1
|
Basit J, Ahmed M, Shafiq A, Zaheer Z, Nashwan AJ, Ahmed A, Hamza M, Naseer U, Ali S, Gupta N, Sattar Y, Kawsara A, Daggubati R, Alraies MC. Temporal Trends in the Outcomes of Percutaneous Coronary Intervention With Zotarolimus Eluting Stents Versus Everolimus Eluting Stents: A Meta-Analysis of Randomized Controlled Trials. Clin Cardiol 2024; 47:e24306. [PMID: 38888152 PMCID: PMC11184471 DOI: 10.1002/clc.24306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024] Open
Abstract
INTRODUCTION Long-term follow-up results of various trials comparing Zotarolimus eluting stents (ZES) with Everolimus eluting stents (EES) have been published recently. Additionally, over the last decade, there have been new trials comparing the ZES with various commercially available EES. We aim to conduct an updated meta-analysis in light of new evidence from randomized controlled trials (RCTs) to provide comprehensive evidence regarding the temporal trends in the clinical outcomes. METHODS A comprehensive literature search was conducted across PubMed, Cochrane, and Embase. RCTs comparing ZES with EES for short (<2 years), intermediate (2-3 years), and long-term follow-ups (3-5 years) were included. Relative risk was used to pool the dichotomous outcomes using the random effects model employing the inverse variance method. All statistical analysis was conducted using Revman 5.4. RESULTS A total of 18 studies reporting data at different follow-ups for nine trials (n = 14319) were included. At short-term follow-up (<2 years), there were no significant differences between the two types of stents (all-cause death, cardiac death, Major adverse cardiovascular events (MACE), target vessel myocardial infarction, definite or probable stent thrombosis or safety outcomes (target vessel revascularization, target lesion revascularization, target vessel failure, target lesion failure). At intermediate follow-up (2-3 years), EES was superior to ZES for reducing target lesion revascularization (RR = 1.28, 95% CI = 1.05-1.58, p < 0.05). At long-term follow-up (3-5 years), there were no significant differences between the two groups for any of the pooled outcomes (p > 0.05). CONCLUSION ZES and EES have similar safety and efficacy at short, intermediate, and long-term follow-ups.
Collapse
Affiliation(s)
- Jawad Basit
- Department of MedicineRawalpindi Medical UniversityRawalpindiPakistan
- Cardiovascular Analytics GroupCanterburyUK
| | - Mushood Ahmed
- Department of MedicineRawalpindi Medical UniversityRawalpindiPakistan
| | - Aimen Shafiq
- Department of MedicineDow University of Health SciencesKarachiPakistan
| | - Zaofashan Zaheer
- Department of MedicineKing Edward Medical UniversityLahorePakistan
| | | | - Aleena Ahmed
- Department of MedicineKing Edward Medical UniversityLahorePakistan
| | | | - Usman Naseer
- Department of CardiologyUSD Sanford School of MedicineSioux FallsSouth DakotaUSA
| | - Shafaqat Ali
- Department of Internal MedicineLouisiana State UniversityShreveportLouisianaUSA
| | - Neelesh Gupta
- Department of Cardiology, Kirk Kerkorian School of MedicineUniversity of Nevada Las VegasLas VegasNevadaUSA
| | - Yasar Sattar
- Department of Interventional CardiologyWest Virginia UniversityMorgantownWest VirginiaUSA
| | - Akram Kawsara
- Department of Interventional CardiologyWest Virginia UniversityMorgantownWest VirginiaUSA
| | - Ramesh Daggubati
- Department of Interventional CardiologyWest Virginia UniversityMorgantownWest VirginiaUSA
| | - M. Chadi Alraies
- Department of Cardiology, Detroit Medical CenterWayne State UniversityDetroitMichiganUSA
| |
Collapse
|
2
|
Lungu CN, Creteanu A, Mehedinti MC. Endovascular Drug Delivery. Life (Basel) 2024; 14:451. [PMID: 38672722 PMCID: PMC11051410 DOI: 10.3390/life14040451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Drug-eluting stents (DES) and balloons revolutionize atherosclerosis treatment by targeting hyperplastic tissue responses through effective local drug delivery strategies. This review examines approved and emerging endovascular devices, discussing drug release mechanisms and their impacts on arterial drug distribution. It emphasizes the crucial role of drug delivery in modern cardiovascular care and highlights how device technologies influence vascular behavior based on lesion morphology. The future holds promise for lesion-specific treatments, particularly in the superficial femoral artery, with recent CE-marked devices showing encouraging results. Exciting strategies and new patents focus on local drug delivery to prevent restenosis, shaping the future of interventional outcomes. In summary, as we navigate the ever-evolving landscape of cardiovascular intervention, it becomes increasingly evident that the future lies in tailoring treatments to the specific characteristics of each lesion. By leveraging cutting-edge technologies and harnessing the potential of localized drug delivery, we stand poised to usher in a new era of precision medicine in vascular intervention.
Collapse
Affiliation(s)
- Claudiu N. Lungu
- Department of Functional and Morphological Science, Faculty of Medicine and Pharmacy, Dunarea de Jos University, 800010 Galati, Romania;
| | - Andreea Creteanu
- Department of Pharmaceutical Technology, University of Medicine and Pharmacy Grigore T Popa, 700115 Iași, Romania
| | - Mihaela C. Mehedinti
- Department of Functional and Morphological Science, Faculty of Medicine and Pharmacy, Dunarea de Jos University, 800010 Galati, Romania;
| |
Collapse
|
3
|
Lei B, Liu LB, Stokes L, Giangrande PH, Miller FJ, Yazdani SK. Smooth muscle cell-targeted RNA ligand promotes accelerated reendothelialization in a swine peripheral injury model. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102023. [PMID: 37727270 PMCID: PMC10506064 DOI: 10.1016/j.omtn.2023.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023]
Abstract
The local delivery of antiproliferative agents to inhibit neointimal growth is not specific to vascular smooth muscle cells (VSMC) and delays reendothelialization and vascular healing. This investigation was intended to evaluate the effect of luminal delivery of a VSMC-specific aptamer on endothelial healing. The impact of an RNA aptamer (Apt 14) was first examined on the migration and proliferation of primary cultured porcine aortic endothelial cells (ECs) in response to in vitro scratch wound injury. We further evaluated the impact of Apt 14 on reendothelialization when delivered locally in a swine iliofemoral injury model. Although Apt 14 did not affect EC migration and proliferation, in vitro results confirmed that paclitaxel significantly inhibited EC migration and proliferation. En face scanning electron microscopy demonstrated confluent endothelium with elongated EC morphology in Apt 14-treated arteries 14 and 28 days post-treatment. In contrast, vessels treated with paclitaxel-coated balloons displayed a cobblestone morphology and significant platelet and fibrin attachment at cell junctions. These results provide the first evidence of the efficacy of a cell-targeted RNA aptamer to facilitate endothelial healing in a clinically relevant large animal model.
Collapse
Affiliation(s)
- Beilei Lei
- Department of Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Linda B. Liu
- Department of Engineering, Wake Forest University, Winston-Salem, NC, USA
| | - Lauren Stokes
- Department of Engineering, Wake Forest University, Winston-Salem, NC, USA
| | | | - Francis J. Miller
- Veterans Administration Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Saami K. Yazdani
- Department of Engineering, Wake Forest University, Winston-Salem, NC, USA
| |
Collapse
|
4
|
Giacoppo D, Saucedo J, Scheller B. Coronary Drug-Coated Balloons for De Novo and In-Stent Restenosis Indications. JOURNAL OF THE SOCIETY FOR CARDIOVASCULAR ANGIOGRAPHY & INTERVENTIONS 2023; 2:100625. [PMID: 39130710 PMCID: PMC11308150 DOI: 10.1016/j.jscai.2023.100625] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 08/13/2024]
Abstract
Drug-coated balloons are approved outside the United States, not only for the treatment of peripheral arteries but also for coronary arteries. This review describes the technological basics, the scenarios of clinical application, and the current available data from clinical trials for the different coronary indications.
