1
|
Giri S, Katakia YT, Chatterjee S, Gajalakshmi P. Breast cancer drugs perturb fundamental vascular functions of endothelial cells by attenuating protein S-nitrosylation. Clin Exp Pharmacol Physiol 2019; 47:7-15. [PMID: 31549415 DOI: 10.1111/1440-1681.13181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/28/2019] [Accepted: 09/20/2019] [Indexed: 11/29/2022]
Abstract
Cardiovascular side effects of broadly used chemotherapeutic drugs such as Tamoxifen citrate (TC), Capecitabine (CP) and Epirubicin (EP) among cancer survivors are well established. Nitric oxide (NO) is known to protect cardiovascular tissues under conditions of stress. NO can act through cyclic guanosine monophosphate (cGMP)-dependent and -independent pathways. Particularly, the S-nitrosylation of SH-groups in a protein by NO falls under cGMP-independent effects of NO. TC, CP, and EP are hypothesized as interfering with cellular protein S-nitrosylation, which, in turn, may lead to endothelial dysfunctions. The results show that all three drugs attenuate nitrosylated proteins in endothelial cells. A significant reduction in endogenous S-nitrosylated proteins was revealed by Saville-Griess assay, immunofluorescence and western blot. Incubation with the drugs causes a reduction in endothelial migration, vasodilation and tube formation, while the addition of S-nitrosoglutathione (GSNO) has a reversal of this effect. In conclusion, results indicate the possibility of decreased cellular nitrosothiols as being one of the reasons for endothelial dysfunctions under TC, CP and EP treatment. Identification of the down-regulated S-nitrosylated proteins so as to correlate their implications on fundamental vascular functions could be an interesting phenomenon.
Collapse
Affiliation(s)
- Suvendu Giri
- Department of Biotechnology & AU-KBC Research Centre, Anna University, Chennai, India
| | - Yash Tushar Katakia
- Department of Biotechnology & AU-KBC Research Centre, Anna University, Chennai, India
| | - Suvro Chatterjee
- Department of Biotechnology & AU-KBC Research Centre, Anna University, Chennai, India
| | | |
Collapse
|
2
|
Premont RT, Reynolds JD, Zhang R, Stamler JS. Role of Nitric Oxide Carried by Hemoglobin in Cardiovascular Physiology: Developments on a Three-Gas Respiratory Cycle. Circ Res 2019; 126:129-158. [PMID: 31590598 DOI: 10.1161/circresaha.119.315626] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A continuous supply of oxygen is essential for the survival of multicellular organisms. The understanding of how this supply is regulated in the microvasculature has evolved from viewing erythrocytes (red blood cells [RBCs]) as passive carriers of oxygen to recognizing the complex interplay between Hb (hemoglobin) and oxygen, carbon dioxide, and nitric oxide-the three-gas respiratory cycle-that insures adequate oxygen and nutrient delivery to meet local metabolic demand. In this context, it is blood flow and not blood oxygen content that is the main driver of tissue oxygenation by RBCs. Herein, we review the lines of experimentation that led to this understanding of RBC function; from the foundational understanding of allosteric regulation of oxygen binding in Hb in the stereochemical model of Perutz, to blood flow autoregulation (hypoxic vasodilation governing oxygen delivery) observed by Guyton, to current understanding that centers on S-nitrosylation of Hb (ie, S-nitrosohemoglobin; SNO-Hb) as a purveyor of oxygen-dependent vasodilatory activity. Notably, hypoxic vasodilation is recapitulated by native S-nitrosothiol (SNO)-replete RBCs and by SNO-Hb itself, whereby SNO is released from Hb and RBCs during deoxygenation, in proportion to the degree of Hb deoxygenation, to regulate vessels directly. In addition, we discuss how dysregulation of this system through genetic mutation in Hb or through disease is a common factor in oxygenation pathologies resulting from microcirculatory impairment, including sickle cell disease, ischemic heart disease, and heart failure. We then conclude by identifying potential therapeutic interventions to correct deficits in RBC-mediated vasodilation to improve oxygen delivery-steps toward effective microvasculature-targeted therapies. To the extent that diseases of the heart, lungs, and blood are associated with impaired tissue oxygenation, the development of new therapies based on the three-gas respiratory system have the potential to improve the well-being of millions of patients.
