFs in vitro was examined by immunofluorescence assay and western blot. Bioinformatics analysis, dual luciferase activity assay and RNA fluorescent in situ hybridization assay revealed that miR-152-3p was identified as a target of circHIPK3 and that TGF-β2 was targeted by miR-152-3p. Results CircHIPK3 expression was significantly upregulated in CFs in a hypoxic environment. In vitro, overexpressing circHIPK3 obviously promoted CF proliferation, migration and phenotypic changes under hypoxia, but those processes were suppressed by circHIPK3 silencing. CircHIPK3 acted as an endogenous miR-152-3p sponge and miR-152-3p aggravated circHIPK3 silencing induced inhibition of CF proliferation, migration, phenotypic transformation and TGF-β2 expression in vitro. In summary, circHIPK3 plays a pivotal role in the development of cardiac fibrosis by targeting the miR-152-3p/TGF-β2 axis. Conclusions These findings demonstrated that circHIPK3 acted as a miR-152-3p sponge to regulate CF proliferation, migration and phenotypic transformation through TGF-β2, revealing that modulation of circHIPK3 expression may represent a potential target to promote the transition of hypoxia-induced CFs to myofibroblasts.
Collapse
Affiliation(s)
- Weiwei Liu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yan Wang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhimei Qiu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ranzun Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhijiang Liu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wenming Chen
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bei Shi
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
38
|
Montero P, Flandes-Iparraguirre M, Musquiz S, Pérez Araluce M, Plano D, Sanmartín C, Orive G, Gavira JJ, Prosper F, Mazo MM. Cells, Materials, and Fabrication Processes for Cardiac Tissue Engineering. Front Bioeng Biotechnol 2020; 8:955. [PMID: 32850768 PMCID: PMC7431658 DOI: 10.3389/fbioe.2020.00955] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/23/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular disease is the number one killer worldwide, with myocardial infarction (MI) responsible for approximately 1 in 6 deaths. The lack of endogenous regenerative capacity, added to the deleterious remodelling programme set into motion by myocardial necrosis, turns MI into a progressively debilitating disease, which current pharmacological therapy cannot halt. The advent of Regenerative Therapies over 2 decades ago kick-started a whole new scientific field whose aim was to prevent or even reverse the pathological processes of MI. As a highly dynamic organ, the heart displays a tight association between 3D structure and function, with the non-cellular components, mainly the cardiac extracellular matrix (ECM), playing both fundamental active and passive roles. Tissue engineering aims to reproduce this tissue architecture and function in order to fabricate replicas able to mimic or even substitute damaged organs. Recent advances in cell reprogramming and refinement of methods for additive manufacturing have played a critical role in the development of clinically relevant engineered cardiovascular tissues. This review focuses on the generation of human cardiac tissues for therapy, paying special attention to human pluripotent stem cells and their derivatives. We provide a perspective on progress in regenerative medicine from the early stages of cell therapy to the present day, as well as an overview of cellular processes, materials and fabrication strategies currently under investigation. Finally, we summarise current clinical applications and reflect on the most urgent needs and gaps to be filled for efficient translation to the clinical arena.
Collapse
Affiliation(s)
- Pilar Montero
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
| | - María Flandes-Iparraguirre
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
| | - Saioa Musquiz
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country – UPV/EHU, Vitoria-Gasteiz, Spain
| | - María Pérez Araluce
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Pamplona, Spain
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country – UPV/EHU, Vitoria-Gasteiz, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- University Institute for Regenerative Medicine and Oral Implantology – UIRMI (UPV/EHU – Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain
- Singapore Eye Research Institute, Singapore, Singapore
| | - Juan José Gavira
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Cardiology Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - Felipe Prosper
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Hematology and Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain
| | - Manuel M. Mazo
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Hematology and Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
39
|
孔 令, 孙 娜, 魏 兰, 张 丽, 陈 玉, 常 利, 苏 兴. [Melatonin protects against myocardial ischemia-reperfusion injury by inhibiting contracture in isolated rat hearts]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:958-964. [PMID: 32895155 PMCID: PMC7386215 DOI: 10.12122/j.issn.1673-4254.2020.07.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the protective effect of melatonin against myocardial ischemia reperfusion (IR) injury in isolated rat hearts and explore the underlying mechanisms. METHODS The isolated hearts from 40 male SD rats were randomly divided into 4 groups (n=10): the control group, where the hearts were perfused with KH solution for 175 min; IR group, where the hearts were subjected to global ischemia for 45 min followed by reperfusion for 120 min; IR+melatonin (Mel+IR) group, where melatonin (5 μmol/L) was administered to the hearts 1 min before ischemia and during the first 5 min of reperfusion, followed by 115 min of reperfusion; and IR+2, 3-butanedione monoxime (IR+BDM) group, where the hearts were treated with BDM (20 mmol/L) in the same manner as melatonin treatment. Myocardial injury in the isolated hearts was assessed based on myocardial injury area, caspase-3 activity, and expressions of cytochrome C and cleaved caspase-3 proteins. Cardiac contracture was assessed using HE staining and by detecting lactate dehydrogenase (LDH) activity and the content of cardiac troponin I (cTnI) in the coronary outflow, measurement of left ventricular end-diastolic pressure (LVEDP) and electron microscopy. The content of ATP in the cardiac tissue was also determined. RESULTS Compared with those in the control group, the isolated hearts in IR group showed significantly larger myocardial injury area and higher caspase-3 activity and the protein expressions of cytochrome C and cleaved caspase-3 with significantly increased LDH activity and cTnI content in the coronary outflow and elevated LVEDP at the end of reperfusion; HE staining showed obvious fractures of the myocardial fibers and the content of ATP was significantly decreased in the cardiac tissue; electron microscopy revealed the development of contraction bands. In the isolated hearts with IR, treatment with Mel or BDM significantly reduced the myocardial injury area, caspase-3 activity, and protein expressions of cytochrome C and cleaved caspase-3, obviously inhibited LDH activity, lowered the content of cTnI and LVEDP, reduced myocardial fiber fracture, and increased ATP content in the cardiac tissue. Both Mel and BDM inhibited the formation of contraction bands in the isolated hearts with IR injury. CONCLUSIONS Mel can alleviate myocardial IR injury in isolated rat hearts by inhibiting cardiac contracture, the mechanism of which may involve the upregulation of ATP in the cardiac myocytes to lessen the tear of membrane and reduce cell content leakage.
