1
|
Ye Z, Lu X, Zhu M, Bi L, Yang F, Zhou B, Xu D, Yao L. STING-Targeted PET Imaging for Specific Detection and Therapeutic Monitoring of Myocarditis. Mol Pharm 2024; 21:2865-2877. [PMID: 38666508 DOI: 10.1021/acs.molpharmaceut.4c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Imaging strategies for the specific detection and therapeutic monitoring of myocarditis are still lacking. Stimulator of interferon genes (STING) is a signal transduction molecule involved in an innate immune response. Here, we evaluated the feasibility of the recently developed STING-targeted radiotracer [18F]FBTA for positron emission tomography (PET) imaging to detect myocardial inflammation and monitor treatment in myocarditis mice. [18F]FBTA-PET imaging was performed in myocarditis mice and normal mice to verify the specificity of [18F]FBTA for the diagnosis of myocarditis. We also performed PET imaging in mice with myocarditis treated to verify the ability of [18F]FBTA in therapeutic monitoring. The expression of STING and inflammatory cell types was confirmed by flow cytometry and immunohistochemistry. [18F]FDG-PET imaging of myocarditis was used as a contrast. [18F]FBTA-PET imaging showed that the average radioactive uptake was significantly higher in the hearts of the myocarditis group than in the control group. STING was highly overexpressed in cardiac inflammatory cells, including macrophages, dendritic cells (DCs), and T cells. However, there was no significant difference in cardiac radiotracer uptake of [18F]FDG between the myocarditis group and the control group. Moreover, cardiac uptake of [18F]FBTA was significantly reduced in cyclosporin A-treated myocarditis mice and myocardial STING expression was also significantly reduced after the treatment. Overall, we showed that a STING-targeted PET tracer [18F]FBTA can be used to monitor changes in the inflammatory microenvironment in myocarditis. Besides, [18F]FBTA-PET is also suitable for real-time monitoring of myocarditis treatment, representing a promising diagnostic and therapeutic monitoring approach for myocarditis.
Collapse
Affiliation(s)
- Zhou Ye
- Department of Emergency Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Xin Lu
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Manman Zhu
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Lei Bi
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Fan Yang
- Department of Pediatrics, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Bin Zhou
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
- Center of Cerebrovascular Disease, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Duo Xu
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Lan Yao
- Department of Emergency Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| |
Collapse
|
2
|
Zhang Y, Zhu L, Li X, Ge C, Pei W, Zhang M, Zhong M, Zhu X, Lv K. M2 macrophage exosome-derived lncRNA AK083884 protects mice from CVB3-induced viral myocarditis through regulating PKM2/HIF-1α axis mediated metabolic reprogramming of macrophages. Redox Biol 2024; 69:103016. [PMID: 38160539 PMCID: PMC10792748 DOI: 10.1016/j.redox.2023.103016] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/15/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024] Open
Abstract
Viral myocarditis (VM) is a clinically common inflammatory disease. Accumulating literature has indicated that M2 macrophages protect mice from Coxsackievirus B3 (CVB3)-induced VM. However, mechanisms that underlie M2 macrophages alleviating myocardial inflammation remain largely undefined. We found that M2 macrophage-derived exosomes (M2-Exo) can effectively attenuate VM. The long non-coding RNA (lncRNA) AK083884 in M2-Exo was found to be involved in the regulation of macrophage polarization by exosome lncRNA sequencing combined with in vitro functional assays. M2-Exo-derived AK083884 promotes macrophage M2 polarization and protects mice from CVB3-induced VM. Furthermore, we identified pyruvate kinase M2 (PKM2) as a protein target binding to AK083884 and found that PKM2 knockdown could promote macrophages to polarize to M2 phenotype. Intriguingly, functional assay revealed that downregulation of AK083884 promotes metabolic reprogramming in macrophages. In addition, co-immunoprecipitation was performed to reveal AK083884 could interact with PKM2 and inhibition of AK083884 can facilitate the binding of PKM2 and HIF-1α. Collectively, our findings uncovered an important role of M2-Exo-derived AK083884 in the regulation of macrophage polarization through metabolic reprogramming, identified a new participant in the development of VM and provided a potential clinically important therapeutic target.
