1
|
Wu H, Zhou H, Cao X, Zhong W, Chen Y, Ma H, Peng Y, Peng L. Feasibility of fractal dimension analysis for left ventricular trabecular complexity using cardiac computed tomography. Int J Cardiol 2024; 418:132661. [PMID: 39426415 DOI: 10.1016/j.ijcard.2024.132661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
AIMS To evaluate the consistency between fractal dimensions (FD) derived from cardiac computed tomography (CT-FD) and cardiac magnetic resonance (MR-FD) in assessing left ventricular trabecular complexity. METHODS This retrospective study included 170 patients who underwent CCT and CMR scans within two weeks. Five short-axis cine images were selected at end-diastole: one basal, three mid, and one apical slice. Short-axis CCT views were reconstructed and aligned with the cine images. CT-FD and MR-FD values were calculated for each slice, with mean values determined for each patient. Severe left ventricular hypertrophy (LVH) was defined as a maximum wall thickness > 15 mm in end-diastolic cine images. RESULTS The diastolic CT-FD and MR-FD values exhibited high consistency, with values of 1.253 ± 0.091 and 1.250 ± 0.102, respectively (n = 535, ICC = 0.882, 95 % CI: 0.861-0.899, P < 0.001). Similarly, the systolic CT-FD and MR-FD values demonstrated good consistency, with values of 1.268 ± 0.072 and 1.286 ± 0.093, respectively (n = 390, ICC = 0.720, 95 % CI: 0.669-0.765, P < 0.001). For subgroups of systolic NLVH and LVH, the ICCs were 0.773 (n = 305, CI: 0.723-0.814, P < 0.001) and 0.565 (n = 85, 95 % CI: 0.402-0.694, P < 0.001), respectively. The diagnostic efficacy of mean CT-FD aligned with that of mean MR-FD in distinguishing abnormal cardiac conditions from the CMR-negative group. CONCLUSIONS CCT is a feasible method for assessing left ventricular trabecular complexity, with good agreement with CMR, except in cases of severe left ventricular hypertrophy during systole.
Collapse
Affiliation(s)
- Huanhua Wu
- Central Laboratory, The Affiliated Shunde Hospital of Jinan University, No. 50 East, Guizhou Avenue, Foshan, Guangdong Province 528305, China
| | - Hairuo Zhou
- Department of Administration, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, China
| | - Xiaozheng Cao
- Central Laboratory, The Affiliated Shunde Hospital of Jinan University, No. 50 East, Guizhou Avenue, Foshan, Guangdong Province 528305, China
| | - Wei Zhong
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou, Guangdong Province 510080, China
| | - Yuying Chen
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou, Guangdong Province 510080, China
| | - Hui Ma
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou, Guangdong Province 510080, China
| | - Yang Peng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou, Guangdong Province 510080, China.
| | - Lin Peng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou, Guangdong Province 510080, China.
| |
Collapse
|
2
|
Chiba A, Yamamoto T, Fukui H, Fukumoto M, Shirai M, Nakajima H, Mochizuki N. Zonated Wnt/β-catenin signal-activated cardiomyocytes at the atrioventricular canal promote coronary vessel formation in zebrafish. Dev Cell 2024:S1534-5807(24)00540-9. [PMID: 39395410 DOI: 10.1016/j.devcel.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/18/2024] [Accepted: 09/11/2024] [Indexed: 10/14/2024]
Abstract
Cells functioning at a specific zone by clustering according to gene expression are recognized as zonated cells. Here, we demonstrate anatomical and functional zones in the zebrafish heart. The cardiomyocytes (CMs) at the atrioventricular canal between the atrium and ventricle could be grouped into three zones according to the localization of signal-activated CMs: Wnt/β-catenin signal+, Bmp signal+, and Tbx2b+ zones. Endocardial endothelial cells (ECs) changed their characteristics, penetrated the Wnt/β-catenin signal+ CM zone, and became coronary ECs covering the heart. Coronary vessel length was reduced when the Wnt/β-catenin signal+ CMs were depleted. Collectively, we demonstrate the importance of anatomical and functional zonation of CMs in the zebrafish heart.