Collapse
Affiliation(s)
- 令恒 孔
- 西安医学院基础部基础医学研究所,陕西 西安 710061Institute of Basic Medical Science, School of Basic Medical Sciences, Xi'an Medical College, Xi'an 710061, China
| | - 娜 孙
- 西安医学院基础部基础医学研究所,陕西 西安 710061Institute of Basic Medical Science, School of Basic Medical Sciences, Xi'an Medical College, Xi'an 710061, China
| | - 兰兰 魏
- 西安医学院基础部基础医学研究所,陕西 西安 710061Institute of Basic Medical Science, School of Basic Medical Sciences, Xi'an Medical College, Xi'an 710061, China
| | - 丽君 张
- 西安医学院基础部基础医学研究所,陕西 西安 710061Institute of Basic Medical Science, School of Basic Medical Sciences, Xi'an Medical College, Xi'an 710061, China
| | - 玉龙 陈
- 西安医学院基础与转化医学研究所,陕西 西安 710061Institute of Basic and Translational Medicine, Xi'an Medical College, Xi'an 710061, China
| | - 利 常
- 西安医学院基础部基础医学研究所,陕西 西安 710061Institute of Basic Medical Science, School of Basic Medical Sciences, Xi'an Medical College, Xi'an 710061, China
| | - 兴利 苏
- 西安医学院基础部基础医学研究所,陕西 西安 710061Institute of Basic Medical Science, School of Basic Medical Sciences, Xi'an Medical College, Xi'an 710061, China
| |
Collapse
|
40
|
Yokono Y, Hanada K, Narita M, Tatara Y, Kawamura Y, Miura N, Kitayama K, Nakata M, Nozaka M, Kato T, Kudo N, Tsushima M, Toyama Y, Itoh K, Tomita H. Blockade of PAR-1 Signaling Attenuates Cardiac Hypertrophy and Fibrosis in Renin-Overexpressing Hypertensive Mice. J Am Heart Assoc 2020; 9:e015616. [PMID: 32495720 PMCID: PMC7429042 DOI: 10.1161/jaha.119.015616] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Although PAR‐1 (protease‐activated receptor‐1) exerts important functions in the pathophysiology of the cardiovascular system, the role of PAR‐1 signaling in heart failure development remains largely unknown. We tested the hypothesis that PAR‐1 signaling inhibition has protective effects on the progression of cardiac remodeling induced by chronic renin–angiotensin system activation using renin‐overexpressing hypertensive (Ren‐Tg) mice. Methods and Results We treated 12‐ to 16‐week‐old male wild‐type (WT) mice and Ren‐Tg mice with continuous subcutaneous infusion of the PAR‐1 antagonist SCH79797 or vehicle for 4 weeks. The thicknesses of interventricular septum and the left ventricular posterior wall were greater in Ren‐Tg mice than in WT mice, and SCH79797 treatment significantly decreased these thicknesses in Ren‐Tg mice. The cardiac fibrosis area and monocyte/macrophage deposition were greater in Ren‐Tg mice than in WT mice, and both conditions were attenuated by SCH79797 treatment. Cardiac mRNA expression levels of PAR‐1, TNF‐α (tumor necrosis factor‐α), TGF‐β1 (transforming growth factor‐β1), and COL3A1 (collagen type 3 α1 chain) and the ratio of β‐myosin heavy chain (β‐MHC) to α‐MHC were all greater in Ren‐Tg mice than in WT mice; SCH79797 treatment attenuated these increases in Ren‐Tg mice. Prothrombin fragment 1+2 concentration and factor Xa in plasma were greater in Ren‐Tg mice than in WT mice, and both conditions were unaffected by SCH79797 treatment. In isolated cardiac fibroblasts, both thrombin and factor Xa enhanced ERK1/2 (extracellular signal‐regulated kinase 1/2) phosphorylation, and SCH79797 pretreatment abolished this enhancement. Furthermore, gene expression of PAR‐1, TGF‐β1, and COL3A1 were enhanced by factor Xa, and all were inhibited by SCH79797. Conclusions The results indicate that PAR‐1 signaling is involved in cardiac remodeling induced by renin–angiotensin system activation, which may provide a novel therapeutic target for heart failure.