Collapse
Affiliation(s)
- Yingying Zhang
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, PR China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, PR China; Non-coding RNA Research Center of Wannan Medical College, Wuhu, PR China; Department of Laboratory Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, PR China
| | - Liangyu Zhu
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, PR China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, PR China; Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, PR China
| | - Xueqin Li
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, PR China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, PR China; Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, PR China; Non-coding RNA Research Center of Wannan Medical College, Wuhu, PR China; Anhui Province Clinical Research Center for Critical Respiratory Medicine, Wuhu, PR China
| | - Chang Ge
- Department of Psychology, Zhejiang Sci-Tech University, Hangzhou, PR China
| | - Weiya Pei
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, PR China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, PR China; Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, PR China; Non-coding RNA Research Center of Wannan Medical College, Wuhu, PR China
| | - Mengying Zhang
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, PR China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, PR China; Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, PR China; Non-coding RNA Research Center of Wannan Medical College, Wuhu, PR China
| | - Min Zhong
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, PR China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, PR China; Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, PR China; Non-coding RNA Research Center of Wannan Medical College, Wuhu, PR China
| | - Xiaolong Zhu
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, PR China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, PR China; Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, PR China; Non-coding RNA Research Center of Wannan Medical College, Wuhu, PR China; Anhui Province Clinical Research Center for Critical Respiratory Medicine, Wuhu, PR China.
| | - Kun Lv
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, PR China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, PR China; Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, PR China; Non-coding RNA Research Center of Wannan Medical College, Wuhu, PR China; Department of Laboratory Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, PR China; Anhui Province Clinical Research Center for Critical Respiratory Medicine, Wuhu, PR China.
| |
Collapse
|
3
|
He W, Zhou L, Xu K, Li H, Wang JJ, Chen C, Wang D. Immunopathogenesis and immunomodulatory therapy for myocarditis. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2112-2137. [PMID: 37002488 PMCID: PMC10066028 DOI: 10.1007/s11427-022-2273-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/16/2023] [Indexed: 04/03/2023]
Abstract
Myocarditis is an inflammatory cardiac disease characterized by the destruction of myocardial cells, infiltration of interstitial inflammatory cells, and fibrosis, and is becoming a major public health concern. The aetiology of myocarditis continues to broaden as new pathogens and drugs emerge. The relationship between immune checkpoint inhibitors, severe acute respiratory syndrome coronavirus 2, vaccines against coronavirus disease-2019, and myocarditis has attracted increased attention. Immunopathological processes play an important role in the different phases of myocarditis, affecting disease occurrence, development, and prognosis. Excessive immune activation can induce severe myocardial injury and lead to fulminant myocarditis, whereas chronic inflammation can lead to cardiac remodelling and inflammatory dilated cardiomyopathy. The use of immunosuppressive treatments, particularly cytotoxic agents, for myocarditis, remains controversial. While reasonable and effective immunomodulatory therapy is the general trend. This review focuses on the current understanding of the aetiology and immunopathogenesis of myocarditis and offers new perspectives on immunomodulatory therapies.
Collapse
Affiliation(s)
- Wu He
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Ling Zhou
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Ke Xu
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Huihui Li
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - James Jiqi Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| | - DaoWen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| |
Collapse
|
4
|
Lu J, Cen Z, Tang Q, Dong J, Qin L, Wu W. The absence of B cells disrupts splenic and myocardial Treg homeostasis in coxsackievirus B3-induced myocarditis. Clin Exp Immunol 2022; 208:1-11. [PMID: 35262174 PMCID: PMC9113299 DOI: 10.1093/cei/uxac015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 01/27/2022] [Accepted: 02/05/2022] [Indexed: 01/12/2023] Open
Abstract
Although B cells are essential for humoral immunity and show noteworthy immunomodulatory activity through antibody-independent functions, the role of B cells in regulating Treg cell responses remains controversial. Tregs (CD4+CD25+Foxp3+) are considered to play an immunoprotective role in viral myocarditis (VMC) by controlling autoimmune effector T cells. Here, we proved that B-cell knockout can not only lead to significant reductions in Tregs in the spleen, blood, and heart of VMC mice but also decrease the activation and immune function of splenic Tregs, which was reversed by adoptive transfer of B cells; the transcription levels of TGF-β and Foxp3 in the myocardium were also significantly reduced. B-cell depletion by anti-CD20 impaired the anti-inflammatory function of splenic Tregs and the homeostasis of myocardial Tregs population. Moreover, B cells can convert CD4+CD25- T cells into Foxp3+ and Foxp3-, two functionally suppressive Treg subgroups. Although the reduction in myocardial inflammation in BKO mice indicates that B cells may play a proinflammatory role, the beneficial side of B cells cannot be ignored, that is, to control autoimmunity by maintaining Treg numbers. The results observed in the animal model of VMC highlight the potential harm of rituximab in the nonselective depletion of B cells in clinical applications.