Collapse
Affiliation(s)
- Ayano Chiba
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan; Department of Pharmacology, Yamagata University School of Medicine, Yamagata 990-9585, Japan.
| | - Takuya Yamamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Medical-Risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto 606-8507, Japan
| | - Hajime Fukui
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan; Division of Biomechanics and Signaling, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Moe Fukumoto
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - Manabu Shirai
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Osaka 564-8565, Japan
| | - Hiroyuki Nakajima
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan.
| |
Collapse
|
3
|
Gao H, Hua K, Wu X, Wei L, Chen S, Yin Q, Jiang R, Zhang X. Building a learnable universal coordinate system for single-cell atlas with a joint-VAE model. Commun Biol 2024; 7:977. [PMID: 39134617 PMCID: PMC11319358 DOI: 10.1038/s42003-024-06564-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 07/05/2024] [Indexed: 08/15/2024] Open
Abstract
A universal coordinate system that can ensemble the huge number of cells and capture their heterogeneities is of vital importance for constructing large-scale cell atlases as references for molecular and cellular studies. Studies have shown that cells exhibit multifaceted heterogeneities in their transcriptomic features at multiple resolutions. This nature of complexity makes it hard to design a fixed coordinate system through a combination of known features. It is desirable to build a learnable universal coordinate model that can capture major heterogeneities and serve as a controlled generative model for data augmentation. We developed UniCoord, a specially-tuned joint-VAE model to represent single-cell transcriptomic data in a lower-dimensional latent space with high interpretability. Each latent dimension can represent either discrete or continuous feature, and either supervised by prior knowledge or unsupervised. The latent dimensions can be easily reconfigured to generate pseudo transcriptomic profiles with desired properties. UniCoord can also be used as a pre-trained model to analyze new data with unseen cell types and thus can serve as a feasible framework for cell annotation and comparison. UniCoord provides a prototype for a learnable universal coordinate framework to enable better analysis and generation of cells with highly orchestrated functions and heterogeneities.
Collapse
Affiliation(s)
- Haoxiang Gao
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing, China
| | - Kui Hua
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing, China
| | - Xinze Wu
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing, China
| | - Lei Wei
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing, China.
| | - Sijie Chen
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing, China
| | - Qijin Yin
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing, China
| | - Rui Jiang
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing, China
| | - Xuegong Zhang
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing, China.
- School of Life Sciences and School of Medicine, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China.
| |
Collapse
|
4
|
Bao M, Hua X, Chen X, An T, Mo H, Sun Z, Tao M, Yue G, Song J. PICALM Regulating the Generation of Amyloid β-Peptide to Promote Anthracycline-Induced Cardiotoxicity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401945. [PMID: 38935046 PMCID: PMC11348153 DOI: 10.1002/advs.202401945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/22/2024] [Indexed: 06/28/2024]
Abstract
Anthracyclines are chemotherapeutic drugs used to treat solid and hematologic malignancies. However, life-threatening cardiotoxicity, with cardiac dilation and heart failure, is a drawback. A combination of in vivo for single cell/nucleus RNA sequencing and in vitro approaches is used to elucidate the underlying mechanism. Genetic depletion and pharmacological blocking peptides on phosphatidylinositol binding clathrin assembly (PICALM) are used to evaluate the role of PICALM in doxorubicin-induced cardiotoxicity in vivo. Human heart tissue samples are used for verification. Patients with end-stage heart failure and chemotherapy-induced cardiotoxicity have thinner cell membranes compared to healthy controls do. Using the doxorubicin-induced cardiotoxicity mice model, it is possible to replicate the corresponding phenotype in patients. Cellular changes in doxorubicin-induced cardiotoxicity in mice, especially in cardiomyocytes, are identified using single cell/nucleus RNA sequencing. Picalm expression is upregulated only in cardiomyocytes with doxorubicin-induced cardiotoxicity. Amyloid β-peptide production is also increased after doxorubicin treatment, which leads to a greater increase in the membrane permeability of cardiomyocytes. Genetic depletion and pharmacological blocking peptides on Picalm reduce the generation of amyloid β-peptide. This alleviates the doxorubicin-induced cardiotoxicity in vitro and in vivo. In human heart tissue samples of patients with chemotherapy-induced cardiotoxicity, PICALM, and amyloid β-peptide are elevated as well.
