1
|
Li R, Tang Y, Huang W, Li R, Liu J. The Roles of Apolipoprotein A1-Binding Protein in Metabolic Diseases. Nutr Rev 2025:nuaf021. [PMID: 40036350 DOI: 10.1093/nutrit/nuaf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025] Open
Abstract
Metabolic disorders, including atherosclerosis, diabetes, and metabolic dysfunction-associated steatotic liver disease, are closely related to increased cardiovascular risks, significantly harming human life and health. Apolipoprotein A1-binding protein (AIBP), a multifunctional protein, plays crucial role in cholesterol metabolism. AIBP exerts an important action in managing metabolic diseases by interacting with apolipoprotein A-I and ATP-binding cassette transporter A1 activities to regulate high-density lipoprotein)-mediated cholesterol transport and to maintain lipid homeostasis. In addition, AIBP suppresses inflammatory stress and abnormal angiogenesis, and acts as an NAD(P)HX epimerase to optimize energy metabolism. In this review, the multiple roles of AIBP in clinical metabolic diseases are summarized, and AIBP is proposed to be a potential therapeutic target against metabolic diseases.
Collapse
Affiliation(s)
- Ruihan Li
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin 541199, PR China
| | - Yuqi Tang
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin 541199, PR China
| | - Wenjun Huang
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin 541199, PR China
| | - Rong Li
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin 541199, PR China
| | - Jiaqi Liu
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin 541199, PR China
| |
Collapse
|
2
|
Ma T, Huang W, Ding Y, Ji R, Ge S, Liu Q, Liu Y, Chen J, Yan Y, Lu S, Ren Q, Fan Y, Mao R, Lu C. AIBP protects drug-induced liver injury by inhibiting MAPK-mediated NR4A1 expression. iScience 2024; 27:110873. [PMID: 39398235 PMCID: PMC11467680 DOI: 10.1016/j.isci.2024.110873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/30/2024] [Accepted: 08/30/2024] [Indexed: 10/15/2024] Open
Abstract
Drug-induced liver injury (DILI) is an important adverse drug reaction that can lead to acute liver failure or even death in severe cases. AIBP is a binding protein of apolipoprotein AI involved in lipid metabolism and maintenance of oxidative respiration in mitochondria, but its role in DILI is unclear. By constructing AIBP knockout mice, overexpressing and knocking down AIBP in cell lines, we established animal and cell models of DILI. Using western blotting and real-time qPCR assay, we explored the influence of AIBP in activation of mitogen-activated protein kinases (MAPK) signal pathways and possible targets. AIBP was downregulated during hepatocyte injury. AIBP deficient mice develop severe liver injury and more sensitive to drug-induced cell death. Overexpression of AIBP protects cells under APAP treatment. Furthermore, AIBP inhibits the activation of MAPK pathways, through which AIBP regulates NR4A1. These results suggest that AIBP is expected to become a valuable biomarker and therapeutic target in liver injury.
Collapse
Affiliation(s)
- Tao Ma
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Research Center of Clinical Medicine, Nantong University, Affiliated Hospital of Nantong University, Nantong, China
| | - Wei Huang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Yihong Ding
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Department of Gastroenterology, Rugao People’s Hospital, Nantong, Jiangsu, China
| | - Ran Ji
- Department of Gastroenterology, Nantong First People’s Hospital, Nantong, Jiangsu, China
| | - Sijia Ge
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Research Center of Clinical Medicine, Nantong University, Affiliated Hospital of Nantong University, Nantong, China
| | - Qingqing Liu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Research Center of Clinical Medicine, Nantong University, Affiliated Hospital of Nantong University, Nantong, China
| | - Yiheng Liu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Research Center of Clinical Medicine, Nantong University, Affiliated Hospital of Nantong University, Nantong, China
| | - Jing Chen
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Research Center of Clinical Medicine, Nantong University, Affiliated Hospital of Nantong University, Nantong, China
| | - Yang Yan
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Research Center of Clinical Medicine, Nantong University, Affiliated Hospital of Nantong University, Nantong, China
| | - Shushu Lu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Research Center of Clinical Medicine, Nantong University, Affiliated Hospital of Nantong University, Nantong, China
| | - Qiqi Ren
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Research Center of Clinical Medicine, Nantong University, Affiliated Hospital of Nantong University, Nantong, China
| | - Yihui Fan
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Renfang Mao
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Cuihua Lu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| |
Collapse
|
3
|
Pączek S, Zajkowska M, Mroczko B. Pigment Epithelial-Derived Factor in Pancreatic and Liver Cancers-From Inflammation to Cancer. Biomedicines 2024; 12:2260. [PMID: 39457573 PMCID: PMC11504982 DOI: 10.3390/biomedicines12102260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Gastrointestinal (GI) cancers are among the leading causes of mortality worldwide. Despite the emergence of new possibilities that offer hope regarding the successful treatment of these cancers, they still represent a significant global health burden. These cancers can arise from various cell types within the gastrointestinal tract and may exhibit different characteristics, behaviors, and treatment approaches. Both the prognosis and the outcomes of GI treatment remain problematic because these tumors are primarily diagnosed in advanced clinical stages. Current biomarkers exhibit limited sensitivity and specificity. Therefore, when developing strategies for the diagnosis and treatment of GI cancers, it is of fundamental importance to discover new biomarkers capable of addressing the challenges of early-stage diagnosis and the presence of lymph node metastases. Pigment epithelial-derived factor (PEDF) has garnered interest due to its inhibitory effects on the migration and proliferation of cancer cells. This protein has been suggested to be involved in various inflammation-related diseases, including cancer, through various mechanisms. It was also observed that reducing the level of PEDF is sufficient to trigger an inflammatory response. This suggests that PEDF is an endogenous anti-inflammatory factor. Overall, PEDF is a versatile protein with diverse biological functions that span across different tissues and organ systems. Its multifaceted activities make it an intriguing target for therapeutic interventions in various diseases, including cancer, neurodegeneration, and metabolic disorders. This review, for the first time, summarizes the role of PEDF in the pathogenesis of selected GI cancers and its potential utility in early diagnosis, prognosis, and therapeutic strategies for this malignancy.
Collapse
Affiliation(s)
- Sara Pączek
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland; (S.P.); (B.M.)
| | - Monika Zajkowska
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland; (S.P.); (B.M.)
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15 A, Waszyngtona St., 15-269 Białystok, Poland
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland; (S.P.); (B.M.)
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15 A, Waszyngtona St., 15-269 Białystok, Poland
- Department of Biochemical Diagnostics, Medical University of Białystok, 15-089 Białystok, Poland
| |
Collapse
|
4
|
Kim YS, Choi SH, Kim KY, Navia-Pelaez JM, Perkins GA, Choi S, Kim J, Nazarenkov N, Rissman RA, Ju WK, Ellisman MH, Miller YI. AIBP controls TLR4 inflammarafts and mitochondrial dysfunction in a mouse model of Alzheimer's disease. J Neuroinflammation 2024; 21:245. [PMID: 39342323 PMCID: PMC11439205 DOI: 10.1186/s12974-024-03214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024] Open
Abstract
Microglia-driven neuroinflammation plays an important role in the development of Alzheimer's disease. Microglia activation is accompanied by the formation and chronic expression of TLR4 inflammarafts, defined as enlarged and cholesterol-rich lipid rafts serving as an assembly platform for TLR4 dimers and complexes of other inflammatory receptors. The secreted apoA-I binding protein (APOA1BP or AIBP) binds TLR4 and selectively targets cholesterol depletion machinery to TLR4 inflammaraft-expressing inflammatory, but not homeostatic microglia. Here we demonstrated that amyloid-beta (Aβ) induced formation of TLR4 inflammarafts in microglia in vitro and in the brain of APP/PS1 mice. Mitochondria in Apoa1bp-/- APP/PS1 microglia were hyperbranched and cupped, which was accompanied by increased reactive oxygen species and the dilated endoplasmic reticulum. The size and number of Aβ plaques and neuronal cell death were significantly increased, and the animal survival was decreased in Apoa1bp-/-APP/PS1 compared to APP/PS1 female mice. These results suggest that AIBP exerts control of TLR4 inflammarafts and mitochondrial dynamics in microglia and plays a protective role in Alzheimer's disease associated oxidative stress and neurodegeneration.
Collapse
Affiliation(s)
- Yi Sak Kim
- Department of Medicine, University of California, San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Soo-Ho Choi
- Department of Medicine, University of California, San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Juliana M Navia-Pelaez
- Department of Medicine, University of California, San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Guy A Perkins
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Seunghwan Choi
- Viterbi Family Department of Ophthalmology, Hamilton Glaucoma Center and Shiley Eye Institute, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Jungsu Kim
- Department of Medicine, University of California, San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Nicolaus Nazarenkov
- Department of Medicine, University of California, San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Won-Kyu Ju
- Viterbi Family Department of Ophthalmology, Hamilton Glaucoma Center and Shiley Eye Institute, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Yury I Miller
- Department of Medicine, University of California, San Diego, La Jolla, San Diego, CA, 92093, USA.
| |
Collapse
|
5
|
Kim JD, Jain A, Fang L. Mitigating Vascular Inflammation by Mimicking AIBP Mechanisms: A New Therapeutic End for Atherosclerotic Cardiovascular Disease. Int J Mol Sci 2024; 25:10314. [PMID: 39408645 PMCID: PMC11477018 DOI: 10.3390/ijms251910314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Atherosclerosis, characterized by the accumulation of lipoproteins and lipids within the vascular wall, underlies a heart attack, stroke, and peripheral artery disease. Endothelial inflammation is the primary component driving atherosclerosis, promoting leukocyte adhesion molecule expression (e.g., E-selectin), inducing chemokine secretion, reducing the production of nitric oxide (NO), and enhancing the thrombogenic potential. While current therapies, such as statins, colchicine, anti-IL1β, and sodium-glucose cotransporter 2 (SGLT2) inhibitors, target systemic inflammation, none of them addresses endothelial cell (EC) inflammation, a critical contributor to disease progression. Targeting endothelial inflammation is clinically significant because it can mitigate the root cause of atherosclerosis, potentially preventing disease progression, while reducing the side effects associated with broader anti-inflammatory treatments. Recent studies highlight the potential of the APOA1 binding protein (AIBP) to reduce systemic inflammation in mice. Furthermore, its mechanism of action also guides the design of a potential targeted therapy against a particular inflammatory signaling pathway. This review discusses the unique advantages of repressing vascular inflammation or enhancing vascular quiescence and the associated benefits of reducing thrombosis. This approach offers a promising avenue for more effective and targeted interventions to improve patient outcomes.
Collapse
Affiliation(s)
- Jun-Dae Kim
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Abhishek Jain
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA;
| | - Longhou Fang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Weill Cornell Medical College, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
6
|
Huang T, Ge S, Huang W, Ma T, Sheng Y, Chen J, Wu S, Liu Z, Lu C. AIBP promotes cell proliferation and migration through the ERK1/2-MAPK signaling pathway in hepatocellular carcinoma. Transl Cancer Res 2024; 13:4028-4041. [PMID: 39262469 PMCID: PMC11384315 DOI: 10.21037/tcr-23-2101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/09/2024] [Indexed: 09/13/2024]
Abstract
Background As a highly aggressive cancer, hepatocellular carcinoma (HCC) is often found at an advanced stage and has a poor prognosis. Therefore, in addition to the surgical treatment of HCC, the drug therapy for HCC is still under continuous exploration. The primary apolipoprotein of high-density lipoproteins (HDLs) is apolipoprotein A-I binding protein (AIBP), which has a significant impact on cholesterol metabolism, angiogenesis, and a wide range of inflammatory disorders, including cancer. The AIBP function in HCC is, however, yet unknown. This study aims to reveal the underlying mechanisms of AIBP influencing HCC proliferation and migration through mitogen-activated protein kinase (MAPK) pathways. Methods AIBP expression and its clinical prognostic association were investigated using The Cancer Genome Atlas (TCGA) data. The AIBP expression was studied in human HCC tissues using immunohistochemistry (IHC) and western blotting. Colony formation assays (CFAs) and cell counting kit-8 (CCK-8) were used to determine in vitro cell proliferation. Cell migration and invasion were evaluated using wound-healing and transwell assays. A xenograft tumor model was employed to investigate HCC cell proliferation in nude mice. Results Tissues from HCC patients had much increased AIBP expression compared to nearby normal tissues. The prognosis for patients was bleak when AIBP expression was high. When AIBP was overexpressed in SMMC-7721 cells, the cells may become more proliferative, migrative, and invasive. In contrast, the HCC-LM3 cells' ability to proliferate, migrate, and invade was drastically decreased once AIBP was knocked down in vitro. Furthermore, in vivo research showed that AIBP overexpression may enhance cell proliferation in HCC. Finally, we discovered that AIBP could control the MAPK signaling pathway-involved genes expression, including P-MEK, MEK, c-Myc, P-ERK1/2, and ERK1/2, and that GDC-0994, a specific ERK1/2 inhibitor, could suppress the AIBP overexpression induced cell migration and proliferation abilities. Conclusions These findings demonstrated that the ERK/MAPK signaling pathway might be stimulated by AIBP in HCC tissues, leading to increased cell invasion, migration, and proliferation. It was hypothesized that AIBP might act as a useful prognostic and diagnostic marker for HCC.