Collapse
Affiliation(s)
- Jing Lu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, Guangxi Zhuang Autonomous Region 530021, Peoples Republic of China
| | - Zhihong Cen
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, Guangxi Zhuang Autonomous Region 530021, Peoples Republic of China
| | - Quan Tang
- Coronary Care Unit, Nanning First People”s Hospital. Qixing Road 89, Nanning, Guangxi Zhuang Autonomous Region 530021, Peoples Republic of China
| | - Jingwei Dong
- Department of nuclear medicine, Liuzhou People’s Hospital, Wenchang Road 8, Liuzhou, Guangxi Zhuang Autonomous Region 530021, Peoples Republic of China
| | - Lin Qin
- Coronary Care Unit, Nanning First People”s Hospital. Qixing Road 89, Nanning, Guangxi Zhuang Autonomous Region 530021, Peoples Republic of China
| | - Weifeng Wu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, Guangxi Zhuang Autonomous Region 530021, Peoples Republic of China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Center for Translational Medicine, Guangxi Medical University, Shuangyong Road 22, Nanning, Guangxi Zhuang Autonomous Region 530021, Peoples Republic of China
| |
Collapse
|
5
|
Hanson PJ, Liu-Fei F, Minato TA, Hossain AR, Rai H, Chen VA, Ng C, Ask K, Hirota JA, McManus BM. Advanced detection strategies for cardiotropic virus infection in a cohort study of heart failure patients. J Transl Med 2022; 102:14-24. [PMID: 34608239 PMCID: PMC8488924 DOI: 10.1038/s41374-021-00669-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
The prevalence and contribution of cardiotropic viruses to various expressions of heart failure are increasing, yet primarily underappreciated and underreported due to variable clinical syndromes, a lack of consensus diagnostic standards and insufficient clinical laboratory tools. In this study, we developed an advanced methodology for identifying viruses across a spectrum of heart failure patients. We designed a custom tissue microarray from 78 patients with conditions commonly associated with virus-related heart failure, conditions where viral contribution is typically uncertain, or conditions for which the etiological agent remains suspect but elusive. Subsequently, we employed advanced, highly sensitive in situ hybridization to probe for common cardiotropic viruses: adenovirus 2, coxsackievirus B3, cytomegalovirus, Epstein-Barr virus, hepatitis C and E, influenza B and parvovirus B19. Viral RNA was detected in 46.4% (32/69) of heart failure patients, with 50% of virus-positive samples containing more than one virus. Adenovirus 2 was the most prevalent, detected in 27.5% (19/69) of heart failure patients, while in contrast to previous reports, parvovirus B19 was detected in only 4.3% (3/69). As anticipated, viruses were detected in 77.8% (7/9) of patients with viral myocarditis and 37.5% (6/16) with dilated cardiomyopathy. Additionally, viruses were detected in 50% of patients with coronary artery disease (3/6) and hypertrophic cardiomyopathy (2/4) and in 28.6% (2/7) of transplant rejection cases. We also report for the first time viral detection within a granulomatous lesion of cardiac sarcoidosis and in giant cell myocarditis, conditions for which etiological agents remain unknown. Our study has revealed a higher than anticipated prevalence of cardiotropic viruses within cardiac muscle tissue in a spectrum of heart failure conditions, including those not previously associated with a viral trigger or exacerbating role. Our work forges a path towards a deeper understanding of viruses in heart failure pathogenesis and opens possibilities for personalized patient therapeutic approaches.