Collapse
Affiliation(s)
- Richard T Premont
- From the Institute for Transformative Molecular Medicine (R.T.P., J.D.R., R.Z., J.S.S.), Case Western Reserve University School of Medicine, OH.,Harrington Discovery Institute (R.T.P., J.D.R., J.S.S.), University Hospitals Cleveland Medical Center, OH
| | - James D Reynolds
- From the Institute for Transformative Molecular Medicine (R.T.P., J.D.R., R.Z., J.S.S.), Case Western Reserve University School of Medicine, OH.,Department of Anesthesiology and Perioperative Medicine (J.D.R.), Case Western Reserve University School of Medicine, OH.,Harrington Discovery Institute (R.T.P., J.D.R., J.S.S.), University Hospitals Cleveland Medical Center, OH
| | - Rongli Zhang
- From the Institute for Transformative Molecular Medicine (R.T.P., J.D.R., R.Z., J.S.S.), Case Western Reserve University School of Medicine, OH.,Department of Medicine, Cardiovascular Research Institute (R.Z., J.S.S.), Case Western Reserve University School of Medicine, OH
| | - Jonathan S Stamler
- From the Institute for Transformative Molecular Medicine (R.T.P., J.D.R., R.Z., J.S.S.), Case Western Reserve University School of Medicine, OH.,Department of Medicine, Cardiovascular Research Institute (R.Z., J.S.S.), Case Western Reserve University School of Medicine, OH.,Harrington Discovery Institute (R.T.P., J.D.R., J.S.S.), University Hospitals Cleveland Medical Center, OH
| |
Collapse
|
3
|
Tada Y, Makino H, Furukawa H, Shimada K, Wada K, Liang EI, Murakami S, Kudo M, Kung DK, Hasan DM, Kitazato KT, Nagahiro S, Lawton MT, Hashimoto T. Roles of estrogen in the formation of intracranial aneurysms in ovariectomized female mice. Neurosurgery 2014; 75:690-5; discussion 695. [PMID: 25181430 PMCID: PMC4399640 DOI: 10.1227/neu.0000000000000528] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Epidemiological studies have indicated that postmenopausal women have a higher incidence of intracranial aneurysms than men in the same age group. OBJECTIVE To investigate whether estrogen or estrogen receptors (ERs) mediate protective effects against the formation of intracranial aneurysms. METHODS Intracranial aneurysms were induced in mice by combining a single injection of elastase into the cerebrospinal fluid with deoxycorticosterone acetate salt hypertension. The mice were treated with estrogen (17β-estradiol), an ERα agonist (propyl pyrazole triol), and an ERβ agonist (diarylpropionitrile) with and without a nitric oxide synthase inhibitor. RESULTS The ovariectomized female mice had a significantly higher incidence of aneurysms than the male mice, which was consistent with findings in previous epidemiological studies. In ovariectomized female mice, an ERβ agonist, but not an ERα agonist or 17β-estradiol, significantly reduced the incidence of aneurysms. The protective effect of the ERβ agonist was absent in the ovariectomized ERβ knockout mice. The protective effect of the ERβ agonist was negated by treatment with a nitric oxide synthase inhibitor. CONCLUSION The effects of sex, menopause, and estrogen treatment observed in this animal study were consistent with previous epidemiological findings. Stimulation of estrogen receptor-β was protective against the formation of intracranial aneurysms in ovariectomized female mice.
Collapse
Affiliation(s)
- Yoshiteru Tada
- ‡Department of Anesthesia and Perioperative Care, §Department of Neurological Surgery, University of California, San Francisco, California; ¶Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa; ‖Department of Neurosurgery, School of Medicine, University of Tokushima, Tokushima City, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Tada Y, Wada K, Shimada K, Makino H, Liang EI, Murakami S, Kudo M, Shikata F, Pena Silva RA, Kitazato KT, Hasan DM, Kanematsu Y, Nagahiro S, Hashimoto T. Estrogen protects against intracranial aneurysm rupture in ovariectomized mice. Hypertension 2014; 63:1339-44. [PMID: 24732889 DOI: 10.1161/hypertensionaha.114.03300] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Clinical observations suggest that postmenopausal women have a higher incidence of aneurysmal rupture than premenopausal women. We hypothesize that a relative deficiency in estrogen may increase the risks of aneurysmal growth and subarachnoid hemorrhage in postmenopausal women. We assessed the effects of estrogen and selective estrogen receptor subtype agonists on the development of aneurysmal rupture in ovariectomized female mice. We used an intracranial aneurysm mouse model that recapitulates the key features of human intracranial aneurysms, including spontaneous rupture. Ten- to 12-week-old ovariectomized female mice received treatment with estrogen, nonselective estrogen receptor antagonist, estrogen receptor-α agonist, or estrogen receptor-β agonist starting 6 days after aneurysm induction so that the treatments affected the development of aneurysmal rupture without affecting aneurysmal formation. Estrogen significantly reduced the incidence of ruptured aneurysms and rupture rates in ovariectomized mice. Nonselective estrogen receptor antagonist abolished the protective effect of estrogen. Although estrogen receptor-α agonist did not affect the incidence of ruptured aneurysms or rupture rates, estrogen receptor-β agonist prevented aneurysmal rupture without affecting the formation of aneurysms. The protective role of estrogen receptor-β agonist was abolished by the inhibition of nitric oxide synthase. We showed that estrogen prevented aneurysmal rupture in ovariectomized female mice. The protective effect of estrogen seemed to occur through the activation of estrogen receptor-β, a predominant subtype of estrogen receptor in human intracranial aneurysms and cerebral arteries.