Collapse
Affiliation(s)
- Daniele Giacoppo
- Cardiology Department, Alto Vicentino Hospital, Santorso, Italy
- Cardiovascular Research Institute, Mater Private Hospital, Royal College of Surgeons in Ireland, Dublin, Ireland
- ISAResearch Center, Deutsches Herzzentrum München, Technisches Universität München, Munich, Germany
| | - Jorge Saucedo
- Cardiology Department, Froedtert Hospital, Medical College of Wisconsin, Milwaukee, Illinois
| | - Bruno Scheller
- Clinical and Experimental Interventional Cardiology, University of Saarland, Homburg/Saar, Germany
| |
Collapse
|
5
|
Muramatsu T, Kozuma K, Tanabe K, Morino Y, Ako J, Nakamura S, Yamaji K, Kohsaka S, Amano T, Kobayashi Y, Ikari Y, Kadota K, Nakamura M. Clinical expert consensus document on drug-coated balloon for coronary artery disease from the Japanese Association of Cardiovascular Intervention and Therapeutics. Cardiovasc Interv Ther 2023; 38:166-176. [PMID: 36847902 PMCID: PMC10020262 DOI: 10.1007/s12928-023-00921-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 03/01/2023]
Abstract
Drug-coated balloon (DCB) technology was developed to deliver the antiproliferative drugs to the vessel wall without leaving any permanent prosthesis or durable polymers. The absence of foreign material can reduce the risk of very late stent failure, improve the ability to perform bypass-graft surgery, and reduce the need for long-term dual antiplatelet therapy, potentially reducing associated bleeding complications. The DCB technology, like the bioresorbable scaffolds, is expected to be a therapeutic approach that facilitates the "leave nothing behind" strategy. Although newer generation drug-eluting stents are the most common therapeutic strategy in modern percutaneous coronary interventions, the use of DCB is steadily increasing in Japan. Currently, the DCB is only indicated for treatment of in-stent restenosis or small vessel lesions (< 3.0 mm), but potential expansion for larger vessels (≥ 3.0 mm) may hasten its use in a wider range of lesions or patients with obstructive coronary artery disease. The task force of the Japanese Association of Cardiovascular Intervention and Therapeutics (CVIT) was convened to describe the expert consensus on DCBs. This document aims to summarize its concept, current clinical evidence, possible indications, technical considerations, and future perspectives.
Collapse
Affiliation(s)
- Takashi Muramatsu
- Department of Cardiology, Cardiovascular Center, Fujita Health University Hospital, 1-98 Dengaku, Kutsukake, Toyoake, Aichi, 470-1192, Japan.
| | - Ken Kozuma
- Division of Cardiology, Teikyo University Hospital, Tokyo, Japan
| | - Kengo Tanabe
- Division of Cardiology, Mitsui Memorial Hospital, Tokyo, Japan
| | - Yoshihiro Morino
- Division of Cardiology, Department of Internal Medicine, Iwate Medical University, Iwate, Japan
| | - Junya Ako
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, Sagamihara, Japan
| | | | - Kyohei Yamaji
- Department of Cardiovascular Medicine, Kyoto University, Kyoto, Japan
| | - Shun Kohsaka
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Tetsuya Amano
- Department of Cardiology, Aichi Medical University, Nagakute, Japan
| | - Yoshio Kobayashi
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yuji Ikari
- Department of Cardiology, Tokai University School of Medicine, Isehara, Japan
| | - Kazushige Kadota
- Department of Cardiovascular Medicine, Kurashiki Central Hospital, Kurashiki, Japan
| | - Masato Nakamura
- Division of Cardiovascular Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | | |
Collapse
|
6
|
Bienek S, Kusmierczuk M, Schnorr B, Gemeinhardt O, Bettink S, Scheller B. One single drug-coated balloon for all shapes/diameters? Neointimal proliferation inhibition in porcine peripheral arteries. PLoS One 2023; 18:e0280206. [PMID: 36706120 PMCID: PMC9882906 DOI: 10.1371/journal.pone.0280206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/22/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Long diseased vessel segments of peripheral arteries may display irregular shapes with different diameters. The aim of this study was to investigate inhibition of neointimal proliferation in porcine peripheral vessels with different diameters covered by one single hyper-compliant drug-coated balloon (HCDCB), compared to conventional drug-coated balloons (DCB), each selected according to the respective vessel diameter. METHODS AND RESULTS Neointimal proliferation was stimulated in proximal and distal segments of the peripheral arteries by balloon overstretch and stent implantation. Inhibition of neointimal proliferation by one single HCDCB was compared to two vessel diameter-adjusted DCB per artery and to one single uncoated hyper-compliant balloon (HCB). Sixteen HCB, 16 HCDCB, and 32 DCB were used in 16 arteries each. Quantitative angiography (QA), optical coherence tomography (OCT) and histology showed a similar anti-restenotic effect for one HCDCB compared to two vessel diameter-adjusted DCB in narrow distal and wider proximal segments (QA diameter stenosis: 18.7±12.3% vs. 22.8±15.5%, p = 0.535; OCT area stenosis: 21.4±11.6% vs. 23.6±12.3%, p = 0.850; histomorphometry diameter stenosis: 27.5±7.1% vs. 26.9±8.0%, p = 0.952) and indicated significant inhibition of neointimal proliferation by HCDCB vs. uncoated HCB (QA diameter stenosis: 18.7±12.3% vs. 30.3±16.7%, p = 0.008; OCT area stenosis: 21.4±11.6% vs. 34.7±16.0%, p = 0.004; histomorphometry diameter stenosis: 27.5±7.1% vs. 32.5±8.5%, p = 0.038). CONCLUSIONS HCDCB were found to be similar effective as DCB in inhibiting neointimal proliferation in vessel segments with different diameters. One single long HCDCB may allow for treatment of segments with variable diameters, and thus, replace the use of several vessel diameter-adjusted DCB.
Collapse
Affiliation(s)
| | | | - Beatrix Schnorr
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ole Gemeinhardt
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stephanie Bettink
- Clinical and Experimental Interventional Cardiology, University of Saarland, Homburg, Saar, Germany
| | - Bruno Scheller
- Clinical and Experimental Interventional Cardiology, University of Saarland, Homburg, Saar, Germany
- * E-mail:
| |
Collapse
|
7
|
Donisan T, Madanat L, Balanescu DV, Mertens A, Dixon S. Drug-Eluting Stent Restenosis: Modern Approach to a Classic Challenge. Curr Cardiol Rev 2023; 19:e030123212355. [PMID: 36597603 PMCID: PMC10280993 DOI: 10.2174/1573403x19666230103154638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 01/05/2023] Open
Abstract
In-stent restenosis (ISR) is a recognized complication following percutaneous coronary intervention in which the luminal diameter is narrowed through neointimal hyperplasia and vessel remodeling. Although rates of ISR have decreased in most recent years owing to newer generation drug-eluting stents, thinner struts, and better intravascular imaging modalities, ISR remains a prevalent dilemma that proves to be challenging to manage. Several factors have been proposed to contribute to ISR formation, including mechanical stent characteristics, technical factors during the coronary intervention, and biological aspects of drug-eluting stents. Presentation of ISR can range from asymptomatic to late myocardial infarction and could be difficult to differentiate from acute thrombus formation. No definite guidelines are present on the management of ISR. In this review, we will discuss the mechanisms underlying ISR and provide insight into patient-related and procedural risk factors contributing to ISR, in addition to highlighting common treatment approaches utilized in the management of ISR.