Collapse
Affiliation(s)
- Paul J Hanson
- UBC Centre for Heart Lung Innovation, Vancouver, BC, Canada.
- UBC Department of Pathology and Laboratory Medicine, Vancouver, BC, Canada.
| | | | | | | | - Harpreet Rai
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | | | - Coco Ng
- UBC Centre for Heart Lung Innovation, Vancouver, BC, Canada
| | - Kjetil Ask
- Firestone Institute for Respiratory Health - Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Jeremy A Hirota
- Firestone Institute for Respiratory Health - Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Bruce M McManus
- UBC Centre for Heart Lung Innovation, Vancouver, BC, Canada
- UBC Department of Pathology and Laboratory Medicine, Vancouver, BC, Canada
- PROOF Centre of Excellence, Vancouver, BC, Canada
| |
Collapse
|
6
|
Rroku A, Kottwitz J, Heidecker B. Update on myocarditis - what we know so far and where we may be heading. EUROPEAN HEART JOURNAL. ACUTE CARDIOVASCULAR CARE 2021; 10:455–467. [PMID: 32319308 DOI: 10.1177/2048872620910109] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Affiliation(s)
- Andi Rroku
- Charite Universitätsmedizin Berlin, Campus Benjamin Franklin, Germany
| | | | - Bettina Heidecker
- Charite Universitätsmedizin Berlin, Campus Benjamin Franklin, Germany
| |
Collapse
|
7
|
Abstract
Myocarditis is generally a mild and self-limited consequence of systemic infection of cardiotropic viruses. However, patients can develop a temporary or permanent impairment of cardiac function including acute cardiomyopathy with hemodynamic compromise or severe arrhythmias. In this setting, specific causes of inflammation are associated with variable risks of death and transplantation. Recent translational studies suggest that treatments tailored to specific causes of myocarditis may impact clinical outcomes when added to guideline-directed medical care. This review summarizes recent advances in translational research that influence the utility of endomyocardial biopsy for the management of inflammatory cardiomyopathies. Emerging therapies for myocarditis based on these mechanistic hypotheses are entering clinical trials and may add to the benefits of established heart failure treatment.
Collapse
Affiliation(s)
- Carsten Tschöpe
- From the Charité, University Medicine Berlin, Campus Virchow Klinikum (CVK), Department of Cardiology, Germany (C.T., S.V.L.).,Charité-Universitätsmedizin Berlin, BCRT-Berlin Institute of Health Center for Regenerative Therapies, Germany (C.T., S.V.L.).,Charité-Universitätsmedizin Berlin, BCRT-Berlin-Brandenburg Centrum für Regenerative Therapien, Germany (C.T., S.V.L.).,Deutsches Zentrum für Herz Kreislauf Forschung (DZHK)-Standort Berlin/Charité, Germany (C.T., S.V.L.)
| | - Leslie T Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL (L.T.C.)
| | - Guillermo Torre-Amione
- Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (G.T.-A.).,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Nuevo León, Mexico (G.T.-A.)
| | - Sophie Van Linthout
- From the Charité, University Medicine Berlin, Campus Virchow Klinikum (CVK), Department of Cardiology, Germany (C.T., S.V.L.).,Charité-Universitätsmedizin Berlin, BCRT-Berlin Institute of Health Center for Regenerative Therapies, Germany (C.T., S.V.L.).,Charité-Universitätsmedizin Berlin, BCRT-Berlin-Brandenburg Centrum für Regenerative Therapien, Germany (C.T., S.V.L.).,Deutsches Zentrum für Herz Kreislauf Forschung (DZHK)-Standort Berlin/Charité, Germany (C.T., S.V.L.)
| |
Collapse
|
8
|
Abstract
Purpose of review Myocarditis is an inflammatory disease of the cardiac muscle mainly caused by viral infection. Due to the diverse clinical presentation of myocarditis, accurate diagnosis demands simultaneous histologic, immunohistochemical and molecular biological workup of endomyocardial biopsies (EMBs) as defined by the position statement of the Working Group on Myocardial and Pericardial Diseases of the European Society of Cardiology on myocarditis. Recent findings Endomyocardial biopsy-based analysis of viral transcriptional activity, mRNA expression, epigenetics and region-specific protein expression analysis via imaging mass spectrometry have led to the identification of novel potential diagnostic criteria, markers with prognostic value and therapeutic targets for the treatment of viral myocarditis, opening new avenues for novel therapies, including cell therapies, as well as the use of established treatment options, be it from other indications. Summary Under certain clinical scenarios EMB-based analysis is required to come to a tailored individualized therapy that improves symptoms and prognosis of patients with acute and chronic viral-driven cardiac inflammation.