Collapse
Affiliation(s)
- Tianxin Huang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Sijia Ge
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Wei Huang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Tao Ma
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Yu Sheng
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Jing Chen
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Shuzhen Wu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Zhaoxiu Liu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Cuihua Lu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
7
|
Enström A, Carlsson R, Buizza C, Lewi M, Paul G. Pericyte-Specific Secretome Profiling in Hypoxia Using TurboID in a Multicellular in Vitro Spheroid Model. Mol Cell Proteomics 2024; 23:100782. [PMID: 38705386 PMCID: PMC11176767 DOI: 10.1016/j.mcpro.2024.100782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 04/09/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024] Open
Abstract
Cellular communication within the brain is imperative for maintaining homeostasis and mounting effective responses to pathological triggers like hypoxia. However, a comprehensive understanding of the precise composition and dynamic release of secreted molecules has remained elusive, confined primarily to investigations using isolated monocultures. To overcome these limitations, we utilized the potential of TurboID, a non-toxic biotin ligation enzyme, to capture and enrich secreted proteins specifically originating from human brain pericytes in spheroid cocultures with human endothelial cells and astrocytes. This approach allowed us to characterize the pericyte secretome within a more physiologically relevant multicellular setting encompassing the constituents of the blood-brain barrier. Through a combination of mass spectrometry and multiplex immunoassays, we identified a wide spectrum of different secreted proteins by pericytes. Our findings demonstrate that the pericytes secretome is profoundly shaped by their intercellular communication with other blood-brain barrier-residing cells. Moreover, we identified substantial differences in the secretory profiles between hypoxic and normoxic pericytes. Mass spectrometry analysis showed that hypoxic pericytes in coculture increase their release of signals related to protein secretion, mTOR signaling, and the complement system, while hypoxic pericytes in monocultures showed an upregulation in proliferative pathways including G2M checkpoints, E2F-, and Myc-targets. In addition, hypoxic pericytes show an upregulation of proangiogenic proteins such as VEGFA but display downregulation of canonical proinflammatory cytokines such as CXCL1, MCP-1, and CXCL6. Understanding the specific composition of secreted proteins in the multicellular brain microvasculature is crucial for advancing our knowledge of brain homeostasis and the mechanisms underlying pathology. This study has implications for the identification of targeted therapeutic strategies aimed at modulating microvascular signaling in brain pathologies associated with hypoxia.
Collapse
Affiliation(s)
- Andreas Enström
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden
| | - Robert Carlsson
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden
| | - Carolina Buizza
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden
| | - Marvel Lewi
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden
| | - Gesine Paul
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden; Department of Neurology, Scania University Hospital, Lund, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
8
|
Kim YS, Choi SH, Kim KY, Navia-Pelaez JM, Perkins GA, Choi S, Kim J, Nazarenkov N, Rissman RA, Ju WK, Ellisman MH, Miller YI. AIBP controls TLR4 inflammarafts and mitochondrial dysfunction in a mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580751. [PMID: 38586011 PMCID: PMC10996524 DOI: 10.1101/2024.02.16.580751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Microglia-driven neuroinflammation plays an important role in the development of Alzheimer's disease (AD). Microglia activation is accompanied by the formation and chronic maintenance of TLR4 inflammarafts, defined as enlarged and cholesterol-rich lipid rafts serving as an assembly platform for TLR4 dimers and complexes of other inflammatory receptors. The secreted apoA-I binding protein (APOA1BP or AIBP) binds TLR4 and selectively targets cholesterol depletion machinery to TLR4 inflammaraft expressing inflammatory, but not homeostatic microglia. Here we demonstrated that amyloid-beta (Aβ) induced formation of TLR4 inflammarafts in microglia in vitro and in the brain of APP/PS1 mice. Mitochondria in Apoa1bp-/- APP/PS1 microglia were hyperbranched and cupped, which was accompanied by increased ROS and the dilated ER. The size and number of Aβ plaques and neuronal cell death were significantly increased, and the animal survival was decreased in Apoa1bp-/- APP/PS1 compared to APP/PS1 female mice. These results suggest that AIBP exerts control of TLR4 inflammarafts and mitochondrial dynamics in microglia and plays a protective role in AD associated oxidative stress and neurodegeneration.
Collapse
Affiliation(s)
- Yi Sak Kim
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Soo-Ho Choi
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | | | - Guy A. Perkins
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Seunghwan Choi
- Hamilton Glaucoma Center and Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jungsu Kim
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Nicolaus Nazarenkov
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Robert A. Rissman
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Won-Kyu Ju
- Hamilton Glaucoma Center and Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Mark H. Ellisman
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yury I. Miller
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
9
|
Jiang Y, Li X, Liu Q, Lei G, Wu C, Chen L, Zhao Y, Hu Y, Xian H, Mao R. Apolipoprotein A-I Binding Protein Inhibits the Formation of Infantile Hemangioma through Cholesterol-Regulated Hypoxia-Inducible Factor 1α Activation. J Invest Dermatol 2024; 144:645-658.e7. [PMID: 37832842 DOI: 10.1016/j.jid.2023.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 10/15/2023]
Abstract
Infantile hemangioma (IH) is the most frequent vascular tumor of infancy with unclear pathogenesis; disordered angiogenesis is considered to be involved in its formation. Apolipoprotein A-I binding protein (AIBP)-also known as NAXE (NAD [P]HX epimerase)-a regulator of cholesterol metabolism, plays a critical role in the pathological angiogenesis of mammals. In this study, we found that AIBP had much lower expression levels in both tissues from patients with IH and hemangioma endothelial cells (HemECs) than in adjacent normal tissues and human dermal vascular endothelial cells, respectively. Knockout of NAXE by CRISPR-Cas9 in HemECs enhanced tube formation and migration, and NAXE overexpression impaired tube formation and migration of HemECs. Interestingly, AIBP suppressed the proliferation of HemECs in hypoxia. We then found that reduced expression of AIBP correlated with increased hypoxia-inducible factor 1α levels in tissues from patients with IH and HemECs. Further mechanistic investigation demonstrated that AIBP disrupted hypoxia-inducible factor 1α signaling through cholesterol metabolism under hypoxia. Notably, AIBP significantly inhibited the development of IH in immunodeficient mice. Furthermore, using the validated mouse endothelial cell (ie, EOMA cells) and Naxe-/- mouse models, we demonstrated that both endogenous AIBP from tumors and AIBP in the tumor microenvironment limit the formation of hemangioma. These findings suggested that AIBP was a player in the pathogenesis of IH and could be a potential pharmacological target for treating IH.
Collapse
Affiliation(s)
- Yongying Jiang
- Department of Pathophysiology, School of Medicine, Nantong University, Jiangsu, China
| | - Xingjuan Li
- Department of Pathophysiology, School of Medicine, Nantong University, Jiangsu, China
| | - Qin Liu
- Department of Pathophysiology, School of Medicine, Nantong University, Jiangsu, China
| | - Gongyun Lei
- Department of Pathophysiology, School of Medicine, Nantong University, Jiangsu, China
| | - Changyue Wu
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong University, Jiangsu, China
| | - Long Chen
- Department of Pediatric Surgery, Affiliated Hospital of Nantong University, Nantong University, Jiangsu, China
| | - Yinshuang Zhao
- Department of Pediatric Surgery, Affiliated Hospital of Nantong University, Nantong University, Jiangsu, China
| | - Yae Hu
- Department of Pathophysiology, School of Medicine, Nantong University, Jiangsu, China
| | - Hua Xian
- Department of Pediatric Surgery, Affiliated Hospital of Nantong University, Nantong University, Jiangsu, China
| | - Renfang Mao
- Department of Pathophysiology, School of Medicine, Nantong University, Jiangsu, China.
| |
Collapse
|
10
|
Manco M, Ammirata G, Petrillo S, De Giorgio F, Fontana S, Riganti C, Provero P, Fagoonee S, Altruda F, Tolosano E. FLVCR1a Controls Cellular Cholesterol Levels through the Regulation of Heme Biosynthesis and Tricarboxylic Acid Cycle Flux in Endothelial Cells. Biomolecules 2024; 14:149. [PMID: 38397386 PMCID: PMC10887198 DOI: 10.3390/biom14020149] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Feline leukemia virus C receptor 1a (FLVCR1a), initially identified as a retroviral receptor and localized on the plasma membrane, has emerged as a crucial regulator of heme homeostasis. Functioning as a positive regulator of δ-aminolevulinic acid synthase 1 (ALAS1), the rate-limiting enzyme in the heme biosynthetic pathway, FLVCR1a influences TCA cycle cataplerosis, thus impacting TCA flux and interconnected metabolic pathways. This study reveals an unexplored link between FLVCR1a, heme synthesis, and cholesterol production in endothelial cells. Using cellular models with manipulated FLVCR1a expression and inducible endothelial-specific Flvcr1a-null mice, we demonstrate that FLVCR1a-mediated control of heme synthesis regulates citrate availability for cholesterol synthesis, thereby influencing cellular cholesterol levels. Moreover, alterations in FLVCR1a expression affect membrane cholesterol content and fluidity, supporting a role for FLVCR1a in the intricate regulation of processes crucial for vascular development and endothelial function. Our results underscore FLVCR1a as a positive regulator of heme synthesis, emphasizing its integration with metabolic pathways involved in cellular energy metabolism. Furthermore, this study suggests that the dysregulation of heme metabolism may have implications for modulating lipid metabolism. We discuss these findings in the context of FLVCR1a's potential heme-independent function as a choline importer, introducing additional complexity to the interplay between heme and lipid metabolism.
Collapse
Affiliation(s)
- Marta Manco
- Molecular Biotechnology Center “Guido Tarone”, Via Nizza 52, 10126 Torino, Italy; (M.M.); (G.A.); (S.P.); (F.D.G.); (S.F.); (C.R.); (S.F.); (F.A.)
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, 3000 Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Giorgia Ammirata
- Molecular Biotechnology Center “Guido Tarone”, Via Nizza 52, 10126 Torino, Italy; (M.M.); (G.A.); (S.P.); (F.D.G.); (S.F.); (C.R.); (S.F.); (F.A.)
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Sara Petrillo
- Molecular Biotechnology Center “Guido Tarone”, Via Nizza 52, 10126 Torino, Italy; (M.M.); (G.A.); (S.P.); (F.D.G.); (S.F.); (C.R.); (S.F.); (F.A.)
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Francesco De Giorgio
- Molecular Biotechnology Center “Guido Tarone”, Via Nizza 52, 10126 Torino, Italy; (M.M.); (G.A.); (S.P.); (F.D.G.); (S.F.); (C.R.); (S.F.); (F.A.)
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Simona Fontana
- Molecular Biotechnology Center “Guido Tarone”, Via Nizza 52, 10126 Torino, Italy; (M.M.); (G.A.); (S.P.); (F.D.G.); (S.F.); (C.R.); (S.F.); (F.A.)
- Department of Oncology, University of Torino, Via Santena 5/bis, 10126 Torino, Italy
| | - Chiara Riganti
- Molecular Biotechnology Center “Guido Tarone”, Via Nizza 52, 10126 Torino, Italy; (M.M.); (G.A.); (S.P.); (F.D.G.); (S.F.); (C.R.); (S.F.); (F.A.)
- Department of Oncology, University of Torino, Via Santena 5/bis, 10126 Torino, Italy
| | - Paolo Provero
- Department of Neurosciences “Rita Levi Montalcini”, University of Torino, Corso Massimo D’Azeglio 52, 10126 Torino, Italy;
- Center for Omics Sciences, Ospedale San Raffaele IRCCS, Via Olgettina 60, 20132 Milan, Italy
| | - Sharmila Fagoonee
- Molecular Biotechnology Center “Guido Tarone”, Via Nizza 52, 10126 Torino, Italy; (M.M.); (G.A.); (S.P.); (F.D.G.); (S.F.); (C.R.); (S.F.); (F.A.)
- Institute of Biostructure and Bioimaging, CNR c/o Molecular Biotechnology Center “Guido Tarone”, 10126 Torino, Italy
| | - Fiorella Altruda
- Molecular Biotechnology Center “Guido Tarone”, Via Nizza 52, 10126 Torino, Italy; (M.M.); (G.A.); (S.P.); (F.D.G.); (S.F.); (C.R.); (S.F.); (F.A.)
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Emanuela Tolosano
- Molecular Biotechnology Center “Guido Tarone”, Via Nizza 52, 10126 Torino, Italy; (M.M.); (G.A.); (S.P.); (F.D.G.); (S.F.); (C.R.); (S.F.); (F.A.)
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
| |
Collapse
|
11
|
Choi S, Choi SH, Bastola T, Park Y, Oh J, Kim KY, Hwang S, Miller YI, Ju WK. AIBP: A New Safeguard against Glaucomatous Neuroinflammation. Cells 2024; 13:198. [PMID: 38275823 PMCID: PMC10814024 DOI: 10.3390/cells13020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
Glaucoma is a group of ocular diseases that cause irreversible blindness. It is characterized by multifactorial degeneration of the optic nerve axons and retinal ganglion cells (RGCs), resulting in the loss of vision. Major components of glaucoma pathogenesis include glia-driven neuroinflammation and impairment of mitochondrial dynamics and bioenergetics, leading to retinal neurodegeneration. In this review article, we summarize current evidence for the emerging role of apolipoprotein A-I binding protein (AIBP) as an important anti-inflammatory and neuroprotective factor in the retina. Due to its association with toll-like receptor 4 (TLR4), extracellular AIBP selectively removes excess cholesterol from the plasma membrane of inflammatory and activated cells. This results in the reduced expression of TLR4-associated, cholesterol-rich lipid rafts and the inhibition of downstream inflammatory signaling. Intracellular AIBP is localized to mitochondria and modulates mitophagy through the ubiquitination of mitofusins 1 and 2. Importantly, elevated intraocular pressure induces AIBP deficiency in mouse models and in human glaucomatous retina. AIBP deficiency leads to the activation of TLR4 in Müller glia, triggering mitochondrial dysfunction in both RGCs and Müller glia, and compromising visual function in a mouse model. Conversely, restoring AIBP expression in the retina reduces neuroinflammation, prevents RGCs death, and protects visual function. These results provide new insight into the mechanism of AIBP function in the retina and suggest a therapeutic potential for restoring retinal AIBP expression in the treatment of glaucoma.
Collapse
Affiliation(s)
- Seunghwan Choi
- Hamilton Glaucoma Center and Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92093, USA; (S.C.); (T.B.); (Y.P.)
| | - Soo-Ho Choi
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Tonking Bastola
- Hamilton Glaucoma Center and Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92093, USA; (S.C.); (T.B.); (Y.P.)
| | - Younggun Park
- Hamilton Glaucoma Center and Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92093, USA; (S.C.); (T.B.); (Y.P.)
- Department of Ophthalmology and Visual Science, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jonghyun Oh
- Hamilton Glaucoma Center and Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92093, USA; (S.C.); (T.B.); (Y.P.)