Collapse
Affiliation(s)
- Mengni Bao
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant MaterialsAnimal Experimental CentreFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
- State Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing10037China
- Shenzhen Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical SciencesShenzhen518057China
| | - Xiumeng Hua
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant MaterialsAnimal Experimental CentreFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
- State Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing10037China
- Department of Cardiovascular SurgeryFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing10037China
- The Cardiomyopathy Research GroupFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing10037China
| | - Xiao Chen
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant MaterialsAnimal Experimental CentreFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
- State Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing10037China
- Department of Cardiovascular SurgeryFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing10037China
- The Cardiomyopathy Research GroupFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing10037China
| | - Tao An
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant MaterialsAnimal Experimental CentreFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
- Department of CardiologyFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing10037China
| | - Han Mo
- Shenzhen Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical SciencesShenzhen518057China
| | - Zhe Sun
- Shenzhen Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical SciencesShenzhen518057China
| | - Menghao Tao
- State Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing10037China
| | - Guangxin Yue
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant MaterialsAnimal Experimental CentreFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant MaterialsAnimal Experimental CentreFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
- State Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing10037China
- Shenzhen Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical SciencesShenzhen518057China
- Department of Cardiovascular SurgeryFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing10037China
- The Cardiomyopathy Research GroupFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing10037China
| |
Collapse
|
5
|
Chen L, Li H, Liu X, Zhang N, Wang K, Shi A, Gao H, Akdis D, Saguner AM, Xu X, Osto E, Van de Veen W, Li G, Bayés-Genís A, Duru F, Song J, Li X, Hu S. PBX/Knotted 1 homeobox-2 (PKNOX2) is a novel regulator of myocardial fibrosis. Signal Transduct Target Ther 2024; 9:94. [PMID: 38644381 PMCID: PMC11033280 DOI: 10.1038/s41392-024-01804-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 02/08/2024] [Accepted: 03/13/2024] [Indexed: 04/23/2024] Open
Abstract
Much effort has been made to uncover the cellular heterogeneities of human hearts by single-nucleus RNA sequencing. However, the cardiac transcriptional regulation networks have not been systematically described because of the limitations in detecting transcription factors. In this study, we optimized a pipeline for isolating nuclei and conducting single-nucleus RNA sequencing targeted to detect a higher number of cell signal genes and an optimal number of transcription factors. With this unbiased protocol, we characterized the cellular composition of healthy human hearts and investigated the transcriptional regulation networks involved in determining the cellular identities and functions of the main cardiac cell subtypes. Particularly in fibroblasts, a novel regulator, PKNOX2, was identified as being associated with physiological fibroblast activation in healthy hearts. To validate the roles of these transcription factors in maintaining homeostasis, we used single-nucleus RNA-sequencing analysis of transplanted failing hearts focusing on fibroblast remodelling. The trajectory analysis suggested that PKNOX2 was abnormally decreased from fibroblast activation to pathological myofibroblast formation. Both gain- and loss-of-function in vitro experiments demonstrated the inhibitory role of PKNOX2 in pathological fibrosis remodelling. Moreover, fibroblast-specific overexpression and knockout of PKNOX2 in a heart failure mouse model induced by transverse aortic constriction surgery significantly improved and aggravated myocardial fibrosis, respectively. In summary, this study established a high-quality pipeline for single-nucleus RNA-sequencing analysis of heart muscle. With this optimized protocol, we described the transcriptional regulation networks of the main cardiac cell subtypes and identified PKNOX2 as a novel regulator in suppressing fibrosis and a potential therapeutic target for future translational studies.