Collapse
|
9
|
Carrillo-Salinas FJ, Ngwenyama N, Anastasiou M, Kaur K, Alcaide P. Heart Inflammation: Immune Cell Roles and Roads to the Heart. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1482-1494. [PMID: 31108102 DOI: 10.1016/j.ajpath.2019.04.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/29/2019] [Accepted: 04/18/2019] [Indexed: 02/08/2023]
Abstract
Heart failure (HF) has been traditionally viewed as a disease of the cardiac muscle associated with systemic inflammation. Burgeoning evidence implicates immune effector mechanisms that include immune cell activation and trafficking to the heart. Immune cell infiltration in the myocardium can have adverse effects in the heart and contribute to the pathogenesis of HF. Both innate and adaptive immunity operate sequentially, and the specificity of these responses depends on the initial trigger sensed by the heart. Although the role of the immune system in the initial inflammatory response to infection and injury is well studied, what sets the trajectory to HF from different etiologies and the role of immunity once HF has been established is less understood. Herein, we review experimental and clinical knowledge of cardiac inflammation induced by different triggers that often result in HF from different etiologies. We focus on the mechanisms of immune cell activation systemically and on the pathways immune cells use to traffic to the heart.
Collapse
Affiliation(s)
| | - Njabulo Ngwenyama
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts; Sackler School for Graduate Studies Immunology Program, Tufts University School of Medicine, Boston, Massachusetts
| | - Marina Anastasiou
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts
| | - Kuljeet Kaur
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts; Sackler School for Graduate Studies Immunology Program, Tufts University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
10
|
Yang X, Yue Y, Xiong S. Dpep2 Emerging as a Modulator of Macrophage Inflammation Confers Protection Against CVB3-Induced Viral Myocarditis. Front Cell Infect Microbiol 2019; 9:57. [PMID: 30899700 PMCID: PMC6416667 DOI: 10.3389/fcimb.2019.00057] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/20/2019] [Indexed: 02/03/2023] Open
Abstract
Overwhelming cardiac inflammation has been reported to be the pathogenic mechanism of Coxsackievirus B3 (CVB3)-induced viral myocarditis (VMC), while the detailed molecular mechanisms remain unknown. Membrane-bound dipeptidases (MBD, also known as Dpep) have been shown to be involved in inflammatory diseases. However, the clear and direct evidence of their impacts on inflammation is still lacking. In this study, our results revealed that Dpep2 expression was remarkably increased during CVB3 infection, and primarily produced by the cardiac tissue-infiltrating macrophages instead of constitutive cardiomyocytes. Macrophages have been reported to play an important pathological role in driving VMC. Interestingly, macrophage-specific Dpep2 deletion robustly aggravated CVB3-induced cardiac inflammation, evidenced by augmented expression of TNF-α, IL-6, and MCP-1 in heart tissue. In addition, Dpep2-deficient bone-marrow derived macrophages (BMDMs) generated more TNF-α, IL-6, and MCP-1 after CVB3 stimulation compared with the control BMDMs. Moreover, this suppressive effect of Dpep2 on macrophages relied on its repression on NF-κB signaling pathway, but not on its conventional hydrolysate LTE4. Taken together, this study revealed that Dpep2 could protect against CVB3-induced VMC by acting as a suppressor of macrophage inflammation. Better understanding how macrophage Dpep2 dampened the cardiac inflammation would provide us with insights for the efficient control of CVB3-induced VMC.