- Department of Ophthalmology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Sinwoo Hwang
- Hamilton Glaucoma Center and Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92093, USA; (S.C.); (T.B.); (Y.P.)
| | - Yury I. Miller
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Won-Kyu Ju
- Hamilton Glaucoma Center and Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92093, USA; (S.C.); (T.B.); (Y.P.)
| |
Collapse
|
12
|
Ju WK, Ha Y, Choi S, Kim KY, Bastola T, Kim J, Weinreb RN, Zhang W, Miller YI, Choi SH. Restoring AIBP expression in the retina provides neuroprotection in glaucoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562633. [PMID: 37905114 PMCID: PMC10614877 DOI: 10.1101/2023.10.16.562633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Glaucoma is a neurodegenerative disease manifested in retinal ganglion cell (RGC) death and irreversible blindness. While lowering intraocular pressure (IOP) is the only proven therapeutic strategy in glaucoma, it is insufficient for preventing disease progression, thus justifying the recent focus on targeting retinal neuroinflammation and preserving RGCs. We have identified apolipoprotein A-I binding protein (AIBP) as the protein regulating several mechanisms of retinal neurodegeneration. AIBP controls excessive cholesterol accumulation via upregulating the cholesterol transporter ATP-binding cassette transporter 1 (ABCA1) and reduces inflammatory signaling via toll-like receptor 4 (TLR4) and mitochondrial dysfunction. ABCA1, TLR4 and oxidative phosphorylation components are genetically linked to primary open-angle glaucoma. Here we demonstrated that AIBP and ABCA1 expression was decreased, while TLR4, interleukin 1 beta (IL-1 beta), and the cholesterol content increased in the retina of patients with glaucoma and in mouse models of glaucoma. Restoring AIBP expression by a single intravitreal injection of adeno-associated virus (AAV)-AIBP protected RGCs in glaucomatous DBA/2J mice, in mice with microbead-induced chronic IOP elevation, and optic nerve crush. In addition, AIBP expression attenuated TLR4 and IL-1 beta expression, localization of TLR4 to lipid rafts, reduced cholesterol accumulation, and ameliorated visual dysfunction. These studies collectively indicate that restoring AIBP expression in the glaucomatous retina reduces neuroinflammation and protects RGCs and Muller glia, suggesting the therapeutic potential of AAV-AIBP in human glaucoma.
Collapse
|
13
|
Yang T, Li G, Li X, Wei B, Su H, Liu W, Guo S, Yang N, Xu T, Duan C. VEGF combined with DAPT promotes tissue regeneration and remodeling in vascular grafts. Regen Biomater 2023; 10:rbad088. [PMID: 37899954 PMCID: PMC10603585 DOI: 10.1093/rb/rbad088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/28/2023] [Accepted: 09/14/2023] [Indexed: 10/31/2023] Open
Abstract
Previous research on tissue-engineered blood vessels (TEBVs) has mainly focused on the intima or adventitia unilaterally, neglecting the equal importance of both layers. Meanwhile, the efficacy of grafts modified with vascular endothelial growth factor (VEGF) merely has been limited. Here, we developed a small-diameter graft that can gradually release VEGF and γ secretase inhibitor IX (DAPT) to enhance tissue regeneration and remodeling in both the intima and adventitia. In vitro, experiments revealed that the combination of VEGF and DAPT had superior pro-proliferation and pro-migration effects on endothelial cells. In vivo, the sustained release of VEGF and DAPT from the grafts resulted in improved regeneration and remodeling. Specifically, in the intima, faster endothelialization and regeneration of smooth muscle cells led to higher patency rates and better remodeling. In the adventitia, a higher density of neovascularization, M2 macrophages and fibroblasts promoted cellular ingrowth and replacement of the implant with autologous neo-tissue. Furthermore, western blot analysis confirmed that the regenerated ECs were functional and the effect of DAPT was associated with increased expression of vascular endothelial growth factor receptor 2. Our study demonstrated that the sustained release of VEGF and DAPT from the graft can effectively promote tissue regeneration and remodeling in both the intima and adventitia. This development has the potential to significantly accelerate the clinical application of small-diameter TEBVs.
Collapse
Affiliation(s)
- Tao Yang
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Guangxu Li
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Xifeng Li
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Boyang Wei
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Hengxian Su
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Wenchao Liu
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Shenquan Guo
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Nan Yang
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Tao Xu
- Department of Bio-intelligent Manufacturing and Living Matter Bioprinting Center, Research Institute of Tsinghua University in Shenzhen, Tsinghua University, Shenzhen 518057, People’s Republic of China
- Department of Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People’s Republic of China
| | - Chuanzhi Duan
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| |
Collapse
|
14
|
Li Y, Zhang L, Jiao J, Ding Q, Li Y, Zhao Z, Luo J, Chen Y, Ruan X, Zhao L. Hepatocyte CD36 protects mice from NASH diet-induced liver injury and fibrosis via blocking N1ICD production. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166800. [PMID: 37423141 DOI: 10.1016/j.bbadis.2023.166800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/08/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND & AIMS Fatty acid translocase CD36 (CD36/FAT) is a widely expressed membrane protein with multiple immuno-metabolic functions. Genetic CD36 deficiency is associated with increased risk of metabolic dysfunction-associated fatty liver disease (MAFLD) in patients. Liver fibrosis severity mainly affects the prognosis in patients with MAFLD, but the role of hepatocyte CD36 in liver fibrosis of MAFLD remains unclear. METHODS A high-fat high-cholesterol diet and a high-fat diet with high-fructose drinking water were used to induce nonalcoholic steatohepatitis (NASH) in hepatocyte-specific CD36 knockout (CD36LKO) and CD36flox/flox (LWT) mice. Human hepG2 cell line was used to investigate the role of CD36 in regulating Notch pathway in vitro. RESULTS Compared to LWT mice, CD36LKO mice were susceptible to NASH diet-induced liver injury and fibrosis. The analysis of RNA-sequencing data revealed that Notch pathway was activated in CD36LKO mice. LY3039478, an inhibitor of γ-secretase, inhibited Notch1 protein S3 cleavage and Notch1 intracellular domain (N1ICD) production, alleviating liver injury and fibrosis in CD36LKO mice livers. Likewise, both LY3039478 and knockdown of Notch1 inhibited the CD36KO-induced increase of N1ICD production, causing the decrease of fibrogenic markers in CD36KO HepG2 cells. Mechanistically, CD36 formed a complex with Notch1 and γ-secretase in lipid rafts, and hence CD36 anchored Notch1 in lipid rafts domains and blocked Notch1/γ-secretase interaction, inhibiting γ-secretase-mediated cleavage of Notch1 and the production of N1ICD. CONCLUSIONS Hepatocyte CD36 plays a key role in protecting mice from diet-induced liver injury and fibrosis, which may provide a potential therapeutic strategy for preventing liver fibrogenesis in MAFLD.
Collapse
Affiliation(s)
- Yuqi Li
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016 Chongqing, China
| | - Linkun Zhang
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016 Chongqing, China
| | - Junkui Jiao
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016 Chongqing, China
| | - Qiuying Ding
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016 Chongqing, China
| | - Yanping Li
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016 Chongqing, China
| | - Zhibo Zhao
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016 Chongqing, China
| | - Jinfeng Luo
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016 Chongqing, China
| | - Yaxi Chen
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016 Chongqing, China
| | - Xiongzhong Ruan
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016 Chongqing, China; John Moorhead Research Laboratory, Centre for Nephrology, University College London Medical School, Royal Free Campus, University College London, London NW3 2PF, United Kingdom
| | - Lei Zhao
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016 Chongqing, China.
| |
Collapse
|
15
|
Kim JD, Zhou T, Zhang A, Li S, Gupte AA, Hamilton DJ, Fang L. AIBP Regulates Metabolism of Ketone and Lipids but Not Mitochondrial Respiration. Cells 2022; 11:cells11223643. [PMID: 36429071 PMCID: PMC9688289 DOI: 10.3390/cells11223643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Accumulating evidence indicates that the APOA1 binding protein (AIBP)-a secreted protein-plays a profound role in lipid metabolism. Interestingly, AIBP also functions as an NAD(P)H-hydrate epimerase to catalyze the interconversion of NAD(P)H hydrate [NAD(P)HX] epimers and is renamed as NAXE. Thus, we call it NAXE hereafter. We investigated its role in NAD(P)H-involved metabolism in murine cardiomyocytes, focusing on the metabolism of hexose, lipids, and amino acids as well as mitochondrial redox function. Unbiased metabolite profiling of cardiac tissue shows that NAXE knockout markedly upregulates the ketone body 3-hydroxybutyric acid (3-HB) and increases or trends increasing lipid-associated metabolites cholesterol, α-linolenic acid and deoxycholic acid. Paralleling greater ketone levels, ChemRICH analysis of the NAXE-regulated metabolites shows reduced abundance of hexose despite similar glucose levels in control and NAXE-deficient blood. NAXE knockout reduces cardiac lactic acid but has no effect on the content of other NAD(P)H-regulated metabolites, including those associated with glucose metabolism, the pentose phosphate pathway, or Krebs cycle flux. Although NAXE is present in mitochondria, it has no apparent effect on mitochondrial oxidative phosphorylation. Instead, we detected more metabolites that can potentially improve cardiac function (3-HB, adenosine, and α-linolenic acid) in the Naxe-/- heart; these mice also perform better in aerobic exercise. Our data reveal a new role of NAXE in cardiac ketone and lipid metabolism.
Collapse
Affiliation(s)
- Jun-dae Kim
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6550 Fannin St., Houston, TX 77030, USA
| | - Teng Zhou
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6550 Fannin St., Houston, TX 77030, USA
| | - Aijun Zhang
- Center for Bioenergetics, Houston Methodist Research Institute, 6550 Fannin St., Houston, TX 77030, USA
- Department of Medicine, Houston Methodist, Weill Cornell Medicine Affiliate, 6550 Fannin St., Houston, TX 77030, USA
| | - Shumin Li
- Center for Bioenergetics, Houston Methodist Research Institute, 6550 Fannin St., Houston, TX 77030, USA
| | - Anisha A. Gupte
- Center for Bioenergetics, Houston Methodist Research Institute, 6550 Fannin St., Houston, TX 77030, USA
- Department of Medicine, Houston Methodist, Weill Cornell Medicine Affiliate, 6550 Fannin St., Houston, TX 77030, USA
| | - Dale J. Hamilton
- Center for Bioenergetics, Houston Methodist Research Institute, 6550 Fannin St., Houston, TX 77030, USA
- Department of Medicine, Houston Methodist, Weill Cornell Medicine Affiliate, 6550 Fannin St., Houston, TX 77030, USA
- Weill Cornell Medical College, Cornell University, 407 E 61st St., New York, NY 10065, USA
| | - Longhou Fang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6550 Fannin St., Houston, TX 77030, USA
- Department of Medicine, Houston Methodist, Weill Cornell Medicine Affiliate, 6550 Fannin St., Houston, TX 77030, USA
- Weill Cornell Medical College, Cornell University, 407 E 61st St., New York, NY 10065, USA
- Correspondence: ; Tel.: +713-363-9012; Fax: +713-363-9782
| |
Collapse
|
16
|
Zhang Z, Shen MM, Fu Y. Combination of AIBP, apoA-I, and Aflibercept Overcomes Anti-VEGF Resistance in Neovascular AMD by Inhibiting Arteriolar Choroidal Neovascularization. Invest Ophthalmol Vis Sci 2022; 63:2. [PMID: 36318195 PMCID: PMC9639697 DOI: 10.1167/iovs.63.12.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Purpose Anti-VEGF resistance represents a major unmet clinical need in the management of choroidal neovascularization (CNV). We have previously reported that a combination of AIBP, apoA-I, and an anti-VEGF antibody overcomes anti-VEGF resistance in laser-induced CNV in old mice in prevention experiments. The purpose of this work is to conduct a more clinically relevant study to assess the efficacy of the combination of AIBP, apoA-I, and aflibercept in the treatment of anti-VEGF resistance of experimental CNV at different time points after laser photocoagulation. Methods To understand the pathobiology of anti-VEGF resistance, we performed comprehensive examinations of the vascular morphology of laser-induced CNV in young mice that are highly responsive to anti-VEGF treatment, and in old mice that are resistant to anti-VEGF therapy by indocyanine green angiography (ICGA), fluorescein angiography (FA), optical coherence tomography (OCT), and Alexa 568 isolectin labeled choroid flatmounts. We examined the efficacy of the combination therapy of AIBP, apoA-I, and aflibercept intravitreally delivered at 2, 4, and 7 days after laser photocoagulation in the treatment of CNV in old mice. Results Laser-induced CNV in young and old mice exhibited cardinal features of capillary and arteriolar CNV, respectively. The combination therapy and the aflibercept monotherapy were equally effective in treating capillary CNV in young mice. In old mice, the combination therapy was effective in treating anti-VEGF resistance by potently inhibiting arteriolar CNV, whereas aflibercept monotherapy was ineffective. Conclusions Combination therapy of AIBP, apoA-I, and aflibercept overcomes anti-VEGF resistance in experimental CNV in old mice by inhibiting arteriolar CNV.
Collapse
Affiliation(s)
- Zhao Zhang
- Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, United States
| | - Megan M. Shen
- Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, United States
| | - Yingbin Fu
- Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
17
|
Van Bergen NJ, Walvekar AS, Patraskaki M, Sikora T, Linster CL, Christodoulou J. Clinical and biochemical distinctions for a metabolite repair disorder caused by NAXD or NAXE deficiency. J Inherit Metab Dis 2022; 45:1028-1038. [PMID: 35866541 PMCID: PMC9804276 DOI: 10.1002/jimd.12541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/17/2022] [Accepted: 07/19/2022] [Indexed: 01/05/2023]
Abstract
The central cofactors NAD(P)H are prone to damage by hydration, resulting in formation of redox-inactive derivatives designated NAD(P)HX. The highly conserved enzymes NAD(P)HX dehydratase (NAXD) and NAD(P)HX epimerase (NAXE) function to repair intracellular NAD(P)HX. Recently, pathogenic variants in both the NAXD and NAXE genes were associated with rapid deterioration and death after an otherwise trivial fever, infection, or illness in young patients. As more patients are identified, distinct clinical features are emerging depending on the location of the pathogenic variant. In this review, we carefully catalogued the clinical features of all published NAXD deficiency patients and found distinct patterns in clinical presentations depending on which subcellular compartment is affected by the enzymatic deficiency. Exon 1 of NAXD contains a mitochondrial propeptide, and a unique cytosolic isoform is initiated from an alternative start codon in exon 2. NAXD deficiency patients with variants that affect both the cytosolic and mitochondrial isoforms present with neurological defects, seizures and skin lesions. Interestingly, patients with NAXD variants exclusively affecting the mitochondrial isoform present with myopathy, moderate neuropathy and a cardiac presentation, without the characteristic skin lesions, seizures or neurological degeneration. This suggests that cytosolic NAD(P)HX repair may protect from neurological damage, whereas muscle fibres may be more sensitive to mitochondrial NAD(P)HX damage. A deeper understanding of the clinical phenotype may facilitate rapid identification of new cases and allow earlier therapeutic intervention. Niacin-based therapies are promising, but advances in disease modelling for both NAXD and NAXE deficiency may identify more specific compounds as targeted treatments. In this review, we found distinct patterns in the clinical presentations of NAXD deficiency patients based on the location of the pathogenic variant, which determines the subcellular compartment that is affected by the enzymatic deficiency.