Collapse
Affiliation(s)
- Teodora Donisan
- Department of Internal Medicine, Beaumont Hospital, Royal Oak, MI, 48073, USA
| | - Luai Madanat
- Department of Internal Medicine, Beaumont Hospital, Royal Oak, MI, 48073, USA
| | - Dinu V. Balanescu
- Department of Internal Medicine, Beaumont Hospital, Royal Oak, MI, 48073, USA
| | - Amy Mertens
- Department of Cardiovascular Medicine, Beaumont Hospital, Royal Oak, MI, 48073, USA
| | - Simon Dixon
- Department of Cardiovascular Medicine, Beaumont Hospital, Royal Oak, MI, 48073, USA
| |
Collapse
|
8
|
Abstract
Endovascular revascularization strategies have advanced tremendously over the years and are now often considered first line for treatment of peripheral arterial disease. Drug-eluting stents (DESs) have been developed as one of the tools to overcome the limitations of elastic recoil and neointimal hyperplasia observed with balloon angioplasty and bare metal stents. While these stents have been extremely successful in coronary revascularization, they have not translated as effectively to the peripheral arteries which differ in their unique mechanical environments and differences in vessel and lesion composition. DESs, through their embedded pharmaceutical agent, seek to inhibit vascular smooth muscle cell (VSMC) proliferation and migration. Paclitaxel, sirolimus, and its derivatives (-limus family) achieve VSMC inhibition through unique mechanisms. Several clinical trials have been performed to evaluate the use of DES in the femoropopliteal and infrapopliteal territory and have demonstrated overall decrease in revascularization rates and improved clinical outcomes.
Collapse
Affiliation(s)
- Chetan Velagapudi
- Department of Vascular and Interventional Radiology, Rush University Medical Center, Chicago, Illinois
| | - Sreekumar Madassery
- Department of Vascular and Interventional Radiology, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
9
|
Abbasnezhad N, Zirak N, Champmartin S, Shirinbayan M, Bakir F. An Overview of In Vitro Drug Release Methods for Drug-Eluting Stents. Polymers (Basel) 2022; 14:2751. [PMID: 35808798 PMCID: PMC9269075 DOI: 10.3390/polym14132751] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 01/08/2023] Open
Abstract
The drug release profile of drug-eluting stents (DESs) is affected by a number of factors, including the formulation, design, and physicochemical properties of the utilized material. DES has been around for twenty years and despite its widespread clinical use, and efficacy in lowering the rate of target lesion restenosis, it still requires additional development to reduce side effects and provide long-term clinical stability. Unfortunately, for analyzing these implants, there is still no globally accepted in vitro test method. This is owing to the stent's complexity as well as the dynamic arterial compartments of the blood and vascular wall. The former is the source of numerous biological, chemical, and physical mechanisms that are more commonly observed in tissue, lumen, and DES. As a result, universalizing bio-relevant apparatus, suitable for liberation testing of such complex implants is difficult. This article aims to provide a comprehensive review of the methods used for in vitro release testing of DESs. Aspects related to the correlation of the release profiles in the cases of in vitro and in vivo are also addressed.
Collapse
Affiliation(s)
- Navideh Abbasnezhad
- Arts et Métiers Institute of Technology, CNAM, LIFSE, HESAM University, F-75013 Paris, France; (N.Z.); (S.C.)
- Arts et Métiers Institute of Technology, CNAM, PIMM, HESAM University, F-75013 Paris, France;
| | - Nader Zirak
- Arts et Métiers Institute of Technology, CNAM, LIFSE, HESAM University, F-75013 Paris, France; (N.Z.); (S.C.)
- Arts et Métiers Institute of Technology, CNAM, PIMM, HESAM University, F-75013 Paris, France;
| | - Stéphane Champmartin
- Arts et Métiers Institute of Technology, CNAM, LIFSE, HESAM University, F-75013 Paris, France; (N.Z.); (S.C.)
| | - Mohammadali Shirinbayan
- Arts et Métiers Institute of Technology, CNAM, PIMM, HESAM University, F-75013 Paris, France;
| | - Farid Bakir
- Arts et Métiers Institute of Technology, CNAM, LIFSE, HESAM University, F-75013 Paris, France; (N.Z.); (S.C.)
| |
Collapse
|
10
|
Escuer J, Schmidt AF, Peña E, Martínez MA, McGinty S. Mathematical modelling of endovascular drug delivery: balloons versus stents. Int J Pharm 2022; 620:121742. [DOI: 10.1016/j.ijpharm.2022.121742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 01/15/2023]
|
11
|
Ng JCK, Toong DWY, Ow V, Chaw SY, Toh H, Wong PEH, Venkatraman S, Chong TT, Tan LP, Huang YY, Ang HY. Progress in drug-delivery systems in cardiovascular applications: stents, balloons and nanoencapsulation. Nanomedicine (Lond) 2022; 17:325-347. [PMID: 35060758 DOI: 10.2217/nnm-2021-0288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Drug-delivery systems in cardiovascular applications regularly include the use of drug-eluting stents and drug-coated balloons to ensure sufficient drug transfer and efficacy in the treatment of cardiovascular diseases. In addition to the delivery of antiproliferative drugs, the use of growth factors, genetic materials, hormones and signaling molecules has led to the development of different nanoencapsulation techniques for targeted drug delivery. The review will cover drug delivery and coating mechanisms in current drug-eluting stents and drug-coated balloons, novel innovations in drug-eluting stent technologies and drug encapsulation in nanocarriers for delivery in vascular diseases. Newer technologies and advances in nanoencapsulation techniques, such as the use of liposomes, nanogels and layer-by-layer coating to deliver therapeutics in the cardiovascular space, will be highlighted.
Collapse
Affiliation(s)
- Jaryl Chen Koon Ng
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore.,Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Daniel Wee Yee Toong
- Department of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore, 639798, Singapore
| | - Valerie Ow
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Su Yin Chaw
- Duke-National University of Singapore Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Hanwei Toh
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore.,Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Philip En Hou Wong
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore.,Duke-National University of Singapore Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Subbu Venkatraman
- Department of Material Science Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Tze Tec Chong
- Duke-National University of Singapore Medical School, 8 College Road, Singapore, 169857, Singapore.,Department of Vascular Surgery, Singapore General Hospital, Outram Road, Singapore, 169608, Singapore
| | - Lay Poh Tan
- Department of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore, 639798, Singapore
| | - Ying Ying Huang
- Department of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore, 639798, Singapore
| | - Hui Ying Ang
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore.,Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore.,Duke-National University of Singapore Medical School, 8 College Road, Singapore, 169857, Singapore
| |
Collapse
|
12
|
Cooper K, Cawthon CV, Goel E, Atigh M, Christians U, Yazdani SK. The Development of an ex vivo Flow System to Assess Acute Arterial Drug Retention of Cardiovascular Intravascular Devices. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 3:675188. [PMID: 35047927 PMCID: PMC8757813 DOI: 10.3389/fmedt.2021.675188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/18/2021] [Indexed: 01/01/2023] Open
Abstract
Purpose: The goal of this study was to develop an ex vivo system capable of rapidly evaluating arterial drug levels in living, isolated porcine carotid arteries. Methods: A vascular bioreactor system was developed that housed a native porcine carotid artery under physiological flow conditions. The ex vivo bioreactor system was designed to quantify the acute drug transfer of catheter-based drug delivery devices into explanted carotid arteries. To evaluate our ex vivo system, a paclitaxel-coated balloon and a perfusion catheter device delivering liquid paclitaxel were utilized. At 1-h post-drug delivery, arteries were removed, and paclitaxel drug levels measured using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Parallel experiments were performed in a pig model to validate ex vivo measurements. Results: LC-MS/MS analysis demonstrated arterial paclitaxel levels of the drug-coated balloon-treated arteries to be 48.49 ± 24.09 ng/mg and the perfusion catheter-treated arteries to be 25.42 ± 9.74 ng/mg at 1 h in the ex vivo system. Similar results were measured in vivo, as arterial paclitaxel concentrations were measured at 59.23 ± 41.27 ng/mg for the drug-coated balloon-treated arteries and 23.43 ± 20.23 ng/mg for the perfusion catheter-treated arteries. Overall, no significant differences were observed between paclitaxel measurements of arteries treated ex vivo vs. in vivo. Conclusion: This system represents the first validated ex vivo pulsatile system to determine pharmacokinetics in a native blood vessel. This work provides proof-of-concept of a quick, inexpensive, preclinical tool to study acute drug tissue concentration kinetics of drug-releasing interventional vascular devices.