Collapse
Affiliation(s)
- Yoshiteru Tada
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, 1001 Potrero Ave, No 3C-38, San Francisco, CA 94110.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Doctor A, Stamler JS. Nitric oxide transport in blood: a third gas in the respiratory cycle. Compr Physiol 2013; 1:541-68. [PMID: 23737185 DOI: 10.1002/cphy.c090009] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The trapping, processing, and delivery of nitric oxide (NO) bioactivity by red blood cells (RBCs) have emerged as a conserved mechanism through which regional blood flow is linked to biochemical cues of perfusion sufficiency. We present here an expanded paradigm for the human respiratory cycle based on the coordinated transport of three gases: NO, O₂, and CO₂. By linking O₂ and NO flux, RBCs couple vessel caliber (and thus blood flow) to O₂ availability in the lung and to O₂ need in the periphery. The elements required for regulated O₂-based signal transduction via controlled NO processing within RBCs are presented herein, including S-nitrosothiol (SNO) synthesis by hemoglobin and O₂-regulated delivery of NO bioactivity (capture, activation, and delivery of NO groups at sites remote from NO synthesis by NO synthase). The role of NO transport in the respiratory cycle at molecular, microcirculatory, and system levels is reviewed. We elucidate the mechanism through which regulated NO transport in blood supports O₂ homeostasis, not only through adaptive regulation of regional systemic blood flow but also by optimizing ventilation-perfusion matching in the lung. Furthermore, we discuss the role of NO transport in the central control of breathing and in baroreceptor control of blood pressure, which subserve O₂ supply to tissue. Additionally, malfunctions of this transport and signaling system that are implicated in a wide array of human pathophysiologies are described. Understanding the (dys)function of NO processing in blood is a prerequisite for the development of novel therapies that target the vasoactive capacities of RBCs.
Collapse
Affiliation(s)
- Allan Doctor
- Washington University School of Medicine, Department of Pediatrics, St. Louis, MO, USA
| | | |
Collapse
|
6
|
|
7
|
Raffay TM, Martin RJ, Reynolds JD. Can nitric oxide-based therapy prevent bronchopulmonary dysplasia? Clin Perinatol 2012; 39:613-38. [PMID: 22954273 PMCID: PMC3437658 DOI: 10.1016/j.clp.2012.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A growing understanding of endogenous nitric oxide (NO) biology is helping to explain how and when exogenous NO may confer benefit or harm; this knowledge is also helping to identify new better-targeted NO-based therapies. In this review, results of the bronchopulmonary dysplasia clinical trials that used inhaled NO in the preterm population are placed in context, the biologic basis for novel NO therapeutics is considered, and possible future directions for NO-focused clinical and basic research in developmental lung disease are identified.
Collapse
Affiliation(s)
- Thomas M. Raffay
- Division of Neonatology, Department of Pediatrics Rainbow Babies & Children’s Hospital, Case Medical Center/University Hospitals, Cleveland, Ohio
| | - Richard J. Martin
- Division of Neonatology, Department of Pediatrics Rainbow Babies & Children’s Hospital, Case Medical Center/University Hospitals, Cleveland, Ohio
| | - James D. Reynolds
- Department of Anesthesia and Perioperative Medicine, Case Medical Center/University Hospitals, Cleveland, Ohio
,Institute for Transformative Molecular Medicine, Case Medical Center/University Hospitals, Cleveland, Ohio
| |
Collapse
|
8
|
Abstract
Nitric oxide (NO) is recognized as one of the most important cardiovascular signaling molecules, with multiple regulatory effects on myocardial and vascular tissue as well as on other tissues and organ systems. With the growth in understanding of the range and mechanisms of NO effects on the cardiovascular system, it is now possible to consider pharmaceutical interventions that directly target NO or key steps in NO effector pathways. This article reviews aspects of the cardiovascular effects of NO, abnormalities in NO regulation in heart failure, and clinical trials of drugs that target specific aspects of NO signaling pathways.