Collapse
Affiliation(s)
- Nicole J. Van Bergen
- Brain and Mitochondrial Research Group, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneMelbourneVictoriaAustralia
| | - Adhish S. Walvekar
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgBelvauxLuxembourg
| | - Myrto Patraskaki
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgBelvauxLuxembourg
| | - Tim Sikora
- Brain and Mitochondrial Research Group, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
| | - Carole L. Linster
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgBelvauxLuxembourg
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneMelbourneVictoriaAustralia
- Victorian Clinical Genetics ServicesRoyal Children's HospitalMelbourneVictoriaAustralia
| |
Collapse
|
18
|
Wang X, Zhang M, Cheng J, Zhou H. Association of serum apoA-I with in-stent restenosis in coronary heart disease. BMC Cardiovasc Disord 2022; 22:355. [PMID: 35927634 PMCID: PMC9354313 DOI: 10.1186/s12872-022-02762-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 07/11/2022] [Indexed: 11/10/2022] Open
Abstract
Background Despite use of drug-eluting stents (DES), in-stent restenosis (ISR) continues adversely affecting clinical outcomes of patients undergoing percutaneous coronary intervention (PCI). Apolipoprotein A-I (apoA-I) has athero-protective effects. However, there is a paucity of clinical data regarding the association between apoA-I and ISR. We sought to investigate whether serum apoA-I is related to ISR after DES-based PCI. Methods In this retrospective case control study, 604 consecutive patients who underwent DES implantation before were enrolled. Patients who underwent repeat angiography within 12 months were included in the early ISR study (n = 205), while those beyond 12 months were included in the late ISR study (n = 399). ISR was defined as the presence of > 50% diameter stenosis at the stent site or at its edges. Clinical characteristics were compared between ISR and non-ISR patients in the early and late ISR study, respectively, after adjusting for confounding factors by multivariate logistic regression, stratified analysis, and propensity score matching. The predictive value was assessed by univariate and multivariate logistic regression analysis, receiver operating characteristic (ROC) curve analysis, and quartile analysis. Results In the early ISR study, 8.8% (18 of 205) patients developed ISR. Serum apoA-I in the ISR group was lower than that in the non-ISR group (1.1 ± 0.26 vs. 1.24 ± 0.23, P < 0.05). On multivariate logistic regression analysis, apoA-I was an independent risk factor for early ISR. Incidence of early ISR showed negative correlation with apoA-I and could be predicted by the combined use of apoA-I and glycosylated hemoglobin (HbA1c) level. In the late ISR study, 21.8% (87 of 399) patients developed ISR. On subgroup analysis, late ISR showed negative correlation with apoA-I irrespective of intensive lipid lowering; on multivariate logistic regression analysis, apoA-I was also an independent risk factor for late ISR. In patients with intensive lipid lowering, combined use of apoA-I, stenting time, and diabetes predicted the incidence of late ISR. Conclusions ApoA-I was an independent risk factor for ISR, and showed a negative correlation with ISR after DES-based PCI. Combined use of apoA-I and clinical indicators may better predict the incidence of ISR under certain circumstances.
Collapse
Affiliation(s)
- Xin Wang
- Department of Cardiology, School of Medicine, East Hospital, Tongji University, Shanghai, China
| | - Min Zhang
- Department of Cardiology, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Cheng
- Center for Reproductive Medicine, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Zhou
- Department of Cardiology, School of Medicine, East Hospital, Tongji University, Shanghai, China.
| |
Collapse
|
19
|
Fan L, Liu H, Zhu G, Singh S, Yu Z, Wang S, Luo H, Liu S, Xu Y, Ge J, Jiang D, Pang J. Caspase-4/11 is critical for angiogenesis by repressing Notch1 signaling via inhibiting γ-secretase activity. Br J Pharmacol 2022; 179:4809-4828. [PMID: 35737588 DOI: 10.1111/bph.15904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/23/2022] [Accepted: 05/29/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Notch1 activation mediated by γ-secretase is critical for angiogenesis. GeneCards database predicted that Caspase-4 (CASP4, with murine ortholog CASP11) interacts with presenilin-1, the catalytic core of γ-secretase. Therefore, we investigated the role of CASP4/11 in angiogenesis. EXPERIMENTAL APPROACH In vivo, we studied the role of Casp11 in several angiogenesis mouse models using Casp11 wild-type and knockout mice. In vitro, we detected the effects of CASP4 on endothelial functions and Notch signaling by depleting or overexpressing CASP4 in human umbilical vein endothelial cells (HUVECs). The functional domain responsible for the binding of CASP4 and presenilin-1 was detected by mutagenesis and co-immunoprecipitation. KEY RESULTS Casp11 deficiency remarkably impaired adult angiogenesis in ischemic hindlimbs, melanoma xenografts and Matrigel plugs, but not the developmental angiogenesis of retina. Bone marrow transplantation revealed that the pro-angiogenic effect depended on CASP11 derived from non-hematopoietic cells. CASP4 expression was induced by inflammatory factors and CASP4 knockdown decreased cell viability, proliferation, migration and tube formation in HUVECs. Mechanistically, CASP4/11 deficiency increased Notch1 activation in vivo and in vitro, while CASP4 overexpression repressed Notch1 signaling in HUVECs. Moreover, CASP4 knockdown increased γ-secretase activity. γ-Secretase inhibitor DAPT restored the effects of CASP4 siRNA on Notch1 activation and angiogenesis in HUVECs. Notably, the catalytic activity of CASP4/11 was dispensable. Instead, CASP4 directly interacted with presenilin-1 through the caspase recruitment domain (CARD). CONCLUSIONS AND IMPLICATIONS These findings reveal a critical role of CASP4/11 in adult angiogenesis and make this molecule a promising therapeutic target for angiogenesis-related diseases in the future.
Collapse
Affiliation(s)
- Linlin Fan
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Hao Liu
- Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guofu Zhu
- Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shekhar Singh
- Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ze Yu
- Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shumin Wang
- Aab Cardiovascular Research Institute, Department of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Hong Luo
- Department of Medical Laboratory, College of Laboratory Medicine, Dalian Medical University, Dalian, China
| | - Shiying Liu
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yawei Xu
- Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Junbo Ge
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Dongyang Jiang
- Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinjiang Pang
- Aab Cardiovascular Research Institute, Department of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| |
Collapse
|
20
|
Duan M, Chen H, Yin L, Zhu X, Novák P, Lv Y, Zhao G, Yin K. Mitochondrial apolipoprotein A-I binding protein alleviates atherosclerosis by regulating mitophagy and macrophage polarization. Cell Commun Signal 2022; 20:60. [PMID: 35525979 PMCID: PMC9077873 DOI: 10.1186/s12964-022-00858-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/05/2022] [Indexed: 12/22/2022] Open
Abstract
Apolipoprotein A-I binding protein (AIBP), a secreted protein, has been shown to play a pivotal role in the development of atherosclerosis. The function of intracellular AIBP, however, is not yet well characterized. Here, we found that AIBP is abundantly expressed within human and mouse atherosclerotic lesions and exhibits a distinct localization in the inner membrane of mitochondria in macrophages. Bone marrow-specific AIBP deficiency promotes the progression of atherosclerosis and increases macrophage infiltration and inflammation in low-density lipoprotein receptor-deficient (LDLR-/-) mice. Specifically, the lack of mitochondrial AIBP leads to mitochondrial metabolic disorders, thereby reducing the formation of mitophagy by promoting the cleavage of PTEN-induced putative kinase 1 (PINK1). With the reduction in mitochondrial autophagy, macrophages polarize to the M1 proinflammatory phenotype, which further promotes the development of atherosclerosis. Based on these results, mitochondrial AIBP in macrophages performs an antiatherosclerotic role by regulating of PINK1-dependent mitophagy and M1/M2 polarization. Video Abstract.
Collapse
Affiliation(s)
- Meng Duan
- Department of Cardiology, The Second Affiliated Hospital of Guilin Medical University, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin, 541100 Guangxi China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi China
- Research Lab of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Hainan Chen
- Research Lab of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Linjie Yin
- Research Lab of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiao Zhu
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi China
| | - Petr Novák
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi China
| | - Yuncheng Lv
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi China
| | - Guojun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People’s Hospital, Qingyuan, 511518 Guangdong China
| | - Kai Yin
- Department of Cardiology, The Second Affiliated Hospital of Guilin Medical University, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin, 541100 Guangxi China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi China
- Research Lab of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
21
|
Apolipoprotein-AI and AIBP synergetic anti-inflammation as vascular diseases therapy: the new perspective. Mol Cell Biochem 2021; 476:3065-3078. [PMID: 33811580 DOI: 10.1007/s11010-020-04037-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/22/2020] [Indexed: 12/24/2022]
Abstract
Vascular diseases (VDs) including pulmonary arterial hypertension (PAH), atherosclerosis (AS) and coronary arterial diseases (CADs) contribute to the higher morbidity and mortality worldwide. Apolipoprotein A-I (Apo A-I) binding protein (AIBP) and Apo-AI negatively correlate with VDs. However, the mechanism by which AIBP and apo-AI regulate VDs still remains unexplained. Here, we provide an overview of the role of AIBP and apo-AI regulation of vascular diseases molecular mechanisms such as vascular energy homeostasis imbalance, oxidative and endoplasmic reticulum stress and inflammation in VDs. In addition, the role of AIBP and apo-AI in endothelial cells (ECs), vascular smooth muscle (VSMCs) and immune cells activation in the pathogenesis of VDs are explained. The in-depth understanding of AIBP and apo-AI function in the vascular system may lead to the discovery of VDs therapy.
Collapse
|
22
|
Kim JD, Zhu L, Sun Q, Fang L. Systemic metabolite profiling reveals sexual dimorphism of AIBP control of metabolism in mice. PLoS One 2021; 16:e0248964. [PMID: 33793635 PMCID: PMC8016339 DOI: 10.1371/journal.pone.0248964] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/08/2021] [Indexed: 01/04/2023] Open
Abstract
Emerging studies indicate that APOA-I binding protein (AIBP) is a secreted protein and functions extracellularly to promote cellular cholesterol efflux, thereby disrupting lipid rafts on the plasma membrane. AIBP is also present in the mitochondria and acts as an epimerase, facilitating the repair of dysfunctional hydrated NAD(P)H, known as NAD(P)H(X). Importantly, AIBP deficiency contributes to lethal neurometabolic disorder, reminiscent of the Leigh syndrome in humans. Whereas cyclic NADPHX production is proposed to be the underlying cause, we hypothesize that an unbiased metabolic profiling may: 1) reveal new clues for the lethality, e.g., changes of mitochondrial metabolites., and 2) identify metabolites associated with new AIBP functions. To this end, we performed unbiased and profound metabolic studies of plasma obtained from adult AIBP knockout mice and control littermates of both genders. Our systemic metabolite profiling, encompassing 9 super pathways, identified a total of 640 compounds. Our studies demonstrate a surprising sexual dimorphism of metabolites affected by AIBP deletion, with more statistically significant changes in the AIBP knockout female vs male when compared with the corresponding controls. AIBP knockout trends to reduce cholesterol but increase the bile acid precursor 7-HOCA in female but not male. Complex lipids, phospholipids, sphingomyelin and plasmalogens were reduced, while monoacylglycerol, fatty acids and the lipid soluble vitamins E and carotene diol were elevated in AIBP knockout female but not male. NAD metabolites were not significantly different in AIBP knockout vs control mice but differed for male vs female mice. Metabolites associated with glycolysis and the Krebs cycle were unchanged by AIBP knockout. Importantly, polyamine spermidine, critical for many cellular functions including cerebral cortex synapses, was reduced in male but not female AIBP knockout. This is the first report of a systemic metabolite profile of plasma samples from AIBP knockout mice, and provides a metabolic basis for future studies of AIBP regulation of cellular metabolism and the pathophysiological presentation of AIBP deficiency in patients.
Collapse
Affiliation(s)
- Jun-dae Kim
- Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, United States of America
| | - Lingping Zhu
- Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, United States of America
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Quan Sun
- Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, United States of America
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Longhou Fang
- Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, United States of America
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States of America
- Weill Cornell Medical College, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
23
|
Revealing the Role of High-Density Lipoprotein in Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22073352. [PMID: 33805921 PMCID: PMC8037642 DOI: 10.3390/ijms22073352] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is a highly prevalent malignancy with multifactorial etiology, which includes metabolic alterations as contributors to disease development. Studies have shown that lipid status disorders are involved in colorectal carcinogenesis. In line with this, previous studies have also suggested that the serum high-density lipoprotein cholesterol (HDL-C) level decreases in patients with CRC, but more recently, the focus of investigations has shifted toward the exploration of qualitative properties of HDL in this malignancy. Herein, a comprehensive overview of available evidences regarding the putative role of HDL in CRC will be presented. We will analyze existing findings regarding alterations of HDL-C levels but also HDL particle structure and distribution in CRC. In addition, changes in HDL functionality in this malignancy will be discussed. Moreover, we will focus on the genetic regulation of HDL metabolism, as well as the involvement of HDL in disturbances of cholesterol trafficking in CRC. Finally, possible therapeutic implications related to HDL will be presented. Given the available evidence, future studies are needed to resolve all raised issues concerning the suggested protective role of HDL in CRC, its presumed function as a biomarker, and eventual therapeutic approaches based on HDL.
