1
|
Rakhe N, Bhatt LK. Valosin-containing protein: A potential therapeutic target for cardiovascular diseases. Ageing Res Rev 2024; 101:102511. [PMID: 39313037 DOI: 10.1016/j.arr.2024.102511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024]
Abstract
Valosin-containing protein (VCP), also known as p97, plays a crucial role in various cellular processes, including protein degradation, endoplasmic reticulum-associated degradation, and cell cycle regulation. While extensive research has been focused on VCP's involvement in protein homeostasis and its implications in neurodegenerative diseases, emerging evidence suggests a potential link between VCP and cardiovascular health. VCP is a key regulator of mitochondrial function, and its overexpression or mutations lead to pathogenic diseases and cellular stress responses. The present review explores VCP's roles in numerous cardiovascular disorders including myocardial ischemia/reperfusion injury, cardiac hypertrophy, and heart failure. The review dwells on the roles of VCP in modifying mitochondrial activity, promoting S-nitrosylation, regulating mTOR signalling and demonstrating cardioprotective effects. Further research into VCP might lead to novel interventions for cardiovascular disease, particularly those involving ischemia/reperfusion injury and hypertrophy.
Collapse
Affiliation(s)
- Nameerah Rakhe
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
| |
Collapse
|
2
|
Zhang Z, Wang Y, Chen X, Wu C, Zhou J, Chen Y, Liu X, Tang X. The aging heart in focus: The advanced understanding of heart failure with preserved ejection fraction. Ageing Res Rev 2024; 101:102542. [PMID: 39396676 DOI: 10.1016/j.arr.2024.102542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 10/15/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) accounts for 50 % of heart failure (HF) cases, making it the most common type of HF, and its prevalence continues to increase in the aging society. HFpEF is a systemic syndrome resulting from many risk factors, such as aging, metabolic syndrome, and hypertension, and its clinical features are highly heterogeneous in different populations. HFpEF syndrome involves the dysfunction of multiple organs, including the heart, lung, muscle, and vascular system. The heart shows dysfunction of various cells, including cardiomyocytes, endothelial cells, fibroblasts, adipocytes, and immune cells. The complex etiology and pathobiology limit experimental research on HFpEF in animal models, delaying a comprehensive understanding of the mechanisms and making treatment difficult. Recently, many scientists and cardiologists have attempted to improve the clinical outcomes of HFpEF. Recent advances in clinically related animal models and systemic pathology studies have improved our understanding of HFpEF, and clinical trials involving sodium-glucose cotransporter 2 inhibitors have significantly enhanced our confidence in treating HFpEF. This review provides an updated comprehensive discussion of the etiology and pathobiology, molecular and cellular mechanisms, preclinical animal models, and therapeutic trials in animals and patients to enhance our understanding of HFpEF and improve clinical outcomes.
Collapse
Affiliation(s)
- Zhewei Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, National Health Commission Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Children's Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.2222 Xinchuan Road, Chengdu 610041, China; Department of Cardiology and Laboratory of Cardiovascular Diseases, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yu Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, National Health Commission Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Children's Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.2222 Xinchuan Road, Chengdu 610041, China; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiangqi Chen
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chuan Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, National Health Commission Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Children's Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.2222 Xinchuan Road, Chengdu 610041, China
| | - Jingyue Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, National Health Commission Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Children's Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.2222 Xinchuan Road, Chengdu 610041, China
| | - Yan Chen
- Department of Cardiology and Laboratory of Cardiovascular Diseases, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Xiaojing Liu
- Department of Cardiology and Laboratory of Cardiovascular Diseases, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, National Health Commission Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Children's Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.2222 Xinchuan Road, Chengdu 610041, China.