Collapse
Affiliation(s)
- Xiaoli Yang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yan Yue
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
11
|
Kraft L, Erdenesukh T, Sauter M, Tschöpe C, Klingel K. Blocking the IL-1β signalling pathway prevents chronic viral myocarditis and cardiac remodeling. Basic Res Cardiol 2019; 114:11. [DOI: 10.1007/s00395-019-0719-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/16/2019] [Indexed: 12/18/2022]
|
12
|
Zheng C, Wu SM, Lian H, Lin YZ, Zhuang R, Thapa S, Chen QZ, Chen YF, Lin JF. Low-intensity pulsed ultrasound attenuates cardiac inflammation of CVB3-induced viral myocarditis via regulation of caveolin-1 and MAPK pathways. J Cell Mol Med 2018; 23:1963-1975. [PMID: 30592150 PMCID: PMC6378187 DOI: 10.1111/jcmm.14098] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 12/26/2022] Open
Abstract
The aggressive immunological activity elicited by acute viral myocarditis contributes to a large amount of cardiomyocytes loss and poor prognosis of patients in clinic. Low-intensity pulsed ultrasound (LIPUS), which is an effective treatment modality for osteoarthropathy, has been recently illustrated regulating the overactive inflammatory response in various diseases. Here, we aimed to investigate whether LIPUS could attenuate coxsackievirus B3 (CVB3) infection-induced injury by coordinating the inflammatory response. Male BALB/c mice were inoculated intraperitoneally with CVB3 to establish the model of acute viral myocarditis. LIPUS treatment was given on Day 1, Day 1, 3 and Day 1, 3, 5 post-inoculation, respectively. All mice were followed up for 14 days. Day 1, 3, 5 LIPUS treatment significantly improved the survival rate, attenuated the ventricular dysfunction and ameliorated the cardiac histopathological injury of CVB3-infected mice. Western blotting analysis showed Day 1, 3, 5 LIPUS treatment decreased pro-inflammatory cytokines, increased the activation of caveolin-1 and suppressed p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) signallings in heart tissue. RAW264.7 cells were treated with lipopolysaccharides (LPS) to simulate the augmented inflammatory response in vivo. LIPUS treatment on RAW264.7 inhibited the expression of pro-inflammatory cytokines, activated caveolin-1 and suppressed p38 MAPK and ERK signallings. Transfecting RAW264.7 with caveolin-1 siRNA blunted the suppression of pro-inflammatory cytokines and MAPK signallings by LIPUS treatment. Taken together, we demonstrated for the first time that LIPUS treatment attenuated the aggressive inflammatory response during acute viral myocarditis. The underlying mechanism may be activating caveolin-1 and suppressing MAPK signallings.
Collapse
Affiliation(s)
- Cheng Zheng
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sen-Min Wu
- Department of Ultrasound, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hao Lian
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuan-Zheng Lin
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rong Zhuang
- Department of Intensive Care Unit, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Saroj Thapa
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Quan-Zhi Chen
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi-Fan Chen
- The Second School of Medicine of Wenzhou Medical University, Wenzhou, China
| | - Jia-Feng Lin
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
13
|
Pappritz K, Savvatis K, Miteva K, Kerim B, Dong F, Fechner H, Müller I, Brandt C, Lopez B, González A, Ravassa S, Klingel K, Diez J, Reinke P, Volk HD, Van Linthout S, Tschöpe C. Immunomodulation by adoptive regulatory T-cell transfer improves Coxsackievirus B3-induced myocarditis. FASEB J 2018; 32:fj201701408R. [PMID: 29863913 DOI: 10.1096/fj.201701408r] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Regulatory T (Treg) cells offer new therapeutic options for controlling undesired systemic and local immune responses. The aim of the current study was to determine the impact of therapeutic Treg administration on systemic and cardiac inflammation and remodeling in coxsackievirus B3 (CVB3) -induced myocarditis. Therefore, syngeneic Treg cells were applied intravenously in CVB3-infected mice 3 d after infection. Compared with CVB3 + PBS mice, CVB3 + Treg mice exhibited lower left ventricular (LV) chemokine expression, accompanied by reduced cardiac presence of proinflammatory Ly6ChighCCR2highCx3Cr1low monocytes and higher retention of proinflammatory Ly6CmidCCR2highCx3Cr1low monocytes in the spleen. In addition, splenic