1
|
Rives D, Peak C, Blenner MA. RNASeq highlights ATF6 pathway regulators for CHO cell engineering with different impacts of ATF6β and WFS1 knockdown on fed-batch production of IgG 1. Sci Rep 2024; 14:14141. [PMID: 38898154 PMCID: PMC11187196 DOI: 10.1038/s41598-024-64767-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
Secretion levels required of industrial Chinese hamster ovary (CHO) cell lines can challenge endoplasmic reticulum (ER) homeostasis, and ER stress caused by accumulation of misfolded proteins can be a bottleneck in biomanufacturing. The unfolded protein response (UPR) is initiated to restore homeostasis in response to ER stress, and optimization of the UPR can improve CHO cell production of therapeutic proteins. We compared the fed-batch growth, production characteristics, and transcriptomic response of an immunoglobulin G1 (IgG1) producer to its parental, non-producing host cell line. We conducted differential gene expression analysis using high throughput RNA sequencing (RNASeq) and quantitative polymerase chain reaction (qPCR) to study the ER stress response of each cell line during fed-batch culture. The UPR was activated in the IgG1 producer compared to the host cell line and our analysis of differential expression profiles indicated transient upregulation of ATF6α target mRNAs in the IgG1 producer, suggesting two upstream regulators of the ATF6 arm of the UPR, ATF6β and WFS1, are rational engineering targets. Although both ATF6β and WFS1 have been reported to negatively regulate ATF6α, this study shows knockdown of either target elicits different effects in an IgG1-producing CHO cell line. Stable knockdown of ATF6β decreased cell growth without decreasing titer; however, knockdown of WFS1 decreased titer without affecting growth. Relative expression measured by qPCR indicated no direct relationship between ATF6β and WFS1 expression, but upregulation of WFS1 in one pool was correlated with decreased growth and upregulation of ER chaperone mRNAs. While knockdown of WFS1 had negative impacts on UPR activation and product mRNA expression, knockdown of ATF6β improved the UPR specifically later in fed-batch leading to increased overall productivity.
Collapse
Affiliation(s)
- Dyllan Rives
- Department of Chemical & Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd., Clemson, SC, 29634-0909, USA
| | - Caroline Peak
- Department of Chemical & Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd., Clemson, SC, 29634-0909, USA
| | - Mark A Blenner
- Department of Chemical & Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd., Clemson, SC, 29634-0909, USA.
- Department of Chemical & Biomolecular Engineering, University of Delaware, 590 Avenue 1743, Newark, DE, 19713, USA.
| |
Collapse
|
2
|
Liu GX, Tian Y, Cheng CH, Ma HL, Fan SG, Deng YQ, Feng J, Jiang JJ, Guo ZX. Identification and functional characterization of activating transcription factor 6 (ATF6) from the mud crab (Scylla paramamosain) in response to hydrogen peroxide and bacterial challenge. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109235. [PMID: 37989447 DOI: 10.1016/j.fsi.2023.109235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 11/23/2023]
Abstract
Activating transcription factor 6 (ATF6) is critical for regulation of unfolded protein response (UPR), which is involved in the endoplasmic reticulum (ER) proteostasis maintenance and cellular redox regulation. In the present study, a ATF6 gene from the mud crab (designated as Sp-ATF6) has been cloned and identified. The open reading frame of Sp-ATF6 was 1917 bp, encoding a protein of 638 amino acids. The deduced amino acid sequences of Sp-ATF6 contained a typical basic leucine zipper (BZIP domain). Sp-ATF6 was widely expressed in all tested tissues, with the highest expression levels in the hemocytes and the lowest in the muscle. Subcellular localization showed that Sp-ATF6 was expressed in both nucleus and cytoplasm of S2 cells. The expression level of Sp-ATF6 was induced by hydrogen peroxide and V. parahaemolyticus challenge, indicating that the ATF6 pathway was activated in response to ER stress. In order to know more about the regulation mechanism of the Sp-ATF6, RNA interference experiment was investigated. Knocking down Sp-ATF6 in vivo can decrease the expression of antioxidant-related genes (CAT and SOD) and heat shock proteins (HSP90 and HSP70) after V. parahaemolyticus infection. All these results suggested that Sp-ATF6 played a crucial role in the defense against environmental stress and pathogen infection in crustaceans.