Collapse
|
9
|
Abstract
Protein S-nitrosylation (the binding of a nitric oxide [NO] group to a cysteine thiol) is a major mechanism through which the ubiquitous cellular influence of NO is exerted. Disruption of S-nitrosylation is associated with a wide range of pathophysiologic conditions. Hemoglobin (Hb) exemplifies both of these concepts. It is the prototypical S-nitrosylated protein in that it binds, activates, and deploys NO. Within red blood cells (RBCs), Hb is S-nitrosylated during the respiratory cycle and thereby conveys NO bioactivity that may be dispensed to regulate local blood flow in the physiologic response known as hypoxic vasodilation. Hb thus both delivers oxygen directly and delivers vasoactivity to potentially optimize tissue perfusion in concert with local metabolic demand. Accordingly, decreased levels of S-nitrosylated Hb (also known as S-nitrosohemoglobin) and/or impaired delivery of RBC-derived NO bioactivity have been observed in a variety of disease states that are characterized by tissue hypoxemia. It has been shown recently that storage of blood depletes S-nitrosylated Hb, accompanied by reduced ability of RBCs to induce vasodilation. This defect appears to account in significant part for the impaired ability of banked RBCs to deliver oxygen. Renitrosylation can correct this impairment and thus may offer a means to ameliorate the disruptions in tissue perfusion produced by transfusion.
Collapse
Affiliation(s)
- James D Reynolds
- Institute for Transformative Molecular Medicine, Department of Medicine, Case Western Reserve University and University Hospitals, Cleveland, Ohio, USA
| | | | | |
Collapse
|
10
|
Hess K, Grant PJ. Inflammation and thrombosis in diabetes. Thromb Haemost 2011; 105 Suppl 1:S43-54. [PMID: 21479339 DOI: 10.1160/ths10-11-0739] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 02/14/2011] [Indexed: 02/06/2023]
Abstract
Patients with diabetes mellitus are at increased risk of cardiovascular morbidity and mortality. Atherothrombosis, defined as atherosclerotic lesion disruption with superimposed thrombus formation, is the most common cause of death among these patients. Following plaque rupture, adherence of platelets is followed by local activation of coagulation, the formation of a cross-linked fibrin clot and the development of an occlusive platelet rich fibrin mesh. Patients with diabetes exhibit a thrombotic risk clustering which is composed of hyper-reactive platelets, up regulation of pro-thrombotic markers and suppression of fibrinolysis. These changes are mainly mediated by the presence of insulin resistance and dysglycaemia and an increased inflammatory state which directly affects platelet function, coagulation factors and clot structure. This prothrombotic state is related to increased cardiovascular risk and may account for the reduced response to antithrombotic therapeutic approaches, underpinning the need for adequate antithrombotic therapy in patients with diabetes to reduce their cardiovascular mortality.
Collapse
Affiliation(s)
- Katharina Hess
- Division of Cardiovascular and Diabetes Research, Leeds Institute of Genetics, Health and Therapeutics, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, UK
| | | |
Collapse
|
11
|
Faccenda A, Bonham CA, Vacratsis PO, Zhang X, Mutus B. Gold nanoparticle enrichment method for identifying S-nitrosylation and S-glutathionylation sites in proteins. J Am Chem Soc 2010; 132:11392-4. [PMID: 20677743 DOI: 10.1021/ja103591v] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a simple method by which gold nanoparticles (AuNPs) are used to simultaneously isolate and enrich for free or modified thiol-containing peptides, thus facilitating the identification of protein S-modification sites. Here, protein disulfide isomerase (PDI) and dual specificity phosphatase 12 (DUSP12 or hYVH1) were S-nitrosylated or S-glutathionylated, their free thiols differentially alkylated, and subjected to proteolysis. AuNPs were added to the digests, and the AuNP-bound peptides were isolated by centrifugation and released by thiol exchange. These AuNP-bound peptides were analyzed by MALDI-TOF mass spectrometry revealing that AuNPs result in a significant enrichment of free thiol-containing as well as S-nitrosylated, S-glutathionylated, and S-alkylated peptides, leading to the unequivocal assignment of thiols susceptible to modification.
Collapse
Affiliation(s)
- Adam Faccenda
- Department of Chemistry & Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, Canada
| | | | | | | | | |
Collapse
|