Collapse
|
24
|
Goel D, Vohora D. Liver X receptors and skeleton: Current state-of-knowledge. Bone 2021; 144:115807. [PMID: 33333244 DOI: 10.1016/j.bone.2020.115807] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/26/2020] [Accepted: 12/11/2020] [Indexed: 12/25/2022]
Abstract
The liver X receptors (LXR) is a nuclear receptor that acts as a prominent regulator of lipid homeostasis and inflammatory response. Its therapeutic effectiveness against various diseases like Alzheimer's disease and atherosclerosis has been investigated in detail. Emerging pieces of evidence now reveal that LXR is also a crucial modulator of bone remodeling. However, the molecular mechanisms underlying the pharmacological actions of LXR on the skeleton and its role in osteoporosis are poorly understood. Therefore, in the current review, we highlight LXR and its actions through different molecular pathways modulating skeletal homeostasis. The studies described in this review propound that LXR in association with estrogen, PTH, PPARγ, RXR hedgehog, and canonical Wnt signaling regulates osteoclastogenesis and bone resorption. It regulates RANKL-induced expression of c-Fos, NFATc1, and NF-κB involved in osteoclast differentiation. Additionally, several studies suggest suppression of RANKL-induced osteoclast differentiation by synthetic LXR ligands. Given the significance of modulation of LXR in various physiological and pathological settings, our findings indicate that therapeutic targeting of LXR might potentially prevent or treat osteoporosis and improve bone quality.
Collapse
Affiliation(s)
- Divya Goel
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | - Divya Vohora
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
25
|
Lee S, Park JM, Ann SJ, Kang M, Cheon EJ, An DB, Choi YR, Lee CJ, Oh J, Park S, Kang SM, Lee SH. Cholesterol Efflux and Collateral Circulation in Chronic Total Coronary Occlusion: Effect-Circ Study. J Am Heart Assoc 2021; 10:e019060. [PMID: 33634702 PMCID: PMC8174259 DOI: 10.1161/jaha.120.019060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background The mechanism through which high‐density lipoprotein (HDL) induces cardioprotection is not completely understood. We evaluated the correlation between cholesterol efflux capacity (CEC), a functional parameter of HDL, and coronary collateral circulation (CCC). We additionally investigated whether A1BP (apoA1‐binding protein) concentration correlates with CEC and CCC. Methods and Results In this case‐control study, clinical and angiographic data were collected from 226 patients (mean age, 58 years; male, 72%) with chronic total coronary occlusion. CEC was assessed using a radioisotope and J774 cells, and human A1BP concentration was measured using enzyme‐linked immunosorbent assay. Differences between the good and poor CCC groups were compared, and associations between CEC, A1BP, and other variables were evaluated. Predictors of CCC were identified by multivariable logistic regression analysis. The CEC was higher in the good than in the poor CCC group (22.0±4.6% versus 20.2±4.7%; P=0.009). In multivariable analyses including age, sex, HDL‐cholesterol levels, age (odds ratio [OR], 0.96; P=0.003), and CEC (OR, 1.10; P=0.004) were identified as the independent predictors of good CCC. These relationships remained significant after additional adjustment for diabetes mellitus, acute coronary syndrome, and Gensini score. The A1BP levels were not significantly correlated with CCC (300 pg/mL and 283 pg/mL in the good CCC and poor CCC groups, respectively, P=0.25) or CEC. Conclusions The relationship between higher CEC and good CCC indicates that well‐functioning HDL may contribute to CCC and may be cardioprotective; this suggests that a specific function of HDL can have biological and clinical consequences.
Collapse
Affiliation(s)
- Seonhwa Lee
- Division of Cardiology Department of Internal Medicine Severance HospitalYonsei University College of MedicineYonsei University Health System Seoul Korea
| | - Jung Mi Park
- Department of Biostatistics and Computing Graduate School Yonsei University Seoul Korea
| | - Soo-Jin Ann
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases Yonsei University College of MedicineYonsei University Health System Seoul Korea
| | - Moonjong Kang
- Department of Biostatistics and Computing Graduate School Yonsei University Seoul Korea
| | - Eun Jeong Cheon
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases Yonsei University College of MedicineYonsei University Health System Seoul Korea
| | - Dan Bi An
- Graduate Program of Science for Aging Graduate School Yonsei University Seoul Korea
| | - Yu Ri Choi
- Graduate Program of Science for Aging Graduate School Yonsei University Seoul Korea
| | - Chan Joo Lee
- Division of Cardiology Department of Internal Medicine Severance HospitalYonsei University College of MedicineYonsei University Health System Seoul Korea
| | - Jaewon Oh
- Division of Cardiology Department of Internal Medicine Severance HospitalYonsei University College of MedicineYonsei University Health System Seoul Korea
| | - Sungha Park
- Division of Cardiology Department of Internal Medicine Severance HospitalYonsei University College of MedicineYonsei University Health System Seoul Korea
| | - Seok-Min Kang
- Division of Cardiology Department of Internal Medicine Severance HospitalYonsei University College of MedicineYonsei University Health System Seoul Korea
| | - Sang-Hak Lee
- Division of Cardiology Department of Internal Medicine Severance HospitalYonsei University College of MedicineYonsei University Health System Seoul Korea
| |
Collapse
|
26
|
Choi SH, Agatisa-Boyle C, Gonen A, Kim A, Kim J, Alekseeva E, Tsimikas S, Miller YI. Intracellular AIBP (Apolipoprotein A-I Binding Protein) Regulates Oxidized LDL (Low-Density Lipoprotein)-Induced Mitophagy in Macrophages. Arterioscler Thromb Vasc Biol 2021; 41:e82-e96. [PMID: 33356389 PMCID: PMC8105271 DOI: 10.1161/atvbaha.120.315485] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Atherosclerotic lesions are often characterized by accumulation of OxLDL (oxidized low-density lipoprotein), which is associated with vascular inflammation and lesion vulnerability to rupture. Extracellular AIBP (apolipoprotein A-I binding protein; encoded by APOA1BP gene), when secreted, promotes cholesterol efflux and regulates lipid rafts dynamics, but its role as an intracellular protein in mammalian cells remains unknown. The aim of this work was to determine the function of intracellular AIBP in macrophages exposed to OxLDL and in atherosclerotic lesions. Approach and Results: Using a novel monoclonal antibody against human and mouse AIBP, which are highly homologous, we demonstrated robust AIBP expression in human and mouse atherosclerotic lesions. We observed significantly reduced autophagy in bone marrow-derived macrophages, isolated from Apoa1bp-/- compared with wild-type mice, which were exposed to OxLDL. In atherosclerotic lesions from Apoa1bp-/- mice subjected to Ldlr knockdown and fed a Western diet, autophagy was reduced, whereas apoptosis was increased, when compared with that in wild-type mice. AIBP expression was necessary for efficient control of reactive oxygen species and cell death and for mitochondria quality control in macrophages exposed to OxLDL. Mitochondria-localized AIBP, via its N-terminal domain, associated with E3 ubiquitin-protein ligase PARK2 (Parkin), MFN (mitofusin)1, and MFN2, but not BNIP3 (Bcl2/adenovirus E1B 19-kDa-interacting protein-3), and regulated ubiquitination of MFN1 and MFN2, key components of mitophagy. CONCLUSIONS These data suggest that intracellular AIBP is a new regulator of autophagy in macrophages. Mitochondria-localized AIBP augments mitophagy and participates in mitochondria quality control, protecting macrophages against cell death in the context of atherosclerosis.
Collapse
Affiliation(s)
- Soo-Ho Choi
- Department of Medicine University of California San Diego, La Jolla, CA 92093
| | - Colin Agatisa-Boyle
- Department of Medicine University of California San Diego, La Jolla, CA 92093
| | - Ayelet Gonen
- Department of Medicine University of California San Diego, La Jolla, CA 92093
| | - Alisa Kim
- Department of Medicine University of California San Diego, La Jolla, CA 92093
| | - Jungsu Kim
- Department of Medicine University of California San Diego, La Jolla, CA 92093
| | - Elena Alekseeva
- Department of Medicine University of California San Diego, La Jolla, CA 92093
| | - Sotirios Tsimikas
- Department of Medicine University of California San Diego, La Jolla, CA 92093
| | - Yury I. Miller
- Department of Medicine University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
27
|
Qiu X, Luo J, Fang L. AIBP, Angiogenesis, Hematopoiesis, and Atherogenesis. Curr Atheroscler Rep 2020; 23:1. [PMID: 33230630 DOI: 10.1007/s11883-020-00899-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2020] [Indexed: 01/04/2023]
Abstract
PURPOSE OF REVIEW The goal of this manuscript is to summarize the current understanding of the secreted APOA1 binding protein (AIBP), encoded by NAXE, in angiogenesis, hematopoiesis, and inflammation. The studies on AIBP illustrate a critical connection between lipid metabolism and the aforementioned endothelial and immune cell biology. RECENT FINDINGS AIBP dictates both developmental processes such as angiogenesis and hematopoiesis, and pathological events such as inflammation, tumorigenesis, and atherosclerosis. Although cholesterol efflux dictates AIBP-mediated lipid raft disruption in many of the cell types, recent studies document cholesterol efflux-independent mechanism involving Cdc42-mediated cytoskeleton remodeling in macrophages. AIBP disrupts lipid rafts and impairs raft-associated VEGFR2 but facilitates non-raft-associated NOTCH1 signaling. Furthermore, AIBP can induce cholesterol biosynthesis gene SREBP2 activation, which in turn transactivates NOTCH1 and supports specification of hematopoietic stem and progenitor cells (HSPCs). In addition, AIBP also binds TLR4 and represses TLR4-mediated inflammation. In this review, we summarize the latest research on AIBP, focusing on its role in cholesterol metabolism and the attendant effects on lipid raft-regulated VEGFR2 and non-raft-associated NOTCH1 activation in angiogenesis, SREBP2-upregulated NOTCH1 signaling in hematopoiesis, and TLR4 signaling in inflammation and atherogenesis. We will discuss its potential therapeutic applications in angiogenesis and inflammation due to selective targeting of activated cells.
Collapse
Affiliation(s)
- Xueting Qiu
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX, 77030, USA
| | - Jingmin Luo
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX, 77030, USA
| | - Longhou Fang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX, 77030, USA. .,Department of Obstetrics and Gynecology, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX, 77030, USA. .,Houston Methodist Institute for Academic Medicine, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX, 77030, USA. .,Department of Cardiothoracic Surgeries, Weill Cornell Medical College, Cornell University, New York, NY, 10065, USA.
| |
Collapse
|
28
|
Nuthikattu S, Milenkovic D, Rutledge JC, Villablanca AC. Sex-Dependent Molecular Mechanisms of Lipotoxic Injury in Brain Microvasculature: Implications for Dementia. Int J Mol Sci 2020; 21:E8146. [PMID: 33142695 PMCID: PMC7663125 DOI: 10.3390/ijms21218146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/16/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular risk factors and biologic sex play a role in vascular dementia which is characterized by progressive reduction in cognitive function and memory. Yet, we lack understanding about the role sex plays in the molecular mechanisms whereby lipid stress contributes to cognitive decline. Five-week-old low-density lipoprotein deficient (LDL-R -/-) male and female mice and C57BL/6J wild types (WT) were fed a control or Western Diet for 8 weeks. Differential expression of protein coding and non-protein coding genes (DEG) were determined in laser captured hippocampal microvessels using genome-wide microarray, followed by bioinformatic analysis of gene networks, pathways, transcription factors and sex/gender-based analysis (SGBA). Cognitive function was assessed by Y-maze. Bioinformatic analysis revealed more DEGs in females (2412) compared to males (1972). Hierarchical clusters revealed distinctly different sex-specific gene expression profiles irrespective of diet and genotype. There were also fewer and different biologic responses in males compared to females, as well as different cellular pathways and gene networks (favoring greater neuroprotection in females), together with sex-specific transcription factors and non-protein coding RNAs. Hyperlipidemic stress also resulted in less severe cognitive dysfunction in females. This sex-specific pattern of differential hippocampal microvascular RNA expression might provide therapeutic targets for dementia in males and females.
Collapse
Affiliation(s)
- Saivageethi Nuthikattu
- Division of Cardiovascular Medicine, University of California, Davis, CA 95616, USA; (S.N.); (D.M.); (J.C.R.)
| | - Dragan Milenkovic
- Division of Cardiovascular Medicine, University of California, Davis, CA 95616, USA; (S.N.); (D.M.); (J.C.R.)
- Université Clermont Auvergne, INRA, UNH, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - John C. Rutledge
- Division of Cardiovascular Medicine, University of California, Davis, CA 95616, USA; (S.N.); (D.M.); (J.C.R.)
| | - Amparo C. Villablanca
- Division of Cardiovascular Medicine, University of California, Davis, CA 95616, USA; (S.N.); (D.M.); (J.C.R.)
| |
Collapse
|
29
|
Koponen A, Pan G, Kivelä AM, Ralko A, Taskinen JH, Arora A, Kosonen R, Kari OK, Ndika J, Ikonen E, Cho W, Yan D, Olkkonen VM. ORP2, a cholesterol transporter, regulates angiogenic signaling in endothelial cells. FASEB J 2020; 34:14671-14694. [DOI: 10.1096/fj.202000202r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/22/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Annika Koponen
- Minerva Foundation Institute for Medical ResearchBiomedicum 2U Helsinki Finland
| | - Guoping Pan
- Department of Biology Jinan University Guangzhou China
| | - Annukka M. Kivelä
- Minerva Foundation Institute for Medical ResearchBiomedicum 2U Helsinki Finland
| | - Arthur Ralko
- Department of Chemistry University of Illinois at Chicago Chicago IL USA
| | - Juuso H. Taskinen
- Minerva Foundation Institute for Medical ResearchBiomedicum 2U Helsinki Finland
| | - Amita Arora
- Minerva Foundation Institute for Medical ResearchBiomedicum 2U Helsinki Finland
| | - Riikka Kosonen
- Minerva Foundation Institute for Medical ResearchBiomedicum 2U Helsinki Finland
| | - Otto K. Kari
- Drug Research Program Division of Pharmaceutical Biosciences Faculty of Pharmacy University of Helsinki Helsinki Finland
| | - Joseph Ndika
- Human Microbiome Research Faculty of Medicine University of Helsinki Helsinki Finland
| | - Elina Ikonen
- Minerva Foundation Institute for Medical ResearchBiomedicum 2U Helsinki Finland
- Department of Anatomy Faculty of Medicine University of Helsinki Helsinki Finland
| | - Wonhwa Cho
- Department of Chemistry University of Illinois at Chicago Chicago IL USA
| | - Daoguang Yan
- Department of Biology Jinan University Guangzhou China
| | - Vesa M. Olkkonen
- Minerva Foundation Institute for Medical ResearchBiomedicum 2U Helsinki Finland
- Department of Anatomy Faculty of Medicine University of Helsinki Helsinki Finland
| |
Collapse
|
30
|
Choi SH, Kim KY, Perkins GA, Phan S, Edwards G, Xia Y, Kim J, Skowronska-Krawczyk D, Weinreb RN, Ellisman MH, Miller YI, Ju WK. AIBP protects retinal ganglion cells against neuroinflammation and mitochondrial dysfunction in glaucomatous neurodegeneration. Redox Biol 2020; 37:101703. [PMID: 32896719 PMCID: PMC7484594 DOI: 10.1016/j.redox.2020.101703] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/12/2020] [Accepted: 08/22/2020] [Indexed: 01/10/2023] Open
Abstract
Glaucoma is a leading cause of blindness worldwide in individuals 60 years of age and older. Despite its high prevalence, the factors contributing to glaucoma progression are currently not well characterized. Glia-driven neuroinflammation and mitochondrial dysfunction play critical roles in glaucomatous neurodegeneration. Here, we demonstrated that elevated intraocular pressure (IOP) significantly decreased apolipoprotein A-I binding protein (AIBP; gene name Apoa1bp) in retinal ganglion cells (RGCs), but resulted in upregulation of TLR4 and IL-1β expression in Müller glia endfeet. Apoa1bp-/- mice had impaired visual function and Müller glia characterized by upregulated TLR4 activity, impaired mitochondrial network and function, increased oxidative stress and induced inflammatory responses. We also found that AIBP deficiency compromised mitochondrial network and function in RGCs and exacerbated RGC vulnerability to elevated IOP. Administration of recombinant AIBP prevented RGC death and inhibited inflammatory responses and cytokine production in Müller glia in vivo. These findings indicate that AIBP protects RGCs against glia-driven neuroinflammation and mitochondrial dysfunction in glaucomatous neurodegeneration and suggest that recombinant AIBP may be a potential therapeutic agent for glaucoma.