Collapse
Affiliation(s)
- Kathryn Cooper
- Mechanical Engineering Department, University of South Alabama, Mobile, AL, United States
| | - Claire V Cawthon
- Mechanical Engineering Department, University of South Alabama, Mobile, AL, United States
| | - Emily Goel
- Mechanical Engineering Department, University of South Alabama, Mobile, AL, United States
| | - Marzieh Atigh
- Mechanical Engineering Department, University of South Alabama, Mobile, AL, United States
| | - Uwe Christians
- iC42 Clinical Research and Development, University of Colorado, Aurora, CO, United States
| | - Saami K Yazdani
- Department of Engineering, Wake Forest University, Winston-Salem, NC, United States
| |
Collapse
|
13
|
Pleouras DS, Karanasiou GS, Loukas VS, Semertzioglou A, Moulas AN, Fotiadis DI. Investigation of the drug release time from the biodegrading coating of an everolimus eluting stent. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:1698-1701. [PMID: 34891613 DOI: 10.1109/embc46164.2021.9629813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This case-study examines the release time of the everolimus drug from an experimental biodegrading coating of a Rontis corp. drug eluting stent (DES). The controlled drug release is achieved by the degradation of the coating, which consists of a mixture of polylactic co-glycolic acid (PLGA) and everolimus (55:45). In our analysis, we used the outcome of another study, which contains the geometry of an in-silico deployed Rontis corp. stent in a 3D reconstructed coney arterial segment. Using this geometry as input, the everolimus release was simulated using a computational model that includes: i) modeling of the blood flow dynamics, ii) modeling of PLGA degradation, and iii) modeling of the everolimus advection and diffusion towards both the lumen and the arterial wall. The results show the rapid release of everolimus. This is justified due to the high porosity of the coating, which is caused by the initial high concentration of everolimus in the coating.Clinical Relevance - The methodology presented in this work is an additional step towards predicting accurately drug release from DES. Also, the results of our work prove that high drug concentration in the coating causes its rapid release, which could be used as input in the design of new DES.
Collapse
|
14
|
Mandal AP, Mandal PK. Specific and nonspecific binding of drug eluted from a half-embedded stent in presence of atherosclerotic plaque. Comput Methods Biomech Biomed Engin 2021; 25:922-935. [PMID: 34615426 DOI: 10.1080/10255842.2021.1986813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This study is dealt with the two-phase binding (specific and nonspecific) of drug eluted from a half- embedded drug-eluting stent in presence of atherosclerotic plaque. The specific binding due to the interaction of drug molecules with specific receptors and nonspecific binding caused by the trapping of drug in the extra-cellular matrix have been paid due attention. An idealised wall consisting of a plaque and a healthy tissue region has been considered. Moreover, a Dirichlet release condition is imposed on the strut surface. In this investigation, a two-dimensional model governing drug transport and its two-phase binding in cylindrical polar coordinate system has been solved numerically by a finite-difference method. Our simulation predicts that plaque behaves like a physical barrier in two types of the binding process and there is an inverse relationship between bound drug concentration and plaque thickness. Simulations show that a single peak profile of drug is noted when the struts are situated one-strut radius apart and as the inter-strut distance increases, the peak concentration falls and distinct peak profiles over each strut are visualised. The model also reveals that in the region downstream of a strut, the concentration of both bound drug forms in the plaque and healthy regions increases, and eventually, the saturation length of binding sites increases. Predicted results show for smaller Damköhler number, the rapid saturation of binding sites takes place and the stent having thinner strut may perform well in terms of effectiveness as well as efficacy in the stent-based delivery.
Collapse
Affiliation(s)
- Akash Pradip Mandal
- Department of Mathematics, Ananda Chandra College, North Bengal University, Jalpaiguri, West Bengal, India
| | | |
Collapse
|
15
|
SARIFUDDIN, ALSEMIRY REIMAD, MANDAL PRASHANTAKUMAR. EFFECTS OF COATING PROPERTIES ON CONTROLLED DELIVERY FROM AN EMBEDDED DRUG-ELUTING STENT: A SIMULATION STUDY. J BIOL SYST 2021. [DOI: 10.1142/s0218339021500145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The present investigation deals with the effects of biodegradable, biodurable and polymer-free coating of a stent on the release mechanism of the drug in a porous medium. The Brinkman equations for the interstitial fluid, the unsteady convection-diffusion-reaction equation for the transport of free drug in the tissue and the unsteady reaction equations for the bound as well as the internalized drug have been considered. In the coating, the transport of drug has been modeled as a diffusion process. Effects of different percentages of the embedment, convection and various coating properties of the stent on the transport of free drug, its retention and the internalization of the bound drug have been studied. Immersed Boundary Method (IBM) in the staggered grid formulation (IBM-MAC) has been used to tackle numerically the system of nonlinear governing equations. Simulated results predict the fastest release of drug from a biodegradable coating, but the averaged concentrations of all drug forms do reach a quasi-steady state in case of a biodurable coating irrespective of the degrees of embedment. Moreover, for all embedment levels of the stent, a biodegradable coating is superior to that of biodurable and polymer-free coating in the presence/absence of convection for larger times, but this superiority is lost for smaller times. Unlike biodurable coating, it is also predicted that the more the embedment level does not necessarily imply the more the effectiveness of delivery for biodegradable and polymer-free coatings of a stent.
Collapse
Affiliation(s)
- SARIFUDDIN
- Department of Mathematics, Berhampore College, P.O.-Berhampore, Dist.-Murshidabad, WB 742101, India
| | - REIMA D. ALSEMIRY
- Department of Mathematics, Faculty of Science, Taibah University, P.O. Box 89, Yanbu 41911, Saudi Arabia
- Department of Mathematical Sciences, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | | |
Collapse
|
16
|
Marino M, Vairo G, Wriggers P. Mechano-chemo-biological Computational Models for Arteries in Health, Disease and Healing: From Tissue Remodelling to Drug-eluting Devices. Curr Pharm Des 2021; 27:1904-1917. [PMID: 32723253 DOI: 10.2174/1381612826666200728145752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/14/2020] [Indexed: 11/22/2022]
Abstract
This review aims to highlight urgent priorities for the computational biomechanics community in the framework of mechano-chemo-biological models. Recent approaches, promising directions and open challenges on the computational modelling of arterial tissues in health and disease are introduced and investigated, together with in silico approaches for the analysis of drug-eluting stents that promote pharmacological-induced healing. The paper addresses a number of chemo-biological phenomena that are generally neglected in biomechanical engineering models but are most likely instrumental for the onset and the progression of arterial diseases. An interdisciplinary effort is thus encouraged for providing the tools for an effective in silico insight into medical problems. An integrated mechano-chemo-biological perspective is believed to be a fundamental missing piece for crossing the bridge between computational engineering and life sciences, and for bringing computational biomechanics into medical research and clinical practice.