myelopoiesis was reduced in CVB3 + Treg compared with CVB3 + PBS mice. Coculture of Treg cells with splenocytes isolated from mice 3 d post-CVB3 infection further demonstrated the ability of Treg cells to modulate monocyte differentiation in favor of the anti-inflammatory Ly6ClowCCR2lowCx3Cr1high subset. Treg-mediated immunomodulation was paralleled by lower collagen 1 protein expression and decreased levels of soluble and insoluble collagen in LV of CVB3 + Treg compared with CVB3 + PBS mice. In agreement with these findings, LV systolic and diastolic function was improved in CVB3 + Treg mice compared with CVB3 + PBS mice. In summary, adoptive Treg transfer in the inflammatory phase of viral-induced myocarditis protects the heart against inflammatory damage and fibrosis via modulation of monocyte subsets.-Pappritz, K., Savvatis, K., Miteva, K., Kerim, B., Dong, F., Fechner, H., Müller, I., Brandt, C., Lopez, B., González, A., Ravassa, S., Klingel, K., Diez, J., Reinke, P., Volk, H.-D., Van Linthout, S., Tschöpe, C. Immunomodulation by adoptive regulatory T-cell transfer improves Coxsackievirus B3-induced myocarditis.
Collapse
Affiliation(s)
- Kathleen Pappritz
- Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
- Department of Cardiology, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
| | - Konstantinos Savvatis
- Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
- Inherited Cardiovascular Diseases Unit, Barts Heart Centre, Barts Health National Health Service (NHS) Trust, London, United Kingdom
- William Harvey Research Institute, Queen Mary University London, London, United Kingdom
| | - Kapka Miteva
- Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
- Adaptive Immunity Laboratory, Humanitas Clinical and Research Center, Department of Biomedical Sciences, Humanitas University, Milano, Italy
| | - Bahtiyar Kerim
- Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
| | - Fengquan Dong
- Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
| | - Henry Fechner
- Department of Applied Biochemistry, Institute for Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Irene Müller
- Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
- Department of Cardiology, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
| | - Christine Brandt
- Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
| | - Begoña Lopez
- Centre for Applied Medical Research (CIMA), Department of Cardiology and Cardiac Surgery, University of Navarra, Pamplona, Spain
| | - Arantxa González
- Centre for Applied Medical Research (CIMA), Department of Cardiology and Cardiac Surgery, University of Navarra, Pamplona, Spain
| | - Susana Ravassa
- Centre for Applied Medical Research (CIMA), Department of Cardiology and Cardiac Surgery, University of Navarra, Pamplona, Spain
| | - Karin Klingel
- Institute for Pathology and Neuropathology, University Hospital Tuebingen, Tuebingen, Germany
| | - Javier Diez
- Centre for Applied Medical Research (CIMA), Department of Cardiology and Cardiac Surgery, University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Carlos III Institute of Health, Madrid, Spain
| | - Petra Reinke
- Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
- Department of Nephrology and Intensive Medicine, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
| | - Hans-Dieter Volk
- Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
- Institute of Medical Immunology, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
| | - Sophie Van Linthout
- Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
- Department of Cardiology, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
| | - Carsten Tschöpe
- Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
- Department of Cardiology, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
| |
Collapse
|
14
|
Roles of Host Immunity in Viral Myocarditis and Dilated Cardiomyopathy. J Immunol Res 2018; 2018:5301548. [PMID: 29854842 PMCID: PMC5964556 DOI: 10.1155/2018/5301548] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/09/2018] [Accepted: 04/19/2018] [Indexed: 02/07/2023] Open
Abstract
The pathogenesis of viral myocarditis includes both the direct damage mediated by viral infection and the indirect lesion resulted from host immune responses. Myocarditis can progress into dilated cardiomyopathy that is also associated with immunopathogenesis. T cell-mediated autoimmunity, antibody-mediated autoimmunity (autoantibodies), and innate immunity, working together, contribute to the development of myocarditis and dilated cardiomyopathy.