Collapse
Affiliation(s)
- Yoshikazu Yokono
- Department of Cardiology and Nephrology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Kenji Hanada
- Department of Cardiology and Nephrology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Masato Narita
- Department of Cardiology and Nephrology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Yota Tatara
- Department of Glycotechnology Center for Advanced Medical Research Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Yousuke Kawamura
- Department of Cardiology and Nephrology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Naotake Miura
- Department of Cardiology and Nephrology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Kazutaka Kitayama
- Department of Cardiology and Nephrology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Masamichi Nakata
- Department of Cardiology and Nephrology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Masashi Nozaka
- Department of Cardiology and Nephrology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Tomo Kato
- Department of Cardiology and Nephrology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Natsumi Kudo
- Department of Cardiology and Nephrology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Michiko Tsushima
- Department of Cardiology and Nephrology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Yuichi Toyama
- Department of Cardiology and Nephrology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Ken Itoh
- Department of Stress Response Science Center for Advanced Medical Research Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Hirofumi Tomita
- Department of Cardiology and Nephrology Hirosaki University Graduate School of Medicine Hirosaki Japan
| |
Collapse
|
41
|
Fu X, Liu Q, Li C, Li Y, Wang L. Cardiac Fibrosis and Cardiac Fibroblast Lineage-Tracing: Recent Advances. Front Physiol 2020; 11:416. [PMID: 32435205 PMCID: PMC7218116 DOI: 10.3389/fphys.2020.00416] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/06/2020] [Indexed: 01/18/2023] Open
Abstract
Cardiac fibrosis is a common pathological change associated with cardiac injuries and diseases. Even though the accumulation of collagens and other extracellular matrix (ECM) proteins may have some protective effects in certain situations, prolonged fibrosis usually negatively affects cardiac function and often leads to deleterious consequences. While the development of cardiac fibrosis involves several cell types, the major source of ECM proteins is cardiac fibroblast. The high plasticity of cardiac fibroblasts enables them to quickly change their behaviors in response to injury and transition between several differentiation states. However, the study of cardiac fibroblasts in vivo was very difficult due to the lack of specific research tools. The development of cardiac fibroblast lineage-tracing mouse lines has greatly promoted cardiac fibrosis research. In this article, we review the recent cardiac fibroblast lineage-tracing studies exploring the origin of cardiac fibroblasts and their complicated roles in cardiac fibrosis, and briefly discuss the translational potential of basic cardiac fibroblast researches.
Collapse
Affiliation(s)
- Xing Fu
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Qianglin Liu
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Chaoyang Li
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Yuxia Li
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Leshan Wang
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| |
Collapse
|
42
|
Chen YH, Lin H, Wang Q, Hou JW, Mao ZJ, Li YG. Protective role of silibinin against myocardial ischemia/reperfusion injury-induced cardiac dysfunction. Int J Biol Sci 2020; 16:1972-1988. [PMID: 32398964 PMCID: PMC7211181 DOI: 10.7150/ijbs.39259] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
Silibinin is a traditional medicine and utilized for liver protection with antioxidant, anti-inflammation and anti-apoptosis properties. However, its role in myocardial I/R injury and the mechanism involved is currently unknown. In the present study, Silibinin treatment improves cardiac function and limits infarct size, and subsequently inhibits fibrotic remodeling in mice with myocardial I/R injury. Mechanistically, silibinin reduces cardiomyocytes apoptosis, attenuates mitochondrial impairment and endoplasmic reticulum (ER) stress, alleviates ROS generation, neutrophil infiltration and cytokines release. Consistently, silibinin prevents H9C2 cells from hypoxia/reperfusion-induced cell death, oxidative stress and inflammation in vitro. Furthermore, H9C2 cells treated with silibinin blocks NF-κB signaling activation by inhibiting IKKα phosphorylation, IκBα degradation and p65 NF-κB nuclear translocation during hypoxia/ reperfusion. In addition, silibinin plus BAY 11-7082 (a selected NF-κB inhibitor) do not provide incremental benefits in improving myocytes apoptosis, oxidative stress and inflammation in comparison with NF-κB signaling inhibition only. Thus, silibinin-mediated cardioprotection in myocardial I/R injury is associated with decreased apoptosis, oxidative stress and inflammatory response through deactivation of NF-κB pathway.