Collapse
Affiliation(s)
- Liang Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Haotong Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Xiaorui Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Ningning Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Kui Wang
- School of Statistics and Data Science, Nankai University, Tianjin, China
| | - Anteng Shi
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Hang Gao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Deniz Akdis
- Department of Cardiology, University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Ardan M Saguner
- Department of Cardiology, University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Elena Osto
- Department of Cardiology, University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Institute for Clinical Chemistry, University Hospital Zurich and University of Zürich, Zurich, Switzerland
| | - Willem Van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Guangyu Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Antoni Bayés-Genís
- Heart Institute, Hospital Universitari Germans Trias i Pujol, Badalona, CIBERCV, Spain
| | - Firat Duru
- Department of Cardiology, University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China.
| | - Xiangjie Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China.
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China.
| |
Collapse
|
6
|
Luo X, Jia H, Wang F, Mo H, Kang Y, Zhang N, Zhao L, Xu L, Yang Z, Yang Q, Chang Y, Li S, Bian N, Hua X, Cui H, Cao Y, Chu C, Zeng Y, Chen X, Chen Z, Ji W, Long C, Song J, Niu Y. Primate Model Carrying LMNA Mutation Develops Dilated Cardiomyopathy. JACC Basic Transl Sci 2024; 9:380-395. [PMID: 38559624 PMCID: PMC10978409 DOI: 10.1016/j.jacbts.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 04/04/2024]
Abstract
To solve the clinical transformation dilemma of lamin A/C (LMNA)-mutated dilated cardiomyopathy (LMD), we developed an LMNA-mutated primate model based on the similarity between the phenotype of primates and humans. We screened out patients with LMD and compared the clinical data of LMD with TTN-mutated and mutation-free dilated cardiomyopathy to obtain the unique phenotype. After establishment of the LMNA c.357-2A>G primate model, primates were continuously observed for 48 months, and echocardiographic, electrophysiological, histologic, and transcriptional data were recorded. The LMD primate model was found to highly simulate the phenotype of clinical LMD. In addition, the LMD primate model shared a similar natural history with humans.
Collapse
Affiliation(s)
- Xiang Luo
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Han Mo
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
| | - Yu Kang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Ningning Zhang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lu Zhao
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Lizhu Xu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhengsheng Yang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Qiaoyan Yang
- NYU Cardiovascular Research Center, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA
| | - Yuan Chang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shulin Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Ning Bian
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Xiumeng Hua
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Cui
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Cao
- Department of Cardiovascular Surgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Innovative Application of Traditional Chinese Medicine, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Chu Chu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Yuqiang Zeng
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Xinglong Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhigang Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Chengzu Long
- NYU Cardiovascular Research Center, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York, USA
- Department of Neurology, New York University School of Medicine, New York, New York, USA
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
| | - Yuyu Niu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
7
|
Lund H, Hunt MA, Kurtović Z, Sandor K, Kägy PB, Fereydouni N, Julien A, Göritz C, Vazquez-Liebanas E, Andaloussi Mäe M, Jurczak A, Han J, Zhu K, Harris RA, Lampa J, Graversen JH, Etzerodt A, Haglund L, Yaksh TL, Svensson CI. CD163+ macrophages monitor enhanced permeability at the blood-dorsal root ganglion barrier. J Exp Med 2024; 221:e20230675. [PMID: 38117255 PMCID: PMC10733632 DOI: 10.1084/jem.20230675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/04/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023] Open
Abstract
In dorsal root ganglia (DRG), macrophages reside close to sensory neurons and have largely been explored in the context of pain, nerve injury, and repair. However, we discovered that most DRG macrophages interact with and monitor the vasculature by sampling macromolecules from the blood. Characterization of the DRG vasculature revealed a specialized endothelial bed that transformed in molecular, structural, and permeability properties along the arteriovenous axis and was covered by macrophage-interacting pericytes and fibroblasts. Macrophage phagocytosis spatially aligned with peak endothelial permeability, a process regulated by enhanced caveolar transcytosis in endothelial cells. Profiling the DRG immune landscape revealed two subsets of perivascular macrophages with distinct transcriptome, turnover, and function. CD163+ macrophages self-maintained locally, specifically participated in vasculature monitoring, displayed distinct responses during peripheral inflammation, and were conserved in mouse and man. Our work provides a molecular explanation for the permeability of the blood-DRG barrier and identifies an unappreciated role of macrophages as integral components of the DRG-neurovascular unit.