Collapse
Affiliation(s)
- Michele Marino
- Institute of Continuum Mechanics, Leibniz Universität Hannover, An der Universität 1, 30823 Garbsen, Germany
| | - Giuseppe Vairo
- Department of Civil Engineering and Computer Science, University of Rome "Tor Vergata" via del Politecnico 1, 00133 Rome, Italy
| | - Peter Wriggers
- Institute of Continuum Mechanics, Leibniz Universität Hannover, An der Universität 1, 30823 Garbsen, Germany
| |
Collapse
|
17
|
Song J, Kouidri S, Bakir F. Review on the numerical investigations of mass transfer from drug eluting stent. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2021.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Marlevi D, Edelman ER. Vascular Lesion-Specific Drug Delivery Systems: JACC State-of-the-Art Review. J Am Coll Cardiol 2021; 77:2413-2431. [PMID: 33985687 PMCID: PMC8238531 DOI: 10.1016/j.jacc.2021.03.307] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/08/2021] [Accepted: 03/21/2021] [Indexed: 01/15/2023]
Abstract
Drug delivery is central to modern cardiovascular care, where drug-eluting stents, bioresorbable scaffolds, and drug-coated balloons all aim to restore perfusion while inhibiting exuberant healing. The promise and enthusiasm of these devices has in some cases exceeded demonstration of efficacy and even understanding of driving mechanisms. The authors review the means of drug delivery in each device, outlining how the technologies affect vascular behavior. They focus on how drug retention and response are governed by lesion morphology: lipid displacing drug-specific binding sites, calcium inhibiting diffusion, blocking thrombi or promoting luminal washout, and vascular healing steering hyperplastic developments. In this regard, the authors outline the fundamental impact of vascular structure on drug delivery and review the development of contemporary and future devices for coronary and peripheral intervention. They look toward a future where incorporating information on lesion distribution is central to therapeutic success and envision a transition toward lesion-specific treatment for improved interventional outcomes.
Collapse
Affiliation(s)
- David Marlevi
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| | - Elazer R Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
19
|
Early coronary healing in ST segment elevation myocardial infarction: sirolimus-eluting stents vs. drug-coated balloons after bare-metal stents. The PEBSI-2 optical coherence tomography randomized study. Coron Artery Dis 2021; 32:673-680. [PMID: 33826537 DOI: 10.1097/mca.0000000000001038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Drug-coated balloons (DCBs) have theoretical advantages over drug-eluting stents (DESs) to facilitate stent healing. We studied whether, in patients undergoing primary coronary interventions (pPCIs), a strategy of DCB after bare-metal stent improves early healing as determined by optical coherence tomography (OCT) compared with new-generation DES. METHODS pPCI patients were randomized (1:1) to treatment with new-generation sirolimus-eluting stents (DES group) or DCB-strategy. Vessel healing was assessed by OCT at 90 days. RESULTS Fifty-three patients were randomized (26 DES vs. 27 DCB). At 90 days, both strategies showed a low rate of uncovered struts (3.2 vs. 3.2%, P = 0.64) and a very high and similar rate of covered and apposed struts (96.6 vs. 96.1%, respectively; P = 0.58). However, DCB group had a significantly lower rate of major coronary evaginations (68 vs. 37%, P = 0.026), and more frequently developed a thin homogeneous neointimal layer (20 vs. 70.4%, P = 0.001) suggesting distinct superior healing at 3 months compared to DES. CONCLUSIONS In pPCI both, sirolimus-DES and DCB-strategy, provide excellent strut coverage at 3 months. However, DCB ensures more advanced and optimal stent healing compared to sirolimus-DES. Further research is needed to determine whether, in patients undergoing pPCI, DCB offers superior long-term clinical and angiographic outcomes than new-generation DES (NCT03610347).
Collapse
|
20
|
The birth, decline, and contemporary re-emergence of endovascular brachytherapy for prevention of in-stent restenosis. Brachytherapy 2020; 20:485-493. [PMID: 33132069 DOI: 10.1016/j.brachy.2020.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 09/13/2020] [Accepted: 09/18/2020] [Indexed: 01/08/2023]
Abstract
Despite the advent of drug-eluting stents and dual antiplatelet therapy in the interventional management of cardiovascular disease, restenosis rates remain high with significant sequelae. Endovascular brachytherapy-popular in the 1990s and early 2000s-has recently resurfaced as a cost-effective treatment option. In this work, we outline the history of endovascular brachytherapy starting with its earliest promise in the 1990s. We discuss the development of drug-eluting stents and dual antiplatelet strategies and their impact on the perceived benefit of endovascular brachytherapy. For the contemporary era, we propose novel roles for endovascular brachytherapy in complex coronary artery disease and in high-risk patients managed with drug-eluting stents. We discuss the impetus for reducing the requirement and duration of dual antiplatelet therapy using endovascular brachytherapy. We also review innovative opportunities for endovascular brachytherapy after bare-metal stent placement in both coronary and noncoronary territories and offer economic arguments in favor of endovascular brachytherapy. Trials of endovascular brachytherapy in these regimes are merited.
Collapse
|
21
|
Tzafriri AR, Muraj B, Garcia-Polite F, Salazar-Martín AG, Markham P, Zani B, Spognardi A, Albaghdadi M, Alston S, Edelman ER. Balloon-based drug coating delivery to the artery wall is dictated by coating micro-morphology and angioplasty pressure gradients. Biomaterials 2020; 260:120337. [PMID: 32937269 DOI: 10.1016/j.biomaterials.2020.120337] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 10/23/2022]
Abstract
Paclitaxel coated balloon catheters (PCB) were developed as a polymer-free non-implantable alternative to drug eluting stents, delivering similar drug payloads in a matter of minutes. While PCB have shown efficacy in treating peripheral arterial disease in certain patient groups, restenosis rates remain high and there is no class effect. To help further optimize these devices, we developed a scanning electron microscopy (SEM) imaging technique and computational modeling approach that provide insights into the coating micromorphology dependence of in vivo drug transfer and retention. PCBs coated with amorphous/flaky or microneedle coatings were inflated for 60 sec in porcine femoral arteries. Animals were euthanized at 0.5, 24 and 72 h and treated arteries processed for SEM to image endoluminal coating distribution followed by paclitaxel quantification by mass spectrometry (MS). Endoluminal surfaces exhibited sparse coating patches at 0.5 h, predominantly protruding (13.71 vs 0.59%, P < 0.001), with similar micro-morphologies to nominal PCB surfaces. Microneedle coating covered a 1.5-fold endoluminal area (16.1 vs 10.7%, P = 0.0035) owing to higher proximal and distal delivery, and achieved 1.5-fold tissue concentrations by MS (1933 vs 1298 μg/g, P = 0.1745) compared to amorphous/flaky coating. Acute longitudinal coating distribution tracked computationally predicted microindentation pressure gradients (r = 0.9, P < 0.001), with superior transfer of the microneedle coatings attributed to their amplification of angioplasty contact pressures. By 24 h, paclitaxel concentration and coated tissue areas both declined by >93% even as nonprotruding coating levels were stable between 0.5 and 72 h, and 2.7-fold higher for microneedle vs flaky coating (0.64 vs 0.24%, P = 0.0195). Tissue retained paclitaxel concentrations at 24-72 h trended 1.7-fold higher post treatment with microneedle coating compared to the amorphous/flaky coating (69.9 vs 39.9 μg/g, P = 0.066). Thus, balloon based drug delivery is critically dependent on coating micromorphologies, with superior performance exhibited by micromorphologies that amplify angioplasty pressures.