Collapse
Affiliation(s)
- Yi-He Chen
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, 325000, Nanbaixiang, Wenzhou, Zhejiang, China
| | - Hui Lin
- Department of Respiratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China
| | - Qian Wang
- Department of Cardiology, Affiliated Xinhua Hospital, Shanghai Jiaotong University (SJTU) School of Medicine, Shanghai, China
| | - Jian-Wen Hou
- Department of Cardiology, Affiliated Xinhua Hospital, Shanghai Jiaotong University (SJTU) School of Medicine, Shanghai, China
| | - Zhi-Jie Mao
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, 325000, Nanbaixiang, Wenzhou, Zhejiang, China
| | - Yi-Gang Li
- Department of Cardiology, Affiliated Xinhua Hospital, Shanghai Jiaotong University (SJTU) School of Medicine, Shanghai, China
| |
Collapse
|
43
|
Bouley RA, Weinberg ZY, Waldschmidt HV, Yen YC, Larsen SD, Puthenveedu MA, Tesmer JJG. A New Paroxetine-Based GRK2 Inhibitor Reduces Internalization of the μ-Opioid Receptor. Mol Pharmacol 2020; 97:392-401. [PMID: 32234810 DOI: 10.1124/mol.119.118661] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
G protein-coupled receptor (GPCR) kinases (GRKs) play a key role in terminating signals initiated by agonist-bound GPCRs. However, chronic stimulation of GPCRs, such as that which occurs during heart failure, leads to the overexpression of GRKs and maladaptive downregulation of GPCRs on the cell surface. We previously reported the discovery of potent and selective families of GRK inhibitors based on either the paroxetine or GSK180736A scaffold. A new inhibitor, CCG258747, which is based on paroxetine, demonstrates increased potency against the GRK2 subfamily and favorable pharmacokinetic parameters in mice. CCG258747 and the closely related compound CCG258208 also showed high selectivity for the GRK2 subfamily in a kinome panel of 104 kinases. We developed a cell-based assay to screen the ability of CCG258747 and 10 other inhibitors with different GRK subfamily selectivities and with either the paroxetine or GSK180736A scaffold to block internalization of the μ-opioid receptor (MOR). CCG258747 showed the best efficacy in blocking MOR internalization among the compounds tested. Furthermore, we show that compounds based on paroxetine had much better cell permeability than those based on GSK180736A, which explains why GSK180736A-based inhibitors, although being potent in vitro, do not always show efficacy in cell-based assays. This study validates the paroxetine scaffold as the most effective for GRK inhibition in living cells, confirming that GRK2 predominantly drives internalization of MOR in the cell lines we tested and underscores the utility of high-resolution cell-based assays for assessment of compound efficacy. SIGNIFICANCE STATEMENT: G protein-coupled receptor kinases (GRKs) are attractive targets for developing therapeutics for heart failure. We have synthesized a new GRK2 subfamily-selective inhibitor, CCG258747, which has nanomolar potency against GRK2 and excellent selectivity over other kinases. A live-cell receptor internalization assay was used to test the ability of GRK2 inhibitors to impart efficacy on a GRK-dependent process in cells. Our data indicate that CCG258747 blocked the internalization of the μ-opioid receptor most efficaciously because it has the ability to cross cell membranes.
Collapse
Affiliation(s)
- Renee A Bouley
- Life Sciences Institute (R.A.B., H.V.W.), Departments of Medicinal Chemistry (H.V.W., S.D.L.) and Pharmacology (R.A.B., Z.Y.W., M.A.P.), and Vahlteich Medicinal Chemistry Core, College of Pharmacy (H.V.W., S.D.L.), University of Michigan, Ann Arbor, Michigan; and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology (Y.-C.Y., J.J.G.T.), Purdue University, West Lafayette, Indiana
| | - Zara Y Weinberg
- Life Sciences Institute (R.A.B., H.V.W.), Departments of Medicinal Chemistry (H.V.W., S.D.L.) and Pharmacology (R.A.B., Z.Y.W., M.A.P.), and Vahlteich Medicinal Chemistry Core, College of Pharmacy (H.V.W., S.D.L.), University of Michigan, Ann Arbor, Michigan; and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology (Y.-C.Y., J.J.G.T.), Purdue University, West Lafayette, Indiana
| | - Helen V Waldschmidt
- Life Sciences Institute (R.A.B., H.V.W.), Departments of Medicinal Chemistry (H.V.W., S.D.L.) and Pharmacology (R.A.B., Z.Y.W., M.A.P.), and Vahlteich Medicinal Chemistry Core, College of Pharmacy (H.V.W., S.D.L.), University of Michigan, Ann Arbor, Michigan; and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology (Y.-C.Y., J.J.G.T.), Purdue University, West Lafayette, Indiana
| | - Yu-Chen Yen