Collapse
Affiliation(s)
- Harald Lund
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Matthew A. Hunt
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Zerina Kurtović
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Kancera AB, Karolinska Institutet Science Park, Stockholm, Sweden
| | - Katalin Sandor
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paul B. Kägy
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Noah Fereydouni
- Department of Medicine, Rheumatology Unit, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anais Julien
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Christian Göritz
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Elisa Vazquez-Liebanas
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Maarja Andaloussi Mäe
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Alexandra Jurczak
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jinming Han
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Keying Zhu
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Robert A. Harris
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jon Lampa
- Department of Medicine, Rheumatology Unit, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | - Anders Etzerodt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Lisbet Haglund
- Division of Orthopaedic Surgery, Department of Surgery, McGill University, Montreal, Canada
| | - Tony L. Yaksh
- Department of Anesthesiology, University of California, San Diego, CA, USA
| | - Camilla I. Svensson
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Wang L, Nie R, Zhang Z, Gu W, Wang S, Wang A, Zhang J, Cai J. A deep generative framework with embedded vector arithmetic and classifier for sample generation, label transfer, and clustering of single-cell data. CELL REPORTS METHODS 2023; 3:100558. [PMID: 37671019 PMCID: PMC10475846 DOI: 10.1016/j.crmeth.2023.100558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/31/2023] [Accepted: 07/20/2023] [Indexed: 09/07/2023]
Abstract
Multiple-source single-cell datasets have accumulated quickly and need computational methods to integrate and decompose into meaningful components. Here, we present inClust (integrated clustering), a flexible deep generative framework that enables embedding auxiliary information, latent space vector arithmetic, and clustering. All functional parts are relatively modular, independent in implementation but interrelated at runtime, resulting in an all-in general framework that could work in supervised, semi-supervised, or unsupervised mode. We show that inClust is superior to most data integration methods in benchmark datasets. Then, we demonstrate the capability of inClust in the tasks of conditional out-of-distribution generation in supervised mode, label transfer in semi-supervised mode, and spatial domain identification in unsupervised mode. In these examples, inClust could accurately express the effect of each covariate, distinguish the query-specific cell types, or segment spatial domains. The results support that inClust is an excellent general framework for multiple-task harmonization and data decomposition.
Collapse
Affiliation(s)
- Lifei Wang
- Shulan (Hangzhou) Hospital Affiliated with Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, China
| | - Rui Nie
- China National Center for Bioinformation, Beijing 100101, China
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhang Zhang
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Weiwei Gu
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuo Wang
- School of Systems Science, Beijing Normal University, Beijing 100875, China
- Computer Engineering and Networks Lab, ETH Zurich, 8092 Zurich, Switzerland
| | - Anqi Wang
- Shulan (Hangzhou) Hospital Affiliated with Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, China
| | - Jiang Zhang
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Jun Cai
- China National Center for Bioinformation, Beijing 100101, China
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Cardiovascular diseases are the leading cause of death worldwide, largely due to the limited regenerative capacity of the adult human heart. In contrast, teleost zebrafish hearts possess natural regeneration capacity by proliferation of pre-existing cardiomyocytes after injury. Hearts of mice can regenerate if injured in a few days after birth, which coincides with the transient capacity for cardiomyocyte proliferation. This review tends to elaborate the roles and mechanisms of Wnt/β-catenin signaling in heart development and regeneration in mammals and non-mammalian vertebrates. RECENT FINDINGS Studies in zebrafish, mice, and human embryonic stem cells demonstrate the binary effect for Wnt/β-catenin signaling during heart development. Both Wnts and Wnt antagonists are induced in multiple cell types during cardiac development and injury repair. In this review, we summarize composites of the Wnt signaling pathway and their different action routes, followed by the discussion of their involvements in cardiac specification, proliferation, and patterning. We provide overviews about canonical and non-canonical Wnt activity during heart homeostasis, remodeling, and regeneration. Wnt/β-catenin signaling exhibits biphasic and antagonistic effects on cardiac specification and differentiation depending on the stage of embryogenesis. Inhibition of Wnt signaling is beneficial for cardiac wound healing and functional recovery after injury. Understanding of the roles and mechanisms of Wnt signaling pathway in injured animal hearts will contribute to the development of potential therapeutics for human diseased hearts.