Collapse
Affiliation(s)
| | - Benny Muraj
- CBSET Inc, 500 Shire Way, Lexington, MA, USA
| | | | | | | | - Brett Zani
- CBSET Inc, 500 Shire Way, Lexington, MA, USA
| | | | - Mazen Albaghdadi
- CBSET Inc, 500 Shire Way, Lexington, MA, USA; Cardiovascular Research Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Steve Alston
- W.L. Gore & Associates, 1505 N Fourth St, Flagstaff, AZ, 86004, USA
| | - Elazer R Edelman
- IMES, MIT, 77 Massachusetts Avenue Cambridge, MA, USA; Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
Farago O, Pontrelli G. A Langevin dynamics approach for multi-layer mass transfer problems. Comput Biol Med 2020; 124:103932. [PMID: 32768714 DOI: 10.1016/j.compbiomed.2020.103932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/13/2020] [Accepted: 07/24/2020] [Indexed: 11/28/2022]
Abstract
We use Langevin dynamics simulations to study the mass diffusion problem across two adjacent porous layers of different transport properties. At the interface between the layers, we impose the Kedem-Katchalsky (KK) interfacial boundary condition that is well suited in a general situation. A detailed algorithm for the implementation of the KK interfacial condition in the Langevin dynamics framework is presented. As a case study, we consider a two-layer diffusion model of a drug-eluting stent. The simulation results are compared with those obtained from the solution of the corresponding continuum diffusion equation, and an excellent agreement is shown.
Collapse
Affiliation(s)
- Oded Farago
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Be'er Sheva 85105, Israel
| | - Giuseppe Pontrelli
- Istituto per le Applicazioni del Calcolo - CNR, Via dei Taurini 19, 00185 Rome, Italy.
| |
Collapse
|
23
|
Sarifuddin, Roy S, Mandal PK. Computational model of stent-based delivery from a half-embedded two-layered coating. Comput Methods Biomech Biomed Engin 2020; 23:815-831. [PMID: 32588648 DOI: 10.1080/10255842.2020.1767775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
An attempt is made in the present investigation to develop a computational model for the purpose of studying the effect of interstitial flow in the porous media on the distribution of drug eluted from a half-embedded drug-eluting stent and its retention in the presence of two-layered coating of the stent. The transport of free drug inside the coatings is considered as an unsteady diffusion process while that in the tissue as an unsteady convection-diffusion-reaction process. The bound drug is governed by an unsteady reaction process only. Immersed boundary method (IBM) in the staggered grid formulation, popularly known as marker and cell (MAC) method, has been leveraged to tackle numerically the governing equations. This model highlights the benefits of consideration of two-layered coating and does predict underlying mechanism for better efficacy by tweaking the kinetics parameters. Comparisons are also made with the results available for stent-based delivery.
Collapse
Affiliation(s)
- Sarifuddin
- Department of Mathematics, Berhampore College, Berhampore, West Bengal, India
| | - Somnath Roy
- Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India
| | | |
Collapse
|
24
|
Abellán-Huerta J, Jurado-Román A, Lozano-Ruiz-Poveda F, López-Lluva MT, Negreira-Caamaño M, Pérez-Díaz P, Requena-Ibañez JA, Sánchez-Pérez I. Clinical Prognosis Associated With the Use of Overlapping Stents With Homogenous Versus Heterogeneous Pharmacological Characteristics for the Treatment of Diffuse Coronary Artery Disease. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2020; 21:1355-1359. [PMID: 32354584 DOI: 10.1016/j.carrev.2020.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/11/2020] [Accepted: 04/22/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND The clinical impact of percutaneous coronary intervention (PCI) and implantation of overlapping stents (OS) using platforms with the same versus different pharmacological characteristics is unknown. Our objective was to compare the outcomes of PCI with OS according to their pharmacological characteristics. METHODS In this observational single-center registry, we included all PCI performed from April 2014 to December 2018 in which overlapping drug-eluting stents were implanted. Two groups were created according to whether the stents release the same drug [homogeneous: (HO)] or different [heterogeneous: (HE)]. The primary endpoint was the need for target lesion revascularization (TLR). Clinical assessment was performed after the procedure, bianually and at the end of follow-up (June 2019). RESULTS 381 lesions with OS (HO: 209; HE: 172) were included (75.1% male, 66.7 ± 11.6 years). Clinical presentation was stable coronary artery disease in 49.9%. Syntax score was 23.7 ± 13.3. The number of OS implanted was 2.2 ± 0.5 and the total stent length was 59.5 ± 20.1 mm (HE: 61.5 ± 21.6 vs. HO: 57.8 ± 18.8 mm; p < 0.01). After a median follow-up of 21 months, the HE group showed a lower TLR rate than the HO group (HE:2.3% vs HO:7.2%; p = 0.03). The rates of cardiac death (p = 0.44), myocardial infarction (p = 0.36) and stent thrombosis (p = 0.85) were similar between groups. In the multivariate analysis, the OS with homogeneous-drug devices was an independent predictor of a higher rate of TLR. CONCLUSIONS PCI using OS with homogeneous pharmacological characteristics was associated with a higher rate of TLR in comparison with the implantation of OS with heterogeneous pharmacological characteristics.
Collapse
Affiliation(s)
- José Abellán-Huerta
- Interventional Cardiology Unit, University General Hospital of Ciudad Real, Spain.
| | - Alfonso Jurado-Román
- Interventional Cardiology Unit, University General Hospital of Ciudad Real, Spain
| | | | - María T López-Lluva
- Interventional Cardiology Unit, University General Hospital of Ciudad Real, Spain
| | | | - Pedro Pérez-Díaz
- Clinical Cardiology Department, University General Hospital of Ciudad Real, Spain
| | | | | |
Collapse
|
25
|
Dan K, Shlofmitz E, Khalid N, Hideo-Kajita A, Wermers JP, Torguson R, Kolm P, Garcia-Garcia HM, Waksman R. Paclitaxel-related balloons and stents for the treatment of peripheral artery disease: Insights from the Food and Drug Administration 2019 Circulatory System Devices Panel Meeting on late mortality. Am Heart J 2020; 222:112-120. [PMID: 32028137 DOI: 10.1016/j.ahj.2019.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/18/2019] [Indexed: 11/17/2022]
Abstract
Following the December 2018 publication of a meta-analysis by Katsanos et al reporting higher rates of long-term mortality with the utilization of paclitaxel-related devices (balloons and stents) when compared to control in femoropopliteal arteries, the US Food and Drug Administration (FDA) issued a safety alert in January 2019 and further detailed the implications for future clinical use of these devices in March 2019. The FDA convened a public meeting of the Circulatory System Devices Panel of the Medical Devices Advisory Committee in June 2019. This report summarizes the proceedings of this meeting and the panel's response to the 12 questions posed by the FDA related to the potentially increased late mortality of drug-coated balloons and drug-eluting stents with paclitaxel in patients with peripheral arterial disease.
Collapse
Affiliation(s)
- Kazuhiro Dan
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC
| | - Evan Shlofmitz
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC
| | - Nauman Khalid
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC
| | - Alexandre Hideo-Kajita
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC
| | - Jason P Wermers
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC
| | - Rebecca Torguson
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC
| | - Paul Kolm
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC
| | - Hector M Garcia-Garcia
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC
| | - Ron Waksman
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC. @medstar.net
| |
Collapse
|
26
|
Escuer J, Cebollero M, Peña E, McGinty S, Martínez MA. How does stent expansion alter drug transport properties of the arterial wall? J Mech Behav Biomed Mater 2020; 104:103610. [DOI: 10.1016/j.jmbbm.2019.103610] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/23/2019] [Accepted: 12/29/2019] [Indexed: 11/28/2022]
|
27
|
Gao L, Li Q, Zhang J, Huang Y, Deng L, Li C, Tai G, Ruan B. Local penetration of doxorubicin via intrahepatic implantation of PLGA based doxorubicin-loaded implants. Drug Deliv 2020; 26:1049-1057. [PMID: 31691602 PMCID: PMC6844384 DOI: 10.1080/10717544.2019.1676842] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Doxorubicin (DOX) is widely used in the chemotherapy of a wide range of cancers. However, intravenous administration of DOX causes toxicity to most major organs which limits its clinical application. DOX-loaded drug delivery system could provide a continuous sustained-release of drugs and enables high drug concentrations at the target site, while reducing systemic toxicity. Additionally, local chemotherapy with DOX may be a promising approach for lowering post-surgical recurrence of cancer. In this study, the sustained-release DOX-loaded implants were prepared by melt-molding method. The implants were characterized with regards to drug content uniformity, micromorphology and drug release profiles. Furthermore, differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) analyses were carried out to investigate the drug-excipient compatibility. To determine the local penetration of DOX in liver, the minipigs received intrahepatic implantation of DOX-loaded implants by abdominal surgery. UPLC-MS/MS method was used to detect the concentration of DOX in liver tissues. Our results suggested that DOX-loaded implants delivered high doses of drug at the implantation site for a prolonged period and provided valuable information for the future clinical applications of the DOX-loaded implants.