- Life Sciences Institute (R.A.B., H.V.W.), Departments of Medicinal Chemistry (H.V.W., S.D.L.) and Pharmacology (R.A.B., Z.Y.W., M.A.P.), and Vahlteich Medicinal Chemistry Core, College of Pharmacy (H.V.W., S.D.L.), University of Michigan, Ann Arbor, Michigan; and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology (Y.-C.Y., J.J.G.T.), Purdue University, West Lafayette, Indiana
| | - Scott D Larsen
- Life Sciences Institute (R.A.B., H.V.W.), Departments of Medicinal Chemistry (H.V.W., S.D.L.) and Pharmacology (R.A.B., Z.Y.W., M.A.P.), and Vahlteich Medicinal Chemistry Core, College of Pharmacy (H.V.W., S.D.L.), University of Michigan, Ann Arbor, Michigan; and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology (Y.-C.Y., J.J.G.T.), Purdue University, West Lafayette, Indiana
| | - Manojkumar A Puthenveedu
- Life Sciences Institute (R.A.B., H.V.W.), Departments of Medicinal Chemistry (H.V.W., S.D.L.) and Pharmacology (R.A.B., Z.Y.W., M.A.P.), and Vahlteich Medicinal Chemistry Core, College of Pharmacy (H.V.W., S.D.L.), University of Michigan, Ann Arbor, Michigan; and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology (Y.-C.Y., J.J.G.T.), Purdue University, West Lafayette, Indiana
| | - John J G Tesmer
- Life Sciences Institute (R.A.B., H.V.W.), Departments of Medicinal Chemistry (H.V.W., S.D.L.) and Pharmacology (R.A.B., Z.Y.W., M.A.P.), and Vahlteich Medicinal Chemistry Core, College of Pharmacy (H.V.W., S.D.L.), University of Michigan, Ann Arbor, Michigan; and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology (Y.-C.Y., J.J.G.T.), Purdue University, West Lafayette, Indiana
| |
Collapse
|
44
|
Lai S, Fu X, Yang S, Zhang S, Lin Q, Zhang M, Chen H. G protein-coupled receptor kinase-2: A potential biomarker for early diabetic cardiomyopathy. J Diabetes 2020; 12:247-258. [PMID: 31680450 PMCID: PMC7064927 DOI: 10.1111/1753-0407.12991] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND G protein-coupled receptor kinase-2 (GRK2) has been shown as a key regulator of cardiac function, and the myocardial GRK2 levels are mirrored by the levels in peripheral blood mononuclear cells (PBMCs). In this study, we evaluated the myocardial and PBMCs GRK2 levels in early diabetic cardiomyopathy (DCM). METHODS C57BL/KS-db/db male diabetic mice at 12 weeks of age, as the type 2 diabetes (T2DM) animal model of early DCM were evaluated. Forty-four T2DM patients with left ventricular diastolic dysfunction (LVDD), without evidence of hypertension, coronary artery diseases, congestive heart failure, and diabetic complications and without evidence of ischemia in a maximal treadmill exercise test, were recruited as the DM + LVDD group; 30 age-matched T2DM patients without LVDD were recruited as the DM control group. Left ventricular diastolic function was evaluated by cardiac tissue Doppler. The pseudonormal pattern of ventricular filling and E'/A' < 1 were regarded as LVDD. RESULTS Compared to 8-week-old diabetic mice and 12-week-old control mice, GRK2-mRNA level and expression in myocardial tissues of 12-week-old diabetic mice were significantly increased, as well as the left ventricular wall thickness and systolic function. And the collagen volume fraction (CVF), collagen-3 expression, P53 expression, and cell apoptotic rate in the myocardium of 12-week-old diabetic mice elevated as well. The GRK2-mRNA level in PBMCs of DM with LVDD was significantly higher than in DM control without LVDD. CONCLUSIONS GRK2 expression increased in the myocardial tissue and the PBMCs at the early stage of DCM. These data support further research on the role of GRK2 as the clinical biomarker for early DCM.
Collapse
Affiliation(s)
- Shuiqing Lai
- Department of Endocrinology, Guangdong Provincial People's Hospital / Guangdong Academy of Medical SciencesGuangdong Provincial Geriatrics InstituteGuangzhouP. R. China
| | - Xiaoying Fu
- Department of Endocrinology, Guangdong Provincial People's Hospital / Guangdong Academy of Medical SciencesGuangdong Provincial Geriatrics InstituteGuangzhouP. R. China
| | - Shufen Yang
- Shantou University Medical CollegeShantouP. R. China
| | - Shuting Zhang
- Department of Endocrinology, Guangdong Provincial People's Hospital / Guangdong Academy of Medical SciencesGuangdong Provincial Geriatrics InstituteGuangzhouP. R. China
| | - Qiuxiong Lin
- Guangdong Provincial Key Laboratory of Clinical PharmacologyGuangdong Cardiovascular InstituteGuangzhouP. R. China
| | - Mengzhen Zhang
- Guangdong Provincial Key Laboratory of Clinical PharmacologyGuangdong Cardiovascular InstituteGuangzhouP. R. China
| | - Hongmei Chen
- Department of Endocrinology, Guangdong Provincial People's Hospital / Guangdong Academy of Medical SciencesGuangdong Provincial Geriatrics InstituteGuangzhouP. R. China
| |
Collapse
|
45
|