Collapse
Affiliation(s)
- Guang-Xin Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China, PR China
| | - Yu Tian
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China, PR China
| | - Chang-Hong Cheng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China, PR China.
| | - Hong-Ling Ma
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China, PR China
| | - Si-Gang Fan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China, PR China
| | - Yi-Qin Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China, PR China
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China, PR China
| | - Jian-Jun Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China, PR China
| | - Zhi-Xun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China, PR China.
| |
Collapse
|
3
|
Tardigrada: An Emerging Animal Model to Study the Endoplasmic Reticulum Stress Response to Environmental Extremes. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021. [PMID: 34050872 DOI: 10.1007/978-3-030-67696-4_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Tardigrada (also known as "water bears") are hydrophilous microinvertebrates with a bilaterally symmetrical body and four pairs of legs usually terminating with claws. Water bears are quite complex animals and range from 50 to 1200 μm in length. Their body is divided into a head segment and four trunk segments, each bearing a pair of legs. They inhabit almost all terrestrial and aquatic environments, from the ocean depths to highest mountains ranges. However, one of their best known and unusual features is their capability for cryptobiosis. In this state tardigrades are able to survive extremely low and high temperatures and atmospheric pressures, complete lack of water, high doses of radiation, high concentrations of toxins and even a cosmic vacuum. The cellular mechanisms enabling cryptobiosis are poorly understood, although it appears the synthesis of certain types of molecules (sugars and proteins) enable the prevention of cellular damage at different levels. The endoplasmic reticulum (ER) is a morphologically and functionally diverse organelle able to integrate multiple extracellular and internal signals and generate adaptive cellular responses. However, the ER morphology and activity in the case of tardigrades has been studied rarely and in the context of oogenesis, functioning of the digestive system, and in the role and function of storage cells. Thus, there are no direct studies on the contribution of the ER in the ability of this organism to cope with environmental stress during cryptobiosis. Nevertheless, it is highly probable that the ER has a crucial role in this uncommon process. Since water bears are easy to handle laboratory animals, they may represent an ideal model organism to uncover the important role of the ER in the cell response to extreme environmental stress conditions.
Collapse
|
4
|
Fernandes-da-Silva A, Miranda CS, Santana-Oliveira DA, Oliveira-Cordeiro B, Rangel-Azevedo C, Silva-Veiga FM, Martins FF, Souza-Mello V. Endoplasmic reticulum stress as the basis of obesity and metabolic diseases: focus on adipose tissue, liver, and pancreas. Eur J Nutr 2021; 60:2949-2960. [PMID: 33742254 DOI: 10.1007/s00394-021-02542-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 03/11/2021] [Indexed: 12/11/2022]
Abstract
Obesity challenges lipid and carbohydrate metabolism. The resulting glucolipotoxicity causes endoplasmic reticulum (ER) dysfunction, provoking the accumulation of immature proteins, which triggers the unfolded protein reaction (UPR) as an attempt to reestablish ER homeostasis. When the three branches of UPR fail to correct the unfolded/misfolded proteins, ER stress happens. Excessive dietary saturated fatty acids or fructose exhibit the same impact on the ER stress, induced by excessive ectopic fat accumulation or rising blood glucose levels, and meta-inflammation. These metabolic abnormalities can alleviate through dietary interventions. Many pathways are disrupted in adipose tissue, liver, and pancreas during ER stress, compromising browning and thermogenesis, favoring hepatic lipogenesis, and impairing glucose-stimulated insulin secretion within pancreatic beta cells. As a result, ER stress takes part in obesity, hepatic steatosis, and diabetes pathogenesis, arising as a potential target to treat or even prevent metabolic diseases. The scientific community seeks strategies to alleviate ER stress by avoiding inflammation, apoptosis, lipogenesis suppression, and insulin sensitivity augmentation through pharmacological and non-pharmacological interventions. This comprehensive review aimed to describe the contribution of excessive dietary fat or sugar to ER stress and the impact of this adverse cellular environment on adipose tissue, liver, and pancreas function.