Collapse
Affiliation(s)
- Li Gao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Qingshan Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Jie Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Yixin Huang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Lin Deng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Chenyang Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Guangping Tai
- Key Lab of Biofabrication of Anhui Higher Education Institution Centre for Advanced Biofabrication, Hefei University, Hefei, People's Republic of China
| | - Banfeng Ruan
- Key Lab of Biofabrication of Anhui Higher Education Institution Centre for Advanced Biofabrication, Hefei University, Hefei, People's Republic of China
| |
Collapse
|
28
|
Gruber P, Remonda L. Device profile of different paclitaxel-coated balloons: Neuro Elutax SV, Elutax '3' Neuro and SeQuent Please NEO for the treatment of symptomatic intracranial high-grade stenosis: overview of their feasibility and safety. Expert Rev Med Devices 2020; 17:87-92. [PMID: 31962054 DOI: 10.1080/17434440.2020.1719829] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Intracranial atherosclerotic disease (ICAD) is highly prevalent and probably the most common cause of stroke worldwide. Despite best medical treatment (BMT), the rate of recurrent stroke in symptomatic ICAD patients is elevated, especially in those with high-grade stenosis. Thus, alternative treatment options are needed. So far, endovascular ICAD treatment has been considered a second-line therapy. However, recent progress in the endovascular acute stroke treatment challenges this issue. Drug-coated balloon (DCB) - percutaneous transluminal angioplasty (PTA) represents a promising alternative to BMT alone.Areas covered: In this review, current clinical studies on paclitaxel-coated DCB-PTA in symptomatic high-grade ICAD patients will be presented and discussed. Furthermore, technical profile of the different paclitaxel-coated DCB, which has been used for intracranial use (Neuro Elutax SV, Elutax '3' Neuro, and SeQuent Please NEO) are being presented.Expert opinion: Despite limited data and its experimental (off-line) use, DCB-PTA has been demonstrated to be feasible and safe in selected ICAD patients with symptomatic high-grade stenosis. DCB-PTA offers several advantages compared to alternative endovascular therapy option as well as BMT alone. Consequently, DCP-PTA might be a promising candidate for the future armamentarium in ICAD treatment.
Collapse
Affiliation(s)
- Philipp Gruber
- Department of Neuroradiology, Cantonal Hospital of Aarau, Aarau, Switzerland
| | - Luca Remonda
- Department of Neuroradiology, Cantonal Hospital of Aarau, Aarau, Switzerland
| |
Collapse
|
29
|
Ishihara M, Nakamura S, Sato Y, Takayama T, Fukuda K, Fujita M, Murakami K, Yokoe H. Heparinoid Complex-Based Heparin-Binding Cytokines and Cell Delivery Carriers. Molecules 2019; 24:molecules24244630. [PMID: 31861225 PMCID: PMC6943580 DOI: 10.3390/molecules24244630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/20/2022] Open
Abstract
Heparinoid is the generic term that is used for heparin, heparan sulfate (HS), and heparin-like molecules of animal or plant origin and synthetic derivatives of sulfated polysaccharides. Various biological activities of heparin/HS are attributed to their specific interaction and regulation with various heparin-binding cytokines, antithrombin (AT), and extracellular matrix (ECM) biomolecules. Specific domains with distinct saccharide sequences in heparin/HS mediate these interactions are mediated and require different highly sulfated saccharide sequences with different combinations of sulfated groups. Multivalent and cluster effects of the specific sulfated sequences in heparinoids are also important factors that control their interactions and biological activities. This review provides an overview of heparinoid-based biomaterials that offer novel means of engineering of various heparin-binding cytokine-delivery systems for biomedical applications and it focuses on our original studies on non-anticoagulant heparin-carrying polystyrene (NAC-HCPS) and polyelectrolyte complex-nano/microparticles (N/MPs), in addition to heparin-coating devices.
Collapse
Affiliation(s)
- Masayuki Ishihara
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorazawa, Saitama 359-8513, Japan; (S.N.); (Y.S.); (K.F.)
- Correspondence: ; Tel.: +81-429-95-1211 (ext. 2610)
| | - Shingo Nakamura
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorazawa, Saitama 359-8513, Japan; (S.N.); (Y.S.); (K.F.)
| | - Yoko Sato
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorazawa, Saitama 359-8513, Japan; (S.N.); (Y.S.); (K.F.)
| | - Tomohiro Takayama
- Department of Oral and Maxillofacial Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan; (T.T.); (K.M.); (H.Y.)
| | - Koichi Fukuda
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorazawa, Saitama 359-8513, Japan; (S.N.); (Y.S.); (K.F.)
| | - Masanori Fujita
- Division of Environmental Medicine, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-1324, Japan;
| | - Kaoru Murakami
- Department of Oral and Maxillofacial Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan; (T.T.); (K.M.); (H.Y.)
| | - Hidetaka Yokoe
- Department of Oral and Maxillofacial Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan; (T.T.); (K.M.); (H.Y.)
| |
Collapse
|
30
|
Mohtashami Z, Esmaili Z, Vakilinezhad MA, Seyedjafari E, Akbari Javar H. Pharmaceutical implants: classification, limitations and therapeutic applications. Pharm Dev Technol 2019; 25:116-132. [DOI: 10.1080/10837450.2019.1682607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Zahra Mohtashami
- Pharmaceutics Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Esmaili
- Pharmaceutics Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Hamid Akbari Javar
- Pharmaceutics Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
The effect of the debulking by excimer laser coronary angioplasty on long-term outcome compared with drug-coating balloon: insights from optical frequency domain imaging analysis. Lasers Med Sci 2019; 35:403-412. [PMID: 31264007 DOI: 10.1007/s10103-019-02833-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 06/20/2019] [Indexed: 02/07/2023]
Abstract
This study evaluated the 1-year efficacy of excimer laser coronary angioplasty (ELCA) before drug-coated balloon (DCB) dilatation for the treatment of in-stent restenosis (ISR). Forty consecutive patients with ISR were treated by DCB with or without the use of ELCA (ELCA plus DCB, N = 20; DCB alone, N = 20). Debulking efficiency (DE) value was defined as the neointima area on optical frequency domain imaging (OFDI) debulked by ELCA. The patients in the ELCA plus DCB group were divided into two groups (greater DE (GDE), N = 10; smaller DE (SDE), N = 10) based on the median value of DE. Thereafter, the ISR segment was prepared with a scoring balloon, followed by DCB. At follow-up, binary restenosis and target lesion revascularization (TLR) were evaluated. There were no significant differences in baseline characteristics such as age, comorbidity, and ISR type. Overall, the incidence of neoatherosclerosis in the ISR segment was 17.5%. Post-PCI, acute gain of minimum lumen diameter on quantitative coronary angiography and of minimum lumen area on OFDI was numerically higher in the GDE than in the SDE and the DCB alone group. At follow-up, the occurrences of binary restenosis and TLR in the ELCA plus DCB group were 20.0% and 10.0%; these values in the DCB alone group were 20.0% and 20.0%, respectively. Two patients from the SDE and none from the GDE developed TLR. DCB alone treatment was inferior to ELCA plus DCB treatment. However, greater ELCA debulking might be required to obtain optimal outcomes.