| |
Collapse
|
3
|
Yuan J, Yin C, Peng H, Fang G, Mo B, Qin X, Chen Y, Wang Z, Yu Y, Wang Y, Wang Q. NDRG1 Regulates Iron Metabolism and Inhibits Pathologic Cardiac Hypertrophy. Can J Cardiol 2024:S0828-282X(24)01029-8. [PMID: 39427843 DOI: 10.1016/j.cjca.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/26/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Cardiac pathologic hypertrophy, a pathologic physiological alteration in many cardiovascular diseases, can progress to heart failure. The cellular biology underlying myocardial hypertrophy remains to be fully elucidated. Although N-myc downstream-regulated gene 1 (NDRG1) has been reported to participate in cellular proliferation, differentiation, and cellular stress responses, its role in cardiac diseases remains unexplored. Here, we investigated the role of NDRG1 in pathologic hypertrophy. METHOD Cardiomyocyte-specific NDRG1 knockout (KO) transgenic mice and NDRG1-AAV9 were used in mice. Angiotensin II (AngII) stimulation was applied to induce hypertrophy. Histologic, molecular, and RNA-sequencing analyses were performed, and ferroptosis markers and iron levels were studied. We used co-immunoprecipitation (Co-IP) and application of iron chelator to further studied the mechanisms of NDRG1 in cardiac hypertrophy. RESULTS We found that NDRG1 expression is decreased in pathologic hypertrophy induced by AngII stimulation. Conditional KO of NDRG1 in mouse cardiomyocytes led to progressive cardiac hypertrophy and heart failure. Cardiomyocyte-specific overexpression of NDRG1 via AAV9 significantly reversed AngII-induced ventricular hypertrophy and fibrosis. Mechanistically, NDRG1-deficient cardiomyocytes exhibited iron overload and increased ferroptosis, accompanied by elevated levels of reactive oxygen species (ROS) and lipid peroxidation. Subsequently, we confirmed the involvement of NDRG1 in regulating ferroptosis and iron metabolism in myocardial cells. Finally, we identified an interaction between NDRG1 and transferrin in cells. The iron chelator Dp44mT effectively reduced myocardial iron overload and ventricular remodelling induced by NDRG1 deficiency. CONCLUSIONS These findings highlight critical role of NDRG1 in iron metabolism and ferroptosis in cardiomyocytes, suggesting that NDRG1 or iron metabolism may serve as therapeutic targets for cardiac hypertrophy.
Collapse
Affiliation(s)
- Jiali Yuan
- Department of Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chengye Yin
- Department of Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hong Peng
- Department of Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guojian Fang
- Department of Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Binfeng Mo
- Department of Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiji Qin
- Department of Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuhan Chen
- Department of Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhengshuai Wang
- Department of Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yichi Yu
- Department of Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuepeng Wang
- Department of Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qunshan Wang
- Department of Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Yarmohammadi F, Karimi G. Serum and glucocorticoid-regulated kinase 1 (SGK1) as an emerging therapeutic target for cardiac diseases. Pharmacol Res 2024; 208:107369. [PMID: 39209082 DOI: 10.1016/j.phrs.2024.107369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/11/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Cardiac diseases encompass a wide range of conditions that affect the structure and function of the heart. These conditions are a leading cause of morbidity and mortality worldwide. The serum- and glucocorticoid-inducible kinase 1 (SGK1) is a serine/threonine kinase that plays a significant role in various cellular processes, including cell survival and stress response. Alterations in SGK1 activity can have significant impacts on health and disease. Multiple research findings have indicated that SGK1 is associated with heart disease due to its involvement in cardiac hypertrophy and fibrosis. This article reviews different signaling pathways associated with SGK1 activity in various heart conditions, including the SGK1/NF-κB and PI3K/SGK1 pathways.
Collapse
Affiliation(s)
- Fatemeh Yarmohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Cao H, Zhou X, Xu B, Hu H, Guo J, Ma Y, Wang M, Li N, Jun Z. Advances in the study of protein folding and endoplasmic reticulum-associated degradation in mammal cells. J Zhejiang Univ Sci B 2024; 25:212-232. [PMID: 38453636 PMCID: PMC10918413 DOI: 10.1631/jzus.b2300403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/03/2023] [Indexed: 03/09/2024]
Abstract
The endoplasmic reticulum is a key site for protein production and quality control. More than one-third of proteins are synthesized and folded into the correct three-dimensional conformation in the endoplasmic reticulum. However, during protein folding, unfolded and/or misfolded proteins are prone to occur, which may lead to endoplasmic reticulum stress. Organisms can monitor the quality of the proteins produced by endoplasmic reticulum quality control (ERQC) and endoplasmic reticulum-associated degradation (ERAD), which maintain endoplasmic reticulum protein homeostasis by degrading abnormally folded proteins. The underlying mechanisms of protein folding and ERAD in mammals have not yet been fully explored. Therefore, this paper reviews the process and function of protein folding and ERAD in mammalian cells, in order to help clinicians better understand the mechanism of ERAD and to provide a scientific reference for the treatment of diseases caused by abnormal ERAD.
Collapse
Affiliation(s)
- Hong Cao
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai 200433, China
| | - Xuchang Zhou
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
| | - Bowen Xu
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai 200433, China
| | - Han Hu
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai 200433, China
| | - Jianming Guo
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
| | - Yuwei Ma
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
| | - Miao Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
| | - Nan Li
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai 200433, China.
| | - Zou Jun
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|