Collapse
Affiliation(s)
- Aline Fernandes-da-Silva
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Av 28 de Setembro 87 fds, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Carolline Santos Miranda
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Av 28 de Setembro 87 fds, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Daiana Araujo Santana-Oliveira
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Av 28 de Setembro 87 fds, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Brenda Oliveira-Cordeiro
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Av 28 de Setembro 87 fds, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Camilla Rangel-Azevedo
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Av 28 de Setembro 87 fds, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Flávia Maria Silva-Veiga
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Av 28 de Setembro 87 fds, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Fabiane Ferreira Martins
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Av 28 de Setembro 87 fds, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Av 28 de Setembro 87 fds, Rio de Janeiro, RJ, 20551-030, Brazil.
| |
Collapse
|
5
|
Huang J, Pan H, Wang J, Wang T, Huo X, Ma Y, Lu Z, Sun B, Jiang H. Unfolded protein response in colorectal cancer. Cell Biosci 2021; 11:26. [PMID: 33514437 PMCID: PMC7844992 DOI: 10.1186/s13578-021-00538-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a gastrointestinal malignancy originating from either the colon or the rectum. A growing number of researches prove that the unfolded protein response (UPR) is closely related to the occurrence and progression of colorectal cancer. The UPR has three canonical endoplasmic reticulum (ER) transmembrane protein sensors: inositol requiring kinase 1 (IRE1), pancreatic ER eIF2α kinase (PERK), and activating transcription factor 6 (ATF6). Each of the three pathways is closely associated with CRC development. The three pathways are relatively independent as well as interrelated. Under ER stress, the activated UPR boosts the protein folding capacity to maximize cell adaptation and survival, whereas sustained or excessive ER triggers cell apoptosis conversely. The UPR involves different stages of CRC pathogenesis, promotes or hinders the progression of CRC, and will pave the way for novel therapeutic and diagnostic approaches. Meanwhile, the correlation between different signal branches in UPR and the switch between the adaptation and apoptosis pathways still need to be further investigated in the future.
Collapse
Affiliation(s)
- Jingjing Huang
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, People's Republic of China
| | - Huayang Pan
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, People's Republic of China
| | - Jinge Wang
- The Second Affiliated Hospital & College of Nursing, Harbin Medical University, Harbin, People's Republic of China
| | - Tong Wang
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, People's Republic of China
| | - Xiaoyan Huo
- Pediatrics Department of The First Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Yong Ma
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, People's Republic of China
| | - Zhaoyang Lu
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, People's Republic of China
| | - Bei Sun
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, People's Republic of China
| | - Hongchi Jiang
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, People's Republic of China.
| |
Collapse
|
6
|
Llanos-González E, Henares-Chavarino ÁA, Pedrero-Prieto CM, García-Carpintero S, Frontiñán-Rubio J, Sancho-Bielsa FJ, Alcain FJ, Peinado JR, Rabanal-Ruíz Y, Durán-Prado M. Interplay Between Mitochondrial Oxidative Disorders and Proteostasis in Alzheimer's Disease. Front Neurosci 2020; 13:1444. [PMID: 32063825 PMCID: PMC7000623 DOI: 10.3389/fnins.2019.01444] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/24/2019] [Indexed: 12/14/2022] Open
Abstract
Although the basis of Alzheimer’s disease (AD) etiology remains unknown, oxidative stress (OS) has been recognized as a prodromal factor associated to its progression. OS refers to an imbalance between oxidant and antioxidant systems, which usually consist in an overproduction of reactive oxygen species (ROS) and reactive nitrogen species (RNS) which overwhelms the intrinsic antioxidant defenses. Due to this increased production of ROS and RNS, several biological functions such as glucose metabolism or synaptic activity are impaired. In AD, growing evidence links the ROS-mediated damages with molecular targets including mitochondrial dynamics and function, protein quality control system, and autophagic pathways, affecting the proteostasis balance. In this scenario, OS should be considered as not only a major feature in the pathophysiology of AD but also a potential target to combat the progression of the disease. In this review, we will discuss the role of OS in mitochondrial dysfunction, protein quality control systems, and autophagy associated to AD and suggest innovative therapeutic strategies based on a better understanding of the role of OS and proteostasis.