Zhao M, Li F, Jian Y, Wang X, Yang H, Wang J, Su J, Lu X, Xi M, Wen A, Li J. Salvianolic acid B regulates macrophage polarization in ischemic/reperfused hearts by inhibiting mTORC1-induced glycolysis. Eur J Pharmacol 2020; 871:172916. [PMID: 31930970 DOI: 10.1016/j.ejphar.2020.172916] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 12/23/2019] [Accepted: 01/09/2020] [Indexed: 12/11/2022]
Abstract
Macrophages play important roles in the healing and remodeling of cardiac tissues after myocardial ischemia/reperfusion (MI/R) injury. Here we investigated the potential effects of salvianolic acid B (SalB), one of the abundant and bioactive compounds extracted from Chinese herb Salvia Miltiorrhiza (Danshen), on macrophage-mediated inflammation after MI/R and the underlying mechanisms. In primary cultured bone marrow-derived macrophages (BMDMs), SalB attenuated lipopolysaccharide (LPS)-induced M1 biomarkers (IL-6, iNOS, CCL2 and TNF-α) mRNA expression in a concentration-dependent manner. In contrast, M2 biomarkers (Arg1, Clec10a and Mrc) mRNA levels following interleukinin-4 (IL-4) stimulation were significantly upregulated by SalB. In addition, LPS stimulation potently induced transcriptional upregulation of RagD, an important activation factor of mammalian target of rapamycin complex 1 (mTORC1). Interestingly, SalB inhibited RagD upregulation and mTORC1 activation, decreased glycolysis, and reduced inflammatory cytokine production in LPS-stimulated macrophages, all of which were blunted in RagD knockdown macrophages. In mice subjected to MI/R, SalB treatment decreased cardiac M1-macrophages and increased M2-macrophages at 3 days post-MI/R, followed by decreased collagen deposition and ameliorated cardiac dysfunction at 7 days post-MI/R. Collectively, our data have shown that SalB decreases M1-polarized macrophages in MI/R hearts via inhibiting mTORC1-dependent glycolysis, which might contribute to alleviated inflammation and improved cardiac dysfunction afforded by SalB after MI/R.
Collapse
Affiliation(s)
- Meina Zhao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Fei Li
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yufan Jian
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xinpei Wang
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Hongyan Yang
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Jun Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Department of Anesthesiology, Shaanxi Armed Police Corps Hospital, Xi'an, Shaanxi, 710054, China
| | - Jing Su
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xinming Lu
- YouYi Clinical Laboratories of Shaanxi, Xi'an, Shaanxi, 710065, China
| | - Miaomiao Xi
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; TANK Medicinal Biology Institute of Xi'an, Xi'an, Shaanxi, 710032, China.
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Jia Li
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
46
|
Chen Y, Ye X, Yan F. MicroRNA 3113-5p is a novel marker for early cardiac ischemia/reperfusion injury. Diagn Pathol 2019; 14:121. [PMID: 31672150 PMCID: PMC6824141 DOI: 10.1186/s13000-019-0894-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Ischemia/reperfusion (I/R) injury of heart is one of the major causes of acute cardiac injury, which may result in worsening or even loss of heart function. With novel microRNAs being evolutionarily discovered, numbers of them remained functionally unknown. We aimed to discover novel microRNAs with therapeutic or diagnostic potential in the setting of early cardiac I/R injury. METHODS Cardiac electrical activity, biochemical detection and histopathology analysis were performed to reveal early changes of cardiac I/R injury. A microRNA array was performed to screen differential microRNAs in the mouse model of cardiac I/R injury. The differentially expressed microRNAs were validated in cardiac tissues and in serum samples. RESULTS The abnormality in electrocardiogram and increases in serum cTnI levels suggested the successful establishment of cardiac I/R injury in mice. A total of 1882 microRNAs were identified, of which 11 were significantly down-regulated and 41 were significantly up-regulated at 3 h post reperfusion. microRNA 223-3p and microRNA 3113-5p were among the mostly altered microRNAs and were validated to be up-regulated within the early hours of I/R injury in heart tissues. In the circulating system, cTnI, a sensitive marker of cardiac injury, or microRNA 223-3p only increased within the first 6 h post I/R injury. However, microRNA 3113-5p stably increased in the serum, keeping an increase of 2.5-fold throughout the 24 h. In the human serum samples, microRNA 3113-5p was detected to be significantly upregulated as soon as 3 h after I/R stimuli and kept significantly higher levels within the 48 h. CONCLUSION This is the first study that reported the functional roles of microRNA 3113-5p in cardiovascular system. Our data suggested that cardiac microRNA 3113-5p might be a useful target for therapeutic purposes and circulating microRNA 3113-5p might serve as a stable marker for early diagnosis of cardiac I/R injury.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Forensic Medicine, School of Basic Medical Sciences, Gannan Medical College, 1 Yixueyuan Road, Zhanggong District, Ganzhou, Jiangxi, 341000, People's Republic of China.,Academy of Forensic Science, Ministry of Justice of China, Shanghai, 200063, People's Republic of China