Collapse
Affiliation(s)
- Soo-Ho Choi
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Guy A Perkins
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sébastien Phan
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Genea Edwards
- Hamilton Glaucoma Center and Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yining Xia
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jungsu Kim
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dorota Skowronska-Krawczyk
- Department of Physiology, Biophysics & Ophthalmology, University of California Irvine, Irvine, CA, 92697, USA
| | - Robert N Weinreb
- Hamilton Glaucoma Center and Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yury I Miller
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Won-Kyu Ju
- Hamilton Glaucoma Center and Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
31
|
Low H, Mukhamedova N, Capettini LDSA, Xia Y, Carmichael I, Cody SH, Huynh K, Ditiatkovski M, Ohkawa R, Bukrinsky M, Meikle PJ, Choi SH, Field S, Miller YI, Sviridov D. Cholesterol Efflux-Independent Modification of Lipid Rafts by AIBP (Apolipoprotein A-I Binding Protein). Arterioscler Thromb Vasc Biol 2020; 40:2346-2359. [PMID: 32787522 PMCID: PMC7530101 DOI: 10.1161/atvbaha.120.315037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE AIBP (apolipoprotein A-I binding protein) is an effective and selective regulator of lipid rafts modulating many metabolic pathways originating from the rafts, including inflammation. The mechanism of action was suggested to involve stimulation by AIBP of cholesterol efflux, depleting rafts of cholesterol, which is essential for lipid raft integrity. Here we describe a different mechanism contributing to the regulation of lipid rafts by AIBP. Approach and Results: We demonstrate that modulation of rafts by AIBP may not exclusively depend on the rate of cholesterol efflux or presence of the key regulator of the efflux, ABCA1 (ATP-binding cassette transporter A-I). AIBP interacted with phosphatidylinositol 3-phosphate, which was associated with increased abundance and activation of Cdc42 and rearrangement of the actin cytoskeleton. Cytoskeleton rearrangement was accompanied with reduction of the abundance of lipid rafts, without significant changes in the lipid composition of the rafts. The interaction of AIBP with phosphatidylinositol 3-phosphate was blocked by AIBP substrate, NADPH (nicotinamide adenine dinucleotide phosphate), and both NADPH and silencing of Cdc42 interfered with the ability of AIBP to regulate lipid rafts and cholesterol efflux. CONCLUSIONS Our findings indicate that an underlying mechanism of regulation of lipid rafts by AIBP involves PIP-dependent rearrangement of the cytoskeleton.
Collapse
Affiliation(s)
- Hann Low
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (H.L., N.M., K.H., M.D., R.O., P.J.M., D.S.)
| | - Nigora Mukhamedova
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (H.L., N.M., K.H., M.D., R.O., P.J.M., D.S.)
| | - Luciano Dos Santos Aggum Capettini
- Department of Medicine, University of California San Diego, La Jolla (L.d.S.A.C., Y.X., S.-H.C., S.F., Y.I.M.).,Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil (L.d.S.A.C.)
| | - Yining Xia
- Department of Medicine, University of California San Diego, La Jolla (L.d.S.A.C., Y.X., S.-H.C., S.F., Y.I.M.)
| | - Irena Carmichael
- Department of Monash Micro Imaging, Monash University, Melbourne, VIC, Australia (I.C., S.H.C.)
| | - Stephen H Cody
- Department of Monash Micro Imaging, Monash University, Melbourne, VIC, Australia (I.C., S.H.C.)
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (H.L., N.M., K.H., M.D., R.O., P.J.M., D.S.)
| | - Michael Ditiatkovski
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (H.L., N.M., K.H., M.D., R.O., P.J.M., D.S.)
| | - Ryunosuke Ohkawa
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (H.L., N.M., K.H., M.D., R.O., P.J.M., D.S.).,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan (R.O.)
| | - Michael Bukrinsky
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University School of Medicine and Health Sciences, DC (M.B.)
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (H.L., N.M., K.H., M.D., R.O., P.J.M., D.S.)
| | - Soo-Ho Choi
- Department of Medicine, University of California San Diego, La Jolla (L.d.S.A.C., Y.X., S.-H.C., S.F., Y.I.M.)
| | - Seth Field
- Department of Medicine, University of California San Diego, La Jolla (L.d.S.A.C., Y.X., S.-H.C., S.F., Y.I.M.)
| | - Yury I Miller
- Department of Medicine, University of California San Diego, La Jolla (L.d.S.A.C., Y.X., S.-H.C., S.F., Y.I.M.)
| | - Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (H.L., N.M., K.H., M.D., R.O., P.J.M., D.S.).,Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia (D.S.)
| |
Collapse
|
32
|
Wang X, Huang G, Mu J, Cong Z, Chen S, Fu D, Qi J, Li Z. Arrb2 promotes endothelial progenitor cell-mediated postischemic neovascularization. Am J Cancer Res 2020; 10:9899-9912. [PMID: 32863967 PMCID: PMC7449919 DOI: 10.7150/thno.45133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/19/2020] [Indexed: 11/05/2022] Open
Abstract
Background and aim: Modulating biological functions of endothelial progenitor cells (EPCs) is essential for therapeutic angiogenesis in ischemic vascular diseases. This study aimed to explore the role and molecular mechanisms of β-arrestin 2 (Arrb2) in EPCs biology and angiogenic therapy. Methods: The influence of Arrb2 on postischemic neovascularization was evaluated in Arrb2-deficient mice. The proliferation, apoptosis, and various functions of EPCs were analyzed in vitro by manipulating the expression of Arrb2. Finally, the in vivo effect of Arrb2 on EPC-mediated neovascularization was investigated in a mouse model of hind-limb ischemia (HLI). Results: Arrb2-deficient mice exhibited impaired blood flow recovery based on laser Doppler measurements and reduced capillary density in the adductor muscle after unilateral HLI. Arrb2-deficient mice also showed restricted intraplug angiogenesis in subcutaneously implanted Matrigel plugs. In vitro, lentivirus-mediated Arrb2 overexpression promoted EPC proliferation, migration, adhesion, and tube formation, whereas Arrb2 knockdown had opposite effects. In addition, the overexpression of Arrb2 in EPCs protected them from hypoxia-induced apoptosis and improved intraplug angiogenesis ex vivo. Mechanistically, Arrb2 interacted with and activated extracellular signal-regulated kinase (ERK)1/2 and protein kinase B (Akt) signaling pathways. Finally, the transplantation of EPCs overexpressing Arrb2 resulted in a significantly higher blood flow restoration in ischemic hind limb and higher capillary density during histological analysis compared with control or Arrb2-knockdown EPC-treated nude mice. Conclusions: The data indicated that Arrb2 augmented EPC-mediated neovascularization through the activation of ERK and Akt signaling pathways. This novel biological function of Arrb2 might provide a potential therapeutic option to promote EPCs in the treatment of ischemic vascular diseases.
Collapse
|
33
|
Combination of apolipoprotein-A-I/apolipoprotein-A-I binding protein and anti-VEGF treatment overcomes anti-VEGF resistance in choroidal neovascularization in mice. Commun Biol 2020; 3:386. [PMID: 32678293 PMCID: PMC7367303 DOI: 10.1038/s42003-020-1113-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 06/29/2020] [Indexed: 11/08/2022] Open
Abstract
Many patients of choroidal neovascularization (CNV) are unresponsive to the current anti-VEGF treatment. The mechanisms for anti-VEGF resistance are poorly understood. We explore the unique property of the apolipoprotein A-I (apoA-I) binding protein (AIBP) that enhances cholesterol efflux from endothelial cells and macrophages to thereby limit angiogenesis and inflammation to tackle anti-VEGF resistance in CNV. We show that laser-induced CNV in mice with increased age showed increased resistance to anti-VEGF treatment, which correlates with increased lipid accumulation in macrophages. The combination of AIBP/apoA-I and anti-VEGF treatment overcomes anti-VEGF resistance and effectively suppresses CNV. Furthermore, macrophage depletion in old mice restores CNV sensitivity to anti-VEGF treatment and blunts the synergistic effect of combination therapy. These results suggest that cholesterol-laden macrophages play a critical role in inducing anti-VEGF resistance in CNV. Combination therapy by neutralizing VEGF and enhancing cholesterol removal from macrophages is a promising strategy to combat anti-VEGF resistance in CNV.
Collapse
|
34
|
Yang Q, Hu J, Yang Y, Chen Z, Feng J, Zhu Z, Wang H, Yang D, Liang W, Ding G. Sirt6 deficiency aggravates angiotensin II-induced cholesterol accumulation and injury in podocytes. Theranostics 2020; 10:7465-7479. [PMID: 32642006 PMCID: PMC7330847 DOI: 10.7150/thno.45003] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
Disturbed renal lipid metabolism, especially cholesterol dysregulation plays a crucial role in the pathogenesis of chronic kidney disease (CKD). We recently reported that angiotensin (Ang) II could induce cholesterol accumulation and injury in podocytes. However, the underlying mechanisms for these alterations remain unknown. Methods: Bioinformatics analysis of renal biopsy specimens from patients with hypertensive nephropathy (HN) suggests the involvement of Sirtuin 6 (Sirt6) in Ang II-induced dysregulation of glomerular cholesterol. Using a podocyte-specific Sirt6 knockout mouse model, the effects of Sirt6 on Ang II-induced cholesterol accumulation in podocytes and the therapeutic efficacies of cholesterol-lowering agents were evaluated. Results: Cholesterol accumulation was detected in the podocytes of Ang II-infused mice, whereas selective deletion of Sirt6 in podocytes not only increased cholesterol accumulation in these cells but also exacerbated Ang II-induced kidney injury. Deletion of Sirt6 also attenuated the protective effect of cyclodextrin (CD) on Ang II-induced urinary albumin excretion, glomerulosclerosis and podocyte injury. In addition, we demonstrated that Sirt6 affected cholesterol efflux in podocytes by regulating the expression of ATP-binding cassette transporter G1 (ABCG1). Conclusions: These findings provide evidence that Sirt6 is a potential target for renin-angiotensin system (RAS)-associated podocyte injury and provide a rationale for the application of cholesterol-lowering agents in patients with CKD.
Collapse
|
35
|
Mayneris-Perxachs J, Puig J, Burcelin R, Dumas ME, Barton RH, Hoyles L, Federici M, Fernández-Real JM. The APOA1bp-SREBF-NOTCH axis is associated with reduced atherosclerosis risk in morbidly obese patients. Clin Nutr 2020; 39:3408-3418. [PMID: 32199697 DOI: 10.1016/j.clnu.2020.02.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/23/2020] [Accepted: 02/24/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND & AIMS Atherosclerosis is characterized by an inflammatory disease linked to excessive lipid accumulation in the artery wall. The Notch signalling pathway has been shown to play a key regulatory role in the regulation of inflammation. Recently, in vitro and pre-clinical studies have shown that apolipoprotein A-I binding protein (AIBP) regulates cholesterol metabolism (SREBP) and NOTCH signalling (haematopoiesis) and may be protective against atherosclerosis, but the evidence in humans is scarce. METHODS We evaluated the APOA1bp-SREBF-NOTCH axis in association with atherosclerosis in two well-characterized cohorts of morbidly obese patients (n = 78) within the FLORINASH study, including liver transcriptomics, 1H NMR plasma metabolomics, high-resolution ultrasonography evaluating carotid intima-media thickness (cIMT), and haematological parameters. RESULTS The liver expression levels of APOA1bp were associated with lower cIMT and leukocyte counts, a better plasma lipid profile and higher circulating levels of metabolites associated with lower risk of atherosclerosis (glycine, histidine and asparagine). Conversely, liver SREBF and NOTCH mRNAs were positively associated with atherosclerosis, liver steatosis, an unfavourable lipid profile, higher leukocytes and increased levels of metabolites linked to inflammation and CVD such as branched-chain amino acids and glycoproteins. APOA1bp and NOTCH signalling also had a strong association, as revealed by the negative correlations among APOA1bp expression levels and those of all NOTCH receptors and jagged ligands. CONCLUSIONS We here provide the first evidence in human liver of the putative APOA1bp-SREBF-NOTCH axis signalling pathway and its association with atherosclerosis and inflammation.