Collapse
Affiliation(s)
- Emilio Llanos-González
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain.,Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | | | - Cristina María Pedrero-Prieto
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain.,Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Sonia García-Carpintero
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain.,Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Javier Frontiñán-Rubio
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain.,Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Francisco Javier Sancho-Bielsa
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain.,Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Francisco Javier Alcain
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain.,Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Juan Ramón Peinado
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain.,Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Yoana Rabanal-Ruíz
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain.,Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Mario Durán-Prado
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain.,Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
7
|
Bian M, He J, Jin H, Lian N, Shao J, Guo Q, Wang S, Zhang F, Zheng S. Oroxylin A induces apoptosis of activated hepatic stellate cells through endoplasmic reticulum stress. Apoptosis 2019; 24:905-920. [DOI: 10.1007/s10495-019-01568-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Tavasolian F, Hosseini AZ, Mirzaei A, Abdollahi E, Jandaghi P, Soudi S, Naderi M, Saburi E, Momtazi-Borojeni AA, Johnston TP, Sahebkar A. Unfolded protein response-mediated modulation of mesenchymal stem cells. IUBMB Life 2019; 72:187-197. [PMID: 31444957 DOI: 10.1002/iub.2154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 08/06/2019] [Indexed: 12/21/2022]
Abstract
The endoplasmic reticulum (ER) receives unfolded proteins predestined for the secretory pathway or to be incorporated as transmembrane proteins. The ER has to accommodate the proper folding and glycosylation of these proteins and also to properly incorporate transmembrane proteins. However, under various circumstances, the proteins shuttling through the ER can be misfolded and undergo aggregation, which causes activation of the unfolded protein response (UPR). The UPR is mediated through three primary pathways: activating transcription factor-6, inositol-requiring enzyme-1 (IRE1), and PKR-like endoplasmic reticulum kinase, which up-regulate ER folding chaperones and temporarily suppress protein translation. The UPR can be both cytoprotective and/or cytotoxic depending on the duration of UPR activation and the type of host cell. Proteostasis controls stem cell function, while stress responses affect stem cell identity and differentiation. The present review aimed to explore and discuss the effects of the UPR pathways on mesenchymal stem cells.
Collapse
Affiliation(s)
- Fataneh Tavasolian
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Ahmad Z Hosseini
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Mirzaei
- Cellular & Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.,Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Elham Abdollahi
- Halal Research Center of IRI, FDA, Tehran, Iran.,Department of Medical Immunology and Allergy, Student Research Committee, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Mater Research Institute, University of Queensland, Brisbane, Australia
| | | | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahmood Naderi
- Cell-Based Therapies Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Saburi
- Clinical Research Development Center, Imam Hasan Hospital, North Khorasan University of Medical Sciences, Bojnurd, Iran.,Immunogenetic and Cell Culture Department, Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Abbas Momtazi-Borojeni
- Halal Research Center of IRI, FDA, Tehran, Iran.,Nanotechnology Research Center, Department of Medical Biotechnology, Student Research Committee, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Science, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Network pharmacology-based identification of major component of Angelica sinensis and its action mechanism for the treatment of acute myocardial infarction. Biosci Rep 2018; 38:BSR20180519. [PMID: 30232231 PMCID: PMC6239257 DOI: 10.1042/bsr20180519] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 01/06/2023] Open
Abstract
Background: To decipher the mechanisms of Angelica sinensis for the treatment of acute myocardial infarction (AMI) using network pharmacology analysis. Methods: Databases were searched for the information on constituents, targets, and diseases. Cytoscape software was used to construct the constituent–target–disease network and screen the major targets, which were annotated with the DAVID (Database for Annotation, Visualization and Integrated Discovery) tool. The cardioprotective effects of Angelica sinensis polysaccharide (ASP), a major component of A. sinensis, were validated both in H9c2 cells subjected to simulated ischemia by oxygen and glucose deprivation and in rats with AMI by ligation of the left anterior coronary artery. Results: We identified 228 major targets against AMI injury for A. sinensis, which regulated multiple pathways and hit multiple targets involved in several biological processes. ASP significantly decreased endoplasmic reticulum (ER) stress-induced cell death both in vitro and in vivo. In ischemia injury rats, ASP treatment reduced infarct size and preserved heart function. ASP enhanced activating transcription factor 6 (ATF6) activity, which improved ER-protein folding capacity. ASP activated the expression of p-AMP-activated protein kinase (p-AMPK) and peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α). Additionally, ASP attenuated levels of proinflammatory cytokines and maintained a balance in the oxidant/antioxidant levels after AMI. Conclusion:In silico analysis revealed the associations between A. sinensis and AMI through multiple targets and several key signaling pathways. Experimental data indicate that ASP protects the heart against ischemic injury by activating ATF6 to ameliorate the detrimental ER stress. ASP’s effects could be mediated via the activation of AMPK-PGC1α pathway.