Collapse
|
15
|
Zhang H, Yue Y, Sun T, Wu X, Xiong S. Transmissible endoplasmic reticulum stress from myocardiocytes to macrophages is pivotal for the pathogenesis of CVB3-induced viral myocarditis. Sci Rep 2017; 7:42162. [PMID: 28176833 PMCID: PMC5296968 DOI: 10.1038/srep42162] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 01/06/2017] [Indexed: 11/28/2022] Open
Abstract
Infiltrating macrophages have been proven as a pivotal pathological inflammatory cell subset in coxsackievirus B3 (CVB3) induced viral myocarditis. However, the mechanisms underlying the initiation and promotion of macrophage pro-inflammatory responses are still blur. We previously reported that cardiac ER stress contributed to CVB3-induced myocarditis by augmenting inflammation. In this study, we focused on the influence of ER stress on the macrophage inflammatory responses in the viral myocarditis. We found that ER stress was robustly induced in the cardiac infiltrating macrophages from CVB3-infected mice, and robustly facilitated the production of pro-inflammatory cytokines (IL-6, IL-12, MCP-1 and IP-10). Consistently, adoptive transfer of ER stressed macrophages significantly worsened the viral myocarditis; while transfer of ER stress-inhibited macrophages obviously alleviated the myocarditis. To our surprise, this significantly activated ER stress was not directly caused by the virus stimulation, but was transferred from the CVB3-infected, ER stressed myocardiocytes via soluble molecules in a TLR2, 4-independent way. In the present study, we reported that the transmissible ER stress from the infected myocardiocytes to macrophages could augment the pro-inflammatory responses and promoted the pathogenesis of viral myocarditis. Blocking ER stress transmission, instead of inhibiting its initiation, may represent novel therapeutic strategies against viral myocarditis.
Collapse
Affiliation(s)
- Hui Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, P.R. China
| | - Yan Yue
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, P.R. China
| | - Tianle Sun
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, P.R. China
| | - Xuejie Wu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, P.R. China
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, P.R. China
| |
Collapse
|
16
|
Wang X, Li M, Xie Y, Yu Y, Liu G, Yu Y, Yang X, Zou Y, Ge J, Chen R. The frequency of invariant natural killer T cells correlates with the severity of myocarditis. Viral Immunol 2014; 27:88-95. [PMID: 24702483 DOI: 10.1089/vim.2013.0078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Invariant natural killer T cells (iNKT) perform different functions in different diseases. The cells were reported to protect myocarditis. However, the detail relationships between iNKT and Coxsackievirus B3 (CVB3)-induced myocarditis remain unclear. In order to investigate the correlation between the severity of CVB3-induced inflammation infiltration and the proportion of iNKT in the spleen and circulating blood, BALB/c mice were grouped into three groups according to the inflammation infiltration area of heart sections. The proportion of iNKT in CD3-positive cells in the spleen correlated negatively with the inflammation area (linear fit; R(2)=0.93) and virus capsid protein VP1 (linear fit; R(2)=0.84) in the myocardial tissue, while the proportion of iNKT in CD3-positive cells in the PBMC positively correlated with the inflammation area (linear fit; R(2)=0.91) and virus capsid protein VP1 (linear fit; R(2)=0.93) in the myocardial tissue. The results imply that iNKT might be used as a parameter for the diagnosis of myocarditis in clinical practice.
Collapse
Affiliation(s)
- Xinggang Wang
- Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University , Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Corsten MF, Schroen B, Heymans S. Inflammation in viral myocarditis: friend or foe? Trends Mol Med 2012; 18:426-37. [DOI: 10.1016/j.molmed.2012.05.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/08/2012] [Accepted: 05/14/2012] [Indexed: 10/28/2022]
|
18
|
Abstract
Immune-modulation therapy has had great success in various inflammatory diseases. Despite the promising results of preliminary studies in anti-tumor necrosis factor-α therapies, large randomized studies have lacked positive clinical outcomes in patients with heart failure. These results have led to the idea that therapies directed toward specific inflammatory mediators may not be the answer and lead us toward the development of novel anti-inflammatory strategies that may involve a broader spectrum of inflammatory mediators. Therapeutic plasma exchange has been demonstrated as a safe treatment, and preliminary outcomes led us to develop new treatment schemes.
Collapse
|