Collapse
Affiliation(s)
- Jordi Mayneris-Perxachs
- Department of Endocrinology, Diabetes and Nutrition, Hospital of Girona "Dr Josep Trueta", Departament de Ciències Mèdiques, University of Girona, Girona Biomedical Research Institute (IdibGi), Girona, Spain; CIBERobn Pathophysiology of Obesity and Nutrition, Instituto de Salud Carlos III, Madrid, Spain
| | - Josep Puig
- Department of Radiology, Diagnostic Imaging Institute (IDI), Dr Josep Trueta University Hospital, IDIBGI, Girona, Spain
| | - Rémy Burcelin
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France; Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Team 2: 'Intestinal Risk Factors, Diabetes, Dyslipidemia, and Heart Failure', F-31432 Toulouse Cedex 4, France
| | - Marc-Emmanuel Dumas
- Section of Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Section of Genomic and Environmental Medicine, Respiratory Division, National Heart and Lung Institute, Imperial College London, Dovehouse St, London SW3 6KY, United Kingdom
| | - Richard H Barton
- Section of Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Lesley Hoyles
- Department of Biosciences, Nottingham Trent University, Clifton Campus, Nottingham NG11 8NS, United Kingdom
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - José-Manuel Fernández-Real
- Department of Endocrinology, Diabetes and Nutrition, Hospital of Girona "Dr Josep Trueta", Departament de Ciències Mèdiques, University of Girona, Girona Biomedical Research Institute (IdibGi), Girona, Spain; CIBERobn Pathophysiology of Obesity and Nutrition, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
36
|
Scimone C, Donato L, Alafaci C, Granata F, Rinaldi C, Longo M, D'Angelo R, Sidoti A. High-Throughput Sequencing to Detect Novel Likely Gene-Disrupting Variants in Pathogenesis of Sporadic Brain Arteriovenous Malformations. Front Genet 2020; 11:146. [PMID: 32184807 PMCID: PMC7059193 DOI: 10.3389/fgene.2020.00146] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 02/07/2020] [Indexed: 12/22/2022] Open
Abstract
Molecular signaling that leads to brain arteriovenous malformation (bAVM) is to date elusive and this is firstly due to the low frequency of familial cases. Conversely, sporadic bAVM is the most diffuse condition and represents the main source to characterize the genetic basis of the disease. Several studies were conducted in order to detect both germ-line and somatic mutations linked to bAVM development and, in this context, next generation sequencing technologies offer a pivotal resource for the amount of outputted information. We performed whole exome sequencing on a young boy affected by sporadic bAVM. Paired-end sequencing was conducted on an Illumina platform and filtered variants were validated by Sanger sequencing. We detected 20 likely gene-disrupting variants affecting as many loci. Of these variants, 11 are inherited novel variants and one is a de novo nonsense variant, affecting STK4 gene. Moreover, we also considered rare known variants affecting loci involved in vascular differentiation. In order to explain their possible involvement in bAVM pathogenesis, we analyzed molecular networks at Cytoscape platform. In this study we focus on some genetic point variations detected in a child affected by bAVM. Therefore, we suggest these novel affected loci as prioritized for further investigation on pathogenesis of bAVM lesions.
Collapse
Affiliation(s)
- Concetta Scimone
- Department of Biomedical and Dental Science and of Morphological and Functional Images, University of Messina, Messina, Italy.,Department of Vanguard Medicine and Therapies, Biomolecular Strategies and Neuroscience, I.E.ME.S.T., Palermo, Italy
| | - Luigi Donato
- Department of Biomedical and Dental Science and of Morphological and Functional Images, University of Messina, Messina, Italy.,Department of Vanguard Medicine and Therapies, Biomolecular Strategies and Neuroscience, I.E.ME.S.T., Palermo, Italy
| | - Concetta Alafaci
- Department of Biomedical and Dental Science and of Morphological and Functional Images, University of Messina, Messina, Italy
| | - Francesca Granata
- Department of Biomedical and Dental Science and of Morphological and Functional Images, University of Messina, Messina, Italy
| | - Carmela Rinaldi
- Department of Biomedical and Dental Science and of Morphological and Functional Images, University of Messina, Messina, Italy
| | - Marcello Longo
- Department of Biomedical and Dental Science and of Morphological and Functional Images, University of Messina, Messina, Italy
| | - Rosalia D'Angelo
- Department of Biomedical and Dental Science and of Morphological and Functional Images, University of Messina, Messina, Italy.,Department of Vanguard Medicine and Therapies, Biomolecular Strategies and Neuroscience, I.E.ME.S.T., Palermo, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Science and of Morphological and Functional Images, University of Messina, Messina, Italy.,Department of Vanguard Medicine and Therapies, Biomolecular Strategies and Neuroscience, I.E.ME.S.T., Palermo, Italy
| |
Collapse
|
37
|
Meng S, Gu Q, Yang X, Lv J, Owusu I, Matrone G, Chen K, Cooke JP, Fang L. TBX20 Regulates Angiogenesis Through the Prokineticin 2-Prokineticin Receptor 1 Pathway. Circulation 2019; 138:913-928. [PMID: 29545372 DOI: 10.1161/circulationaha.118.033939] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Angiogenesis is integral for embryogenesis, and targeting angiogenesis improves the outcome of many pathological conditions in patients. TBX20 is a crucial transcription factor for embryonic development, and its deficiency is associated with congenital heart disease. However, the role of TBX20 in angiogenesis has not been described. METHODS Loss- and gain-of-function approaches were used to explore the role of TBX20 in angiogenesis both in vitro and in vivo. Angiogenesis gene array was used to identify key downstream targets of TBX20. RESULTS Unbiased gene array survey showed that TBX20 knockdown profoundly reduced angiogenesis-associated PROK2 (prokineticin 2) gene expression. Indeed, loss of TBX20 hindered endothelial cell migration and in vitro angiogenesis. In a murine angiogenesis model using subcutaneously implanted Matrigel plugs, we observed that TBX20 deficiency markedly reduced PROK2 expression and restricted intraplug angiogenesis. Furthermore, recombinant PROK2 administration enhanced angiogenesis and blood flow recovery in murine hind-limb ischemia. In zebrafish, transient knockdown of tbx20 by morpholino antisense oligos or genetic disruption of tbx20 by CRISPR/Cas9 impaired angiogenesis. Furthermore, loss of prok2 or its cognate receptor prokr1a also limited angiogenesis. In contrast, overexpression of prok2 or prokr1a rescued the impaired angiogenesis in tbx20-deficient animals. CONCLUSIONS Our study identifies TBX20 as a novel transcription factor regulating angiogenesis through the PROK2-PROKR1 (prokineticin receptor 1) pathway in both development and disease and reveals a novel mode of angiogenic regulation whereby the TBX20-PROK2-PROKR1 signaling cascade may act as a "biological capacitor" to relay and sustain the proangiogenic effect of vascular endothelial growth factor. This pathway may be a therapeutic target in the treatment of diseases with dysregulated angiogenesis.
Collapse
Affiliation(s)
- Shu Meng
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX
| | - Qilin Gu
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX
| | - Xiaojie Yang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX
| | - Jie Lv
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX
| | - Iris Owusu
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX
| | - Gianfranco Matrone
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX
| | - Kaifu Chen
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX
| | - John P Cooke
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX
| | - Longhou Fang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Recent studies demonstrate an important role of the secreted apolipoprotein A-I binding protein (AIBP) in regulation of cholesterol efflux and lipid rafts. The article discusses these findings in the context of angiogenesis and inflammation. RECENT FINDINGS Lipid rafts are cholesterol-rich and sphingomyelin-rich membrane domains in which many receptor complexes assemble upon activation. AIBP mediates selective cholesterol efflux, in part via binding to toll-like receptor-4 (TLR4) in activated macrophages and microglia, and thus reverses lipid raft increases in activated cells. Recent articles report AIBP regulation of vascular endothelial growth factor receptor-2, Notch1 and TLR4 function. In zebrafish and mouse animal models, AIBP deficiency results in accelerated angiogenesis, increased inflammation and exacerbated atherosclerosis. Spinal delivery of recombinant AIBP reduces neuraxial inflammation and reverses persistent pain state in a mouse model of chemotherapy-induced polyneuropathy. Inhalation of recombinant AIBP reduces lipopolysaccharide-induced acute lung injury in mice. These findings are discussed in the perspective of AIBP's proposed other function, as an NAD(P)H hydrate epimerase, evolving into a regulator of cholesterol trafficking and lipid rafts. SUMMARY Novel findings of AIBP regulatory circuitry affecting lipid rafts and related cellular processes may provide new therapeutic avenues for angiogenic and inflammatory diseases.
Collapse
Affiliation(s)
- Longhou Fang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist, 6550 Fannin St, TX77030
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 407 E 61st St, New York, NY 10065
| | - Yury I. Miller
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| |
Collapse
|
39
|
Zhang T, Wang Q, Wang Y, Wang J, Su Y, Wang F, Wang G. AIBP and APOA-I synergistically inhibit intestinal tumor growth and metastasis by promoting cholesterol efflux. J Transl Med 2019; 17:161. [PMID: 31101050 PMCID: PMC6524272 DOI: 10.1186/s12967-019-1910-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/07/2019] [Indexed: 12/24/2022] Open
Abstract
Background The roles played by cholesterol in cancer development and progression represent a popular field in the cancer community. High cholesterol levels are positively correlated with the risk of various types of cancer. APOA-I binding protein (AIBP) promotes the reverse cholesterol transport pathway (RCT) in cooperation with Apolipoprotein A-I (APOA-I) or high-density lipoprotein cholesterol. However, the combined effect of AIBP and APOA-I on intestinal tumor cells is still unclear. Methods Immunohistochemistry, western blot and qPCR were performed to investigate the expression of AIBP and APOA-I in intestinal tumor tissues and cell lines. The anti-tumor activity of AIBP and APOA-I was evaluated by overexpression or recombinant protein treatment. Cholesterol efflux and localization of lipid raft-related proteins were analyzed by a cholesterol efflux assay and lipid raft fraction assay, respectively. Results Here, we reported that both AIBP expression and APOA-I expression were associated with the degree of malignancy in intestinal tumors. Co-overexpression of AIBP and APOA-I more potently inhibited colon cancer cell-mediated tumor growth and metastasis compared to overexpression of each protein individually. Additionally, the recombinant fusion proteins of AIBP and APOA-I exhibited a significant therapeutic effect on tumor growth in Apcmin/+ mice as an inherited intestinal tumor model. The synergistic effect of the two proteins inhibited colon cancer cell migration, invasion and tumor-induced angiogenesis by promoting cholesterol efflux, reducing the membrane raft content, and eventually disrupting the proper localization of migration- and invasion-related proteins on the membrane raft. Moreover, cyclosporine A, a cholesterol efflux inhibitor, rescued the inhibitory effect induced by the combination of AIBP and APOA-I. Conclusions These results indicate that the combination of APOA-I and AIBP has an obvious anticancer effect on colorectal cancer by promoting cholesterol efflux. Electronic supplementary material The online version of this article (10.1186/s12967-019-1910-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.,Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, China
| | - Qilong Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Yeqi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Junping Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, China
| | - Yongping Su
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, China
| | - Fengchao Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| |
Collapse
|
40
|
Affiliation(s)
- Mary G Sorci-Thomas
- From the Departments of Medicine, Section on Endocrinology (M.G.S.-T.) and Pharmacology and Toxicology (M.G.S.-T., M.J.T.), Medical College of Wisconsin, Milwaukee.
| | - Michael J Thomas
- From the Departments of Medicine, Section on Endocrinology (M.G.S.-T.) and Pharmacology and Toxicology (M.G.S.-T., M.J.T.), Medical College of Wisconsin, Milwaukee
| |
Collapse
|
41
|
Gu Q, Yang X, Lv J, Zhang J, Xia B, Kim JD, Wang R, Xiong F, Meng S, Clements TP, Tandon B, Wagner DS, Diaz MF, Wenzel PL, Miller YI, Traver D, Cooke JP, Li W, Zon LI, Chen K, Bai Y, Fang L. AIBP-mediated cholesterol efflux instructs hematopoietic stem and progenitor cell fate. Science 2019; 363:1085-1088. [PMID: 30705153 DOI: 10.1126/science.aav1749] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/22/2019] [Indexed: 12/18/2022]
Abstract
Hypercholesterolemia, the driving force of atherosclerosis, accelerates the expansion and mobilization of hematopoietic stem and progenitor cells (HSPCs). The molecular determinants connecting hypercholesterolemia with hematopoiesis are unclear. Here, we report that a somite-derived prohematopoietic cue, AIBP, orchestrates HSPC emergence from the hemogenic endothelium, a type of specialized endothelium manifesting hematopoietic potential. Mechanistically, AIBP-mediated cholesterol efflux activates endothelial Srebp2, the master transcription factor for cholesterol biosynthesis, which in turn transactivates Notch and promotes HSPC emergence. Srebp2 inhibition impairs hypercholesterolemia-induced HSPC expansion. Srebp2 activation and Notch up-regulation are associated with HSPC expansion in hypercholesterolemic human subjects. Genome-wide chromatin immunoprecipitation followed by sequencing (ChIP-seq), RNA sequencing (RNA-seq), and assay for transposase-accessible chromatin using sequencing (ATAC-seq) indicate that Srebp2 transregulates Notch pathway genes required for hematopoiesis. Our studies outline an AIBP-regulated Srebp2-dependent paradigm for HSPC emergence in development and HPSC expansion in atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Qilin Gu
- Center for Cardiovascular Regeneration, Houston Methodist, 6550 Fannin Street, Houston, TX 77030, USA
| | - Xiaojie Yang
- Center for Cardiovascular Regeneration, Houston Methodist, 6550 Fannin Street, Houston, TX 77030, USA
| | - Jie Lv
- Center for Cardiovascular Regeneration, Houston Methodist, 6550 Fannin Street, Houston, TX 77030, USA.,Center for Bioinformatics and Computational Biology, Department of Cardiovascular Sciences, Houston Methodist, 6550 Fannin Street, Houston, TX 77030, USA
| | - Jiaxiong Zhang
- Center for Cardiovascular Regeneration, Houston Methodist, 6550 Fannin Street, Houston, TX 77030, USA.,Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Bo Xia
- Center for Cardiovascular Regeneration, Houston Methodist, 6550 Fannin Street, Houston, TX 77030, USA.,Center for Bioinformatics and Computational Biology, Department of Cardiovascular Sciences, Houston Methodist, 6550 Fannin Street, Houston, TX 77030, USA
| | - Jun-Dae Kim
- Center for Cardiovascular Regeneration, Houston Methodist, 6550 Fannin Street, Houston, TX 77030, USA
| | - Ruoyu Wang
- Department of Biochemistry and Molecular Biology, UTHealth McGovern Medical School, University of Texas MD Anderson Cancer Center and UTHealth Houston, Houston, TX 77030, USA.,Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth Houston, Houston, TX 77030, USA
| | - Feng Xiong
- Department of Biochemistry and Molecular Biology, UTHealth McGovern Medical School, University of Texas MD Anderson Cancer Center and UTHealth Houston, Houston, TX 77030, USA
| | - Shu Meng
- Center for Cardiovascular Regeneration, Houston Methodist, 6550 Fannin Street, Houston, TX 77030, USA
| | | | - Bhavna Tandon
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Daniel S Wagner
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Miguel F Diaz
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Pamela L Wenzel
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yury I Miller
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - David Traver
- Division of Biological Sciences, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - John P Cooke
- Center for Cardiovascular Regeneration, Houston Methodist, 6550 Fannin Street, Houston, TX 77030, USA.,Houston Methodist Institute for Academic Medicine, Houston Methodist Research Institute, Houston Methodist, 6550 Fannin Street, Houston, TX 77030, USA.,Department of Cardiothoracic Surgeries, Weill Cornell Medical College, Cornell University, Ithaca, NY 10065, USA
| | - Wenbo Li
- Department of Biochemistry and Molecular Biology, UTHealth McGovern Medical School, University of Texas MD Anderson Cancer Center and UTHealth Houston, Houston, TX 77030, USA.,Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth Houston, Houston, TX 77030, USA
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kaifu Chen
- Center for Cardiovascular Regeneration, Houston Methodist, 6550 Fannin Street, Houston, TX 77030, USA. .,Center for Bioinformatics and Computational Biology, Department of Cardiovascular Sciences, Houston Methodist, 6550 Fannin Street, Houston, TX 77030, USA.,Houston Methodist Institute for Academic Medicine, Houston Methodist Research Institute, Houston Methodist, 6550 Fannin Street, Houston, TX 77030, USA.,Department of Cardiothoracic Surgeries, Weill Cornell Medical College, Cornell University, Ithaca, NY 10065, USA
| | - Yongping Bai
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China.