| | - Xing Ye
- Department of Forensic Medicine, School of Basic Medical Sciences, Gannan Medical College, 1 Yixueyuan Road, Zhanggong District, Ganzhou, Jiangxi, 341000, People's Republic of China.,Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Fengping Yan
- Department of Forensic Medicine, School of Basic Medical Sciences, Gannan Medical College, 1 Yixueyuan Road, Zhanggong District, Ganzhou, Jiangxi, 341000, People's Republic of China. .,Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical College, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
47
|
Zhang Z, Hou Y, Li J, Tang C, Que L, Tan Q, Li Y. TIR/BB-loop mimetic AS-1 protects vascular endothelial cells from injury induced by hypoxia/reoxygenation. J Biomed Res 2019; 34:343-350. [PMID: 32594023 PMCID: PMC7540235 DOI: 10.7555/jbr.33.20190030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Morphological and functional abnormalities of vascular endothelial cells (VECs) are risk factors of ischemia-reperfusion in skin flaps. Signaling pathway mediated by interleukin-1 receptor (IL-1R) is essential to hypoxia/reoxygenation (H/R) injury of VECs. While the TIR/BB-loop mimetic (AS-1) disrupts the interaction between IL-1R and myeloid differentiation primary-response protein 88 (MyD88), its role in the VECs dysfunction under H/R is unclear. In this study, we first showed that there was an infiltration of inflammatory cells and the apoptosis of VECs by using a skin flap section from patients who received flap transplantation. We then showed that the H/R treatment induced apoptosis and loss of cell migration of endothelial cell line H926 were attenuated by AS-1. Furthermore, our data suggested that AS-1 inhibits the interaction between IL-1R and MyD88, and subsequent phosphorylation of IκB and p38 pathway, as well as the nuclear localization of NF-KB subunit p65/p50. Thus, this study indicated that the protective role of AS-1 in H/R induced cellular injury may be due to the AS-1 mediated down-regulation of IL-1R signaling pathway.
Collapse
Affiliation(s)
- Zhijia Zhang
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Department of Plasticsurgery, Drum Tower Hospital, Nanjing, Jiangsu 211100, China
| | - Yuxing Hou
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jiantao Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chao Tang
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Linli Que
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Qian Tan
- Department of Plasticsurgery, Drum Tower Hospital, Nanjing, Jiangsu 211100, China
| | - Yuehua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
48
|
Guo R, Gan L, Lau WB, Yan Z, Xie D, Gao E, Christopher TA, Lopez BL, Ma X, Wang Y. Withaferin A Prevents Myocardial Ischemia/Reperfusion Injury by Upregulating AMP-Activated Protein Kinase-Dependent B-Cell Lymphoma2 Signaling. Circ J 2019; 83:1726-1736. [PMID: 31217391 DOI: 10.1253/circj.cj-18-1391] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Withaferin A (WFA), an anticancer constituent of the plant Withania somnifera, inhibits tumor growth in association with apoptosis induction. However, the potential role of WFA in the cardiovascular system is little-studied and controversial. METHODS AND RESULTS Two different doses of WFA were tested to determine their cardioprotective effects in myocardial ischemia/reperfusion (MI/R) injury through evaluation of cardiofunction in wild-type and AMP-activated protein kinase domain negative (AMPK-DN) gentransgenic mice. Surprisingly, cardioprotective effects (improved cardiac function and reduced infarct size) were observed with low-dose WFA (1 mg/kg) delivery but not high-dose (5 mg/kg). Mechanistically, low-dose WFA attenuated myocardial apoptosis. It decreased MI/R-induced activation of caspase 9, the indicator of the intrinsic mitochondrial pathway, but not caspase 8. It also upregulated the level of AMP-activated protein kinase (AMPK) phosphorylation and increased the MI/R inhibited ratio of Bcl2/Bax. In AMPK-deficient mice, WFA did not ameliorate MI/R-induced cardiac dysfunction, attenuate infarct size, or restore the Bcl2/Bax (B-cell lymphoma2/Mcl-2-like protein 4) ratio. CONCLUSIONS These results demonstrated for the first time that low-dose WFA is cardioprotective via upregulation of the anti-apoptotic mitochondrial pathway in an AMPK-dependent manner.