Collapse
Affiliation(s)
- Dongliang Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jianjian Sun
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China.,Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, China
| | - Tao P Zhong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
10
|
Chen S, Luo Y, Gao H, Li F, Chen Y, Li J, You R, Hao M, Bian H, Xi X, Li W, Li W, Ye M, Meng Q, Zou Z, Li C, Li H, Zhang Y, Cui Y, Wei L, Chen F, Wang X, Lv H, Hua K, Jiang R, Zhang X. hECA: The cell-centric assembly of a cell atlas. iScience 2022; 25:104318. [PMID: 35602947 PMCID: PMC9114628 DOI: 10.1016/j.isci.2022.104318] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/18/2022] [Accepted: 04/25/2022] [Indexed: 12/04/2022] Open
Abstract
The accumulation of massive single-cell omics data provides growing resources for building biomolecular atlases of all cells of human organs or the whole body. The true assembly of a cell atlas should be cell-centric rather than file-centric. We developed a unified informatics framework for seamless cell-centric data assembly and built the human Ensemble Cell Atlas (hECA) from scattered data. hECA v1.0 assembled 1,093,299 labeled human cells from 116 published datasets, covering 38 organs and 11 systems. We invented three new methods of atlas applications based on the cell-centric assembly: “in data” cell sorting for targeted data retrieval with customizable logic expressions, “quantitative portraiture” for multi-view representations of biological entities, and customizable reference creation for generating references for automatic annotations. Case studies on agile construction of user-defined sub-atlases and “in data” investigation of CAR-T off-targets in multiple organs showed the great potential enabled by the cell-centric ensemble atlas. A unified informatics framework for seamless cell-centric assembly of massive single-cell data Built the general-purpose human Ensemble Cell Atlas (hECA) V1.0 from scattered data Three new methods of applications enabling “in data” cell experiments and portraiture Case studies of agile atlas reconstruction and target therapies side-effect discovery
Collapse
Affiliation(s)
- Sijie Chen
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Yanting Luo
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Haoxiang Gao
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Fanhong Li
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Yixin Chen
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Jiaqi Li
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Renke You
- Fuzhou Institute of Data Technology, Changle, Fuzhou 350200, China
| | - Minsheng Hao
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Haiyang Bian
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Xi Xi
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Wenrui Li
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Weiyu Li
- Fuzhou Institute of Data Technology, Changle, Fuzhou 350200, China
| | - Mingli Ye
- Fuzhou Institute of Data Technology, Changle, Fuzhou 350200, China
| | - Qiuchen Meng
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Ziheng Zou
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Chen Li
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Haochen Li
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yangyuan Zhang
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Yanfei Cui
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Lei Wei
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Fufeng Chen
- Fuzhou Institute of Data Technology, Changle, Fuzhou 350200, China
| | - Xiaowo Wang
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Hairong Lv
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China.,Fuzhou Institute of Data Technology, Changle, Fuzhou 350200, China
| | - Kui Hua
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Rui Jiang
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Xuegong Zhang
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China.,School of Medicine, Tsinghua University, Beijing 100084, China.,School of Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|