Collapse
|
10
|
Niu X, Zhang J, Ling C, Bai M, Peng Y, Sun S, Li Y, Zhang Z. Polysaccharide from Angelica sinensis protects H9c2 cells against oxidative injury and endoplasmic reticulum stress by activating the ATF6 pathway. J Int Med Res 2018. [PMID: 29517941 PMCID: PMC5991254 DOI: 10.1177/0300060518758863] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objectives Angelica sinensis exerts various pharmacological effects, such as antioxidant and anti-apoptotic activity. This study aimed to investigate the active ingredients in A. sinensis with antioxidant properties and whether A. sinensis polysaccharide (ASP) protects H9c2 cells against oxidative and endoplasmic reticulum (ER) stress. Methods The ingredients of A. sinensis and their targets and related pathways were determined using web-based databases. Markers of oxidative stress, cell viability, apoptosis, and ER stress-related signalling pathways were measured in H9c2 cells treated with hydrogen peroxide (H2O2) and ASP. Results The ingredient–pathway–disease network showed that A. sinensis exerted protective effects against oxidative injury through its various active ingredients on regulation of multiple pathways. Subsequent experiments showed that ASP pretreatment significantly decreased H2O2-induced cytotoxicity and apoptosis in H9c2 cells. ASP pretreatment inhibited H2O2-induced reactive oxygen species generation, lactic dehydrogenase release, and malondialdehyde production. ASP exerted beneficial effects by inducing activating transcription factor 6 (ATF6) and increasing ATF6 target protein levels, which in turn attenuated ER stress and increased antioxidant activity. Conclusions Our findings indicate that ASP, a major water-soluble component of A. sinensis, exerts protective effects against H2O2-induced injury in H9c2 cells by activating the ATF6 pathway, thus ameliorating ER and oxidative stress.
Collapse
Affiliation(s)
- Xiaowei Niu
- 1 The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
| | | | - Chun Ling
- 3 The First People's Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Ming Bai
- 4 Department of Cardiology, the First Hospital of Lanzhou University, Lanzhou, Gansu, China.,5 Gansu Key Laboratory of Cardiovascular Disease, Lanzhou, Gansu, China
| | - Yu Peng
- 4 Department of Cardiology, the First Hospital of Lanzhou University, Lanzhou, Gansu, China.,5 Gansu Key Laboratory of Cardiovascular Disease, Lanzhou, Gansu, China
| | - Shaobo Sun
- 6 Key Lab of Prevention and Treatment for Chronic Disease, Traditional Chinese Medicine of Gansu Province, Lanzhou, Gansu, China
| | - Yingdong Li
- 6 Key Lab of Prevention and Treatment for Chronic Disease, Traditional Chinese Medicine of Gansu Province, Lanzhou, Gansu, China
| | - Zheng Zhang
- 4 Department of Cardiology, the First Hospital of Lanzhou University, Lanzhou, Gansu, China.,5 Gansu Key Laboratory of Cardiovascular Disease, Lanzhou, Gansu, China
| |
Collapse
|