Collapse
Affiliation(s)
- Rui Guo
- Department of Physiology, Shanxi Medical University
- Department of Emergency Medicine, Thomas Jefferson University
| | - Lu Gan
- Department of Emergency Medicine, Thomas Jefferson University
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University
| | - Zheyi Yan
- Department of Physiology, Shanxi Medical University
- Department of Emergency Medicine, Thomas Jefferson University
| | - Dina Xie
- Department of Emergency Medicine, Thomas Jefferson University
| | - Erhe Gao
- Center for Translational Medicine, Temple University
| | | | - Bernard L Lopez
- Department of Emergency Medicine, Thomas Jefferson University
| | - Xinliang Ma
- Department of Emergency Medicine, Thomas Jefferson University
| | - Yajing Wang
- Department of Physiology, Shanxi Medical University
- Department of Emergency Medicine, Thomas Jefferson University
| |
Collapse
|
49
|
Li T, Wan Y, Sun L, Tao S, Chen P, Liu C, Wang K, Zhou C, Zhao G. Inhibition of MicroRNA-15a/16 Expression Alleviates Neuropathic Pain Development through Upregulation of G Protein-Coupled Receptor Kinase 2. Biomol Ther (Seoul) 2019; 27:414-422. [PMID: 31189298 PMCID: PMC6609114 DOI: 10.4062/biomolther.2018.073] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/24/2018] [Accepted: 08/14/2018] [Indexed: 12/26/2022] Open
Abstract
There is accumulating evidence that microRNAs are emerging as pivotal regulators in the development and progression of neuropathic pain. MicroRNA-15a/16 (miR-15a/16) have been reported to play an important role in various diseases and inflammation response processes. However, whether miR-15a/16 participates in the regulation of neuroinflammation and neuropathic pain development remains unknown. In this study, we established a mouse model of neuropathic pain by chronic constriction injury (CCI) of the sciatic nerves. Our results showed that both miR-15a and miR-16 expression was significantly upregulated in the spinal cord of CCI rats. Downregulation of the expression of miR-15a and miR-16 by intrathecal injection of a specific inhibitor significantly attenuated the mechanical allodynia and thermal hyperalgesia of CCI rats. Furthermore, inhibition of miR-15a and miR-16 downregulated the expression of interleukin-1β and tumor-necrosis factor-α in the spinal cord of CCI rats. Bioinformatic analysis predicted that G protein-coupled receptor kinase 2 (GRK2), an important regulator in neuropathic pain and inflammation, was a potential target gene of miR-15a and miR-16. Inhibition of miR-15a and miR-16 markedly increased the expression of GRK2 while downregulating the activation of p38 mitogen-activated protein kinase and NF-κB in CCI rats. Notably, the silencing of GRK2 significantly reversed the inhibitory effects of miR-15a/16 inhibition in neuropathic pain. In conclusion, our results suggest that inhibition of miR-15a/16 expression alleviates neuropathic pain development by targeting GRK2. These findings provide novel insights into the molecular pathogenesis of neuropathic pain and suggest potential therapeutic targets for preventing neuropathic pain development.
Collapse
Affiliation(s)
- Tao Li
- Department of Anesthesiology, China-Japan Union Hospital, Jilin University, Jilin 130033, China
| | - Yingchun Wan
- Department of Endocrinology, China-Japan Union Hospital, Jilin University, Jilin 130033, China
| | - Lijuan Sun
- Department of Endocrinology, China-Japan Union Hospital, Jilin University, Jilin 130033, China
| | - Shoujun Tao
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang 310006, China
| | - Peng Chen
- Department of Anesthesiology, China-Japan Union Hospital, Jilin University, Jilin 130033, China
| | - Caihua Liu
- Department of Anaesthesiology, The Central Hospital of Wuhan Affiliated with Tongji Medical College of Huazhong University of Science and Technology, Hubei 430014, China
| | - Ke Wang
- Department of Gynaecology and Obstetrics, China-Japan Union Hospital, Jilin University, Jilin 130033, China
| | - Changyu Zhou
- Department of Gastroenterology, China-Japan Union Hospital, Jilin University, Jilin 130033, China
| | - Guoqing Zhao
- Department of Anesthesiology, China-Japan Union Hospital, Jilin University, Jilin 130033, China
| |
Collapse
|
50
|
Cowling RT, Kupsky D, Kahn AM, Daniels LB, Greenberg BH. Mechanisms of cardiac collagen deposition in experimental models and human disease. Transl Res 2019; 209:138-155. [PMID: 30986384 PMCID: PMC6996650 DOI: 10.1016/j.trsl.2019.03.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/19/2022]
Abstract
The inappropriate deposition of extracellular matrix within the heart (termed cardiac fibrosis) is associated with nearly all types of heart disease, including ischemic, hypertensive, diabetic, and valvular. This alteration in the composition of the myocardium can physically limit cardiomyocyte contractility and relaxation, impede electrical conductivity, and hamper regional nutrient diffusion. Fibrosis can be grossly divided into 2 types, namely reparative (where collagen deposition replaces damaged myocardium) and reactive (where typically diffuse collagen deposition occurs without myocardial damage). Despite the widespread association of fibrosis with heart disease and general understanding of its negative impact on heart physiology, it is still not clear when collagen deposition becomes pathologic and translates into disease symptoms. In this review, we have summarized the current knowledge of cardiac fibrosis in human patients and experimental animal models, discussing the mechanisms that have been deduced from the latter in relation to the former. Because assessment of the extent of fibrosis is paramount both as a research tool to further understanding and as a clinical tool to assess patients, we have also summarized the current state of noninvasive/minimally invasive detection systems for cardiac fibrosis. Albeit not exhaustive, our aim is to provide an overview of the current understanding of cardiac fibrosis, both clinically and experimentally.
Collapse
Affiliation(s)
- Randy T Cowling
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, California.
| | - Daniel Kupsky
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, California
| | - Andrew M Kahn
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, California
| | - Lori B Daniels
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, California
| | - Barry H Greenberg
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, California
| |
Collapse
|