| | - Longhou Fang
- Center for Cardiovascular Regeneration, Houston Methodist, 6550 Fannin Street, Houston, TX 77030, USA. .,Houston Methodist Institute for Academic Medicine, Houston Methodist Research Institute, Houston Methodist, 6550 Fannin Street, Houston, TX 77030, USA.,Department of Cardiothoracic Surgeries, Weill Cornell Medical College, Cornell University, Ithaca, NY 10065, USA.,Department of Obstetrics and Gynecology, Houston Methodist, 6550 Fannin Street, Houston, TX 77030, USA
| |
Collapse
|
42
|
Shi Y, Lv X, Liu Y, Li B, Liu M, Yan M, Liu Y, Li Q, Zhang X, He S, Zhu M, He J, Zhu Y, Zhu Y, Ai D. Elevating ATP‐binding cassette transporter G1 improves re‐endothelialization function of endothelial progenitor cells
via
Lyn/Akt/eNOS in diabetic mice. FASEB J 2018; 32:6525-6536. [DOI: 10.1096/fj.201800248rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ying Shi
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and PathophysiologyTianjin Medical UniversityTianjinChina
| | - Xue Lv
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and PathophysiologyTianjin Medical UniversityTianjinChina
| | - Yanan Liu
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and PathophysiologyTianjin Medical UniversityTianjinChina
| | - Bochuan Li
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and PathophysiologyTianjin Medical UniversityTianjinChina
| | - Mingming Liu
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and PathophysiologyTianjin Medical UniversityTianjinChina
| | - Meng Yan
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and PathophysiologyTianjin Medical UniversityTianjinChina
| | - Yajin Liu
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and PathophysiologyTianjin Medical UniversityTianjinChina
| | - Qi Li
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and PathophysiologyTianjin Medical UniversityTianjinChina
| | - Xuejiao Zhang
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and PathophysiologyTianjin Medical UniversityTianjinChina
| | - Shuang He
- Tianjin Institute of Cardiovascular DiseaseTianjin Chest HospitalTianjinChina
| | - Mason Zhu
- Department of Molecular BiologyUniversity of CaliforniaSan Diego La JollaCaliforniaUSA
| | - Jinlong He
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and PathophysiologyTianjin Medical UniversityTianjinChina
| | - Yan Zhu
- Tianjin Key Laboratory of Modern Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Yi Zhu
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and PathophysiologyTianjin Medical UniversityTianjinChina
| | - Ding Ai
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and PathophysiologyTianjin Medical UniversityTianjinChina
| |
Collapse
|
43
|
Becker-Kettern J, Paczia N, Conrotte JF, Zhu C, Fiehn O, Jung PP, Steinmetz LM, Linster CL. NAD(P)HX repair deficiency causes central metabolic perturbations in yeast and human cells. FEBS J 2018; 285:3376-3401. [PMID: 30098110 DOI: 10.1111/febs.14631] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/20/2018] [Accepted: 08/08/2018] [Indexed: 12/20/2022]
Abstract
NADHX and NADPHX are hydrated and redox inactive forms of the NADH and NADPH cofactors, known to inhibit several dehydrogenases in vitro. A metabolite repair system that is conserved in all domains of life and that comprises the two enzymes NAD(P)HX dehydratase and NAD(P)HX epimerase, allows reconversion of both the S- and R-epimers of NADHX and NADPHX to the normal cofactors. An inherited deficiency in this system has recently been shown to cause severe neurometabolic disease in children. Although evidence for the presence of NAD(P)HX has been obtained in plant and human cells, little is known about the mechanism of formation of these derivatives in vivo and their potential effects on cell metabolism. Here, we show that NAD(P)HX dehydratase deficiency in yeast leads to an important, temperature-dependent NADHX accumulation in quiescent cells with a concomitant depletion of intracellular NAD+ and serine pools. We demonstrate that NADHX potently inhibits the first step of the serine synthesis pathway in yeast. Human cells deficient in the NAD(P)HX dehydratase also accumulated NADHX and showed decreased viability. In addition, those cells consumed more glucose and produced more lactate, potentially indicating impaired mitochondrial function. Our results provide first insights into how NADHX accumulation affects cellular functions and pave the way for a better understanding of the mechanism(s) underlying the rapid and severe neurodegeneration leading to early death in NADHX repair-deficient children.
Collapse
Affiliation(s)
- Julia Becker-Kettern
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Nicole Paczia
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Jean-François Conrotte
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Chenchen Zhu
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Oliver Fiehn
- NIH West Coast Metabolomics Center, University of California Davis, CA, USA
| | - Paul P Jung
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Lars M Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany.,Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA.,Department of Genetics, Stanford University School of Medicine, CA, USA
| | - Carole L Linster
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
44
|
Zhang M, Zhao GJ, Yao F, Xia XD, Gong D, Zhao ZW, Chen LY, Zheng XL, Tang XE, Tang CK. AIBP reduces atherosclerosis by promoting reverse cholesterol transport and ameliorating inflammation in apoE −/− mice. Atherosclerosis 2018; 273:122-130. [DOI: 10.1016/j.atherosclerosis.2018.03.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 02/22/2018] [Accepted: 03/06/2018] [Indexed: 01/09/2023]
|
45
|
Evidence that the metabolite repair enzyme NAD(P)HX epimerase has a moonlighting function. Biosci Rep 2018; 38:BSR20180223. [PMID: 29654173 PMCID: PMC5938422 DOI: 10.1042/bsr20180223] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/04/2018] [Accepted: 04/09/2018] [Indexed: 11/25/2022] Open
Abstract
NAD(P)H-hydrate epimerase (EC 5.1.99.6) is known to help repair NAD(P)H hydrates (NAD(P)HX), which are damage products existing as R and S epimers. The S epimer is reconverted to NAD(P)H by a dehydratase; the epimerase facilitates epimer interconversion. Epimerase deficiency in humans causes a lethal disorder attributed to NADHX accumulation. However, bioinformatic evidence suggest caution about this attribution by predicting that the epimerase has a second function connected to vitamin B6 (pyridoxal 5′-phosphate and related compounds). Specifically, (i) the epimerase is fused to a B6 salvage enzyme in plants, (ii) epimerase genes cluster on the chromosome with B6-related genes in bacteria, and (iii) epimerase and B6-related genes are coexpressed in yeast and Arabidopsis. The predicted second function was explored in Escherichia coli, whose epimerase and dehydratase are fused and encoded by yjeF. The putative NAD(P)HX epimerase active site has a conserved lysine residue (K192 in E. coli YjeF). Changing this residue to alanine cut in vitro epimerase activity by ≥95% but did not affect dehydratase activity. Mutant cells carrying the K192A mutation had essentially normal NAD(P)HX dehydratase activity and NAD(P)HX levels, showing that the mutation had little impact on NAD(P)HX repair in vivo. However, these cells showed metabolome changes, particularly in amino acids, which exceeded those in cells lacking the entire yjeF gene. The K192A mutant cells also had reduced levels of ‘free’ (i.e. weakly bound or unbound) pyridoxal 5'-phosphate. These results provide circumstantial evidence that the epimerase has a metabolic function beyond NAD(P)HX repair and that this function involves vitamin B6.
Collapse
|
46
|
Affiliation(s)
- Hainan Chen
- Research Lab for Clinical & Translational Medicine, Medical School, and Institute of Cardiovascular Disease, Key Laboratory Atherosclerology of Hunan Province; University of South China; Hengyang 421001, China
| | - Kai Yin
- Research Lab for Clinical & Translational Medicine, Medical School, and Institute of Cardiovascular Disease, Key Laboratory Atherosclerology of Hunan Province; University of South China; Hengyang 421001, China
| |
Collapse
|
47
|
Li H, Ouyang XP, Jiang T, Zheng XL, He PP, Zhao GJ. MicroRNA-296: a promising target in the pathogenesis of atherosclerosis? Mol Med 2018; 24:12. [PMID: 30134788 PMCID: PMC6016874 DOI: 10.1186/s10020-018-0012-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/06/2018] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis has been recognized as an inflammatory disease involving the vascular wall. MicroRNAs are a group of small noncoding RNAs to regulate gene expression at the transcriptional level through mRNA degradation or translation repression. Recent studies suggest that miR-296 may play crucial roles in the regulation of angiogenesis, inflammatory response, cholesterol metabolism, hypertension, cellular proliferation and apoptosis. In this review, we primarily discussed the molecular targets of miR-296 involved in the development of atherosclerosis, which may provide a basis for future investigation and a better understanding of the biological functions of miR-296 in atherosclerosis.
Collapse
Affiliation(s)
- Heng Li
- The Clinic Medical College, Guilin Medical University, No. 1 Zhiyuan Road, Guilin, Guangxi, 541100, China
| | - Xin-Ping Ouyang
- Hunan Province Cooperative innovation Center for Molecular Target New Drug Study, 28 West Changsheng Road, Hengyang, Hunan, 421001, China.,Department of Physiology, The Neuroscience Institute, Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Ting Jiang
- Department of Practice educational, Office of Academic Affairs, Guilin Medical University, Guilin, 541100, China
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, The University of Calgary, Health Sciences Center, 3330 Hospital Dr. NW, Calgary, AB, T2N 4N1, Canada.,Key Laboratory of Molecular Targets & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Ping-Ping He
- Hunan Province Cooperative innovation Center for Molecular Target New Drug Study, 28 West Changsheng Road, Hengyang, Hunan, 421001, China. .,Nursing School, University of South China, Hengyang, Hunan, 421001, China.
| | - Guo-Jun Zhao
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, The University of Calgary, Health Sciences Center, 3330 Hospital Dr. NW, Calgary, AB, T2N 4N1, Canada. .,Department of Histology and Embryology, Guilin Medical University, Guilin, Guangxi, 541004, China.
| |
Collapse
|
48
|
Schneider DA, Choi SH, Agatisa-Boyle C, Zhu L, Kim J, Pattison J, Sears DD, Gordts PLSM, Fang L, Miller YI. AIBP protects against metabolic abnormalities and atherosclerosis. J Lipid Res 2018; 59:854-863. [PMID: 29559522 PMCID: PMC5928435 DOI: 10.1194/jlr.m083618] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/20/2018] [Indexed: 12/15/2022] Open
Abstract
Apolipoprotein A-I binding protein (AIBP) has been shown to augment cholesterol efflux from endothelial cells and macrophages. In zebrafish and mice, AIBP-mediated regulation of cholesterol levels in the plasma membrane of endothelial cells controls angiogenesis. The goal of this work was to evaluate metabolic changes and atherosclerosis in AIBP loss-of-function and gain-of-function animal studies. Here, we show that Apoa1bp-/-Ldlr-/- mice fed a high-cholesterol, high-fat diet had exacerbated weight gain, liver steatosis, glucose intolerance, hypercholesterolemia, hypertriglyceridemia, and larger atherosclerotic lesions compared with Ldlr-/- mice. Feeding Apoa1bp-/-Ldlr-/- mice a high-cholesterol, normal-fat diet did not result in significant differences in lipid levels or size of atherosclerotic lesions from Ldlr-/- mice. Conversely, adeno-associated virus-mediated overexpression of AIBP reduced hyperlipidemia and atherosclerosis in high-cholesterol, high-fat diet-fed Ldlr-/- mice. Injections of recombinant AIBP reduced aortic inflammation in Ldlr-/- mice fed a short high-cholesterol, high-fat diet. Conditional overexpression of AIBP in zebrafish also reduced diet-induced vascular lipid accumulation. In experiments with isolated macrophages, AIBP facilitated cholesterol efflux to HDL, reduced lipid rafts content, and inhibited inflammatory responses to lipopolysaccharide.jlr Our data demonstrate that AIBP confers protection against diet-induced metabolic abnormalities and atherosclerosis.
Collapse
Affiliation(s)
- Dina A Schneider
- Departments of Medicine University of California at San Diego, La Jolla, CA 92093
| | - Soo-Ho Choi
- Departments of Medicine University of California at San Diego, La Jolla, CA 92093
| | - Colin Agatisa-Boyle
- Departments of Medicine University of California at San Diego, La Jolla, CA 92093
| | - Laurence Zhu
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030
| | - Jungsu Kim
- Departments of Medicine University of California at San Diego, La Jolla, CA 92093
| | - Jennifer Pattison
- Departments of Medicine University of California at San Diego, La Jolla, CA 92093
| | - Dorothy D Sears
- Departments of Medicine University of California at San Diego, La Jolla, CA 92093.,Family Medicine and Public Health, University of California at San Diego, La Jolla, CA 92093
| | - Philip L S M Gordts
- Departments of Medicine University of California at San Diego, La Jolla, CA 92093
| | - Longhou Fang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030
| | - Yury I Miller
- Departments of Medicine University of California at San Diego, La Jolla, CA 92093
| |
Collapse
|