1
|
Jha JC, Gray SP, Barit D, Okabe J, El-Osta A, Namikoshi T, Thallas-Bonke V, Wingler K, Szyndralewiez C, Heitz F, Touyz RM, Cooper ME, Schmidt HHHW, Jandeleit-Dahm KA. Genetic targeting or pharmacologic inhibition of NADPH oxidase nox4 provides renoprotection in long-term diabetic nephropathy. J Am Soc Nephrol 2014; 25:1237-54. [PMID: 24511132 DOI: 10.1681/asn.2013070810] [Citation(s) in RCA: 291] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Diabetic nephropathy may occur, in part, as a result of intrarenal oxidative stress. NADPH oxidases comprise the only known dedicated reactive oxygen species (ROS)-forming enzyme family. In the rodent kidney, three isoforms of the catalytic subunit of NADPH oxidase are expressed (Nox1, Nox2, and Nox4). Here we show that Nox4 is the main source of renal ROS in a mouse model of diabetic nephropathy induced by streptozotocin administration in ApoE(-/-) mice. Deletion of Nox4, but not of Nox1, resulted in renal protection from glomerular injury as evidenced by attenuated albuminuria, preserved structure, reduced glomerular accumulation of extracellular matrix proteins, attenuated glomerular macrophage infiltration, and reduced renal expression of monocyte chemoattractant protein-1 and NF-κB in streptozotocin-induced diabetic ApoE(-/-) mice. Importantly, administration of the most specific Nox1/4 inhibitor, GKT137831, replicated these renoprotective effects of Nox4 deletion. In human podocytes, silencing of the Nox4 gene resulted in reduced production of ROS and downregulation of proinflammatory and profibrotic markers that are implicated in diabetic nephropathy. Collectively, these results identify Nox4 as a key source of ROS responsible for kidney injury in diabetes and provide proof of principle for an innovative small molecule approach to treat and/or prevent chronic kidney failure.
Collapse
Affiliation(s)
- Jay C Jha
- Diabetic Complications Division, Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; Department of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Stephen P Gray
- Diabetic Complications Division, Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - David Barit
- Diabetic Complications Division, Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Jun Okabe
- Human Epigenetics Laboratory, Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Assam El-Osta
- Human Epigenetics Laboratory, Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Tamehachi Namikoshi
- Diabetic Complications Division, Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Vicki Thallas-Bonke
- Diabetic Complications Division, Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Kirstin Wingler
- Department of Pharmacology, Cardiovascular Research Institute Maastricht, Faculty of Medicine, Health & Life Science, Maastricht University, Maastricht, The Netherlands
| | | | | | - Rhian M Touyz
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; and Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mark E Cooper
- Diabetic Complications Division, Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; Department of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Harald H H W Schmidt
- Department of Pharmacology, Cardiovascular Research Institute Maastricht, Faculty of Medicine, Health & Life Science, Maastricht University, Maastricht, The Netherlands
| | - Karin A Jandeleit-Dahm
- Diabetic Complications Division, Juvenile Diabetes Research Foundation Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; Department of Medicine, Monash University, Melbourne, Victoria, Australia;
| |
Collapse
|