Collapse
|
32
|
Cocciolone AJ, Johnson E, Shao JY, Wagenseil JE. Elastic fiber fragmentation increases transmural hydraulic conductance and solute transport in mouse arteries. J Biomech Eng 2018; 141:2718211. [PMID: 30516242 DOI: 10.1115/1.4042173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Indexed: 01/15/2023]
Abstract
Transmural advective transport of solute and fluid was investigated in mouse carotid arteries with either a genetic knockout of Fibulin-5 (Fbln5-/-) or treatment with elastase to determine the influence of a disrupted elastic fiber matrix on wall transport properties. Fibulin-5 is an important director of elastic fiber assembly. Arteries from Fbln5-/- mice have a loose, non-continuous elastic fiber network and were hypothesized to have reduced resistance to advective transport. Experiments were carried out ex vivo at physiological pressure and axial stretch. Hydraulic conductance (Lp ) was measured to be 4.99·10-6 ± 8.94·10-7, 3.18·-5 ± 1.13·10-5 (P < 0.01), and 3.57·10-5 ± 1.77·10-5 (P < 0.01) mm·s-1·mmHg-1 for wild-type, Fbln5-/-, and elastase-treated carotids, respectively. Solute fluxes of 4, 70, and 150 kDa FITC-dextran were statistically increased in Fbln5-/- compared to wild-type by a factor of 4, 22, and 3 respectively. 70 kDa FITC-dextran solute flux was similarly increased in elastase-treated carotids by a factor of 27. Solute uptake by Fbln5-/- carotids was decreased compared to wild-type for all investigated dextran sizes after 60 minutes of transmural transport. These changes in transport properties of elastic fiber compromised arteries have important implications for the kinetics of biomolecules and pharmaceuticals in arterial tissue following elastic fiber degradation due to aging or vascular disease.
Collapse
Affiliation(s)
| | - Elizabeth Johnson
- Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA
| | - Jin-Yu Shao
- Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA
| | - Jessica E Wagenseil
- Department of Mechanical Engineering and Materials Science, Washington University, One Brookings Dr., CB 1185, St. Louis, MO 63130
| |
Collapse
|
33
|
Gori T. Endothelial Function: A Short Guide for the Interventional Cardiologist. Int J Mol Sci 2018; 19:ijms19123838. [PMID: 30513819 PMCID: PMC6320818 DOI: 10.3390/ijms19123838] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/25/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023] Open
Abstract
An impaired function of the coronary endothelium is an important determinant of all stages of atherosclerosis, from initiation, to mediation of functional phenomena—such as spasm and plaque erosion, to atherothrombotic complications. Endothelial function is modified by therapies, including stent implantation. Finally, endothelial function changes over time, in response to physical stimuli and pharmocotherapies, and its assessment might provide information on how individual patients respond to specific therapies. In this review, we describe the role of the endothelium in the continuum of coronary atherosclerosis, from the perspective of the interventional cardiologist. In the first part, we review the current knowledge of the role of endothelial (dys)function on atherosclerotic plaque progression/instabilization and on the mechanisms of ischemia, in the absence of coronary artery stenosis. In the second part of this review, we describe the impact of coronary artery stenting on endothelial function, platelet aggregation, and inflammation.
Collapse
Affiliation(s)
- Tommaso Gori
- Kardiologie I, Zentrum für Kardiologie der Universitätsmedizin Mainz and DZHK Standort Rhein-Main, Langenbeckstr 1, 55131 Mainz, Germany.
| |
Collapse
|
34
|
Abstract
Cardiovascular complications are leading causes of most fatalities. Coronary artery disease and surgical failures contribute to the death of the majority of patients. Advanced research in the field of medical devices like stents has efficiently resolved these problems. Clinically, drug-eluting stents have proven their efficacy and safety compared to bare metal stents, which have problems of in-stent restenosis. However, drug-loaded stents coated with polymers have shown adverse effects related to the stability and deterioration of the polymer coating over time. This results in late stent thrombosis and immunogenicity. These reasons laid the foundation for the development of non-polymeric drug-eluting stents. This review focuses on non-polymer drug-eluting stents loaded with different drugs like anti-inflammatory agents, anti-thrombotic, anti-platelet agents, immune suppressants and others. Surface modification techniques on stents like crystalline coating; microporous, macroporous, and nanoporous coatings; and chemically modified self-assembled monolayers are described in detail. There is also an update on clinically approved products and those under development.
Collapse
Affiliation(s)
- Nagavendra Kommineni
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Raju Saka
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Wahid Khan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India.
| | - Abraham J Domb
- School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel.
| |
Collapse
|
35
|
Saha R. A Computational Approach for Stent Elution Rate Determined Specific Drug Binding and Receptor-mediated Effects in Arterial Tissue. JOURNAL OF EXPLORATORY RESEARCH IN PHARMACOLOGY 2018; 3:105-118. [DOI: 10.14218/jerp.2018.00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
36
|
Borhani S, Hassanajili S, Ahmadi Tafti SH, Rabbani S. Cardiovascular stents: overview, evolution, and next generation. Prog Biomater 2018; 7:175-205. [PMID: 30203125 PMCID: PMC6173682 DOI: 10.1007/s40204-018-0097-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/25/2018] [Indexed: 12/01/2022] Open
Abstract
Compared to bare-metal stents (BMSs), drug-eluting stents (DESs) have been regarded as a revolutionary change in coronary artery diseases (CADs). Releasing pharmaceutical agents from the stent surface was a promising progress in the realm of cardiovascular stents. Despite supreme advantages over BMSs, in-stent restenosis (ISR) and long-term safety of DESs are still deemed ongoing concerns over clinically application of DESs. The failure of DESs for long-term clinical use is associated with following factors including permanent polymeric coating materials, metallic stent platforms, non-optimal drug releasing condition, and factors that have recently been supposed as contributory factors such as degradation products of polymers, metal ions due to erosion and degradation of metals and their alloys utilizing in some stents as metal frameworks. Discovering the direct relation between stent materials and associating adverse effects is a complicated process, and yet it has not been resolved. For clinical success it is of significant importance to optimize DES design and explore novel strategies to overcome all problems including inflammatory response, delay endothelialization, and sub-acute stent thrombosis (ST) simultaneously. In this work, scientific reports are reviewed particularly focusing on recent advancements in DES design which covers both potential improvements of existing and recently novel prototype stent fabrications. Covering a wide range of information from the BMSs to recent advancement, this study mostly sheds light on DES's concepts, namely stent composition, drug release mechanism, and coating techniques. This review further reports different forms of DES including fully biodegradable DESs, shape-memory ones, and polymer-free DESs.
Collapse
Affiliation(s)
- Setareh Borhani
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - Shadi Hassanajili
- Department of Nanochemical Engineering, School of New Science and Technology, Shiraz University, Shiraz, Iran.
| | - Seyed Hossein Ahmadi Tafti
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, North Kargar, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, North Kargar, Tehran, Iran
| |
Collapse
|
37
|
Vo TTN, Morgan S, McCormick C, McGinty S, McKee S, Meere M. Modelling drug release from polymer-free coronary stents with microporous surfaces. Int J Pharm 2018; 544:392-401. [PMID: 29229513 DOI: 10.1016/j.ijpharm.2017.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/30/2017] [Accepted: 12/03/2017] [Indexed: 11/26/2022]
Abstract
Traditional coronary drug-eluting stents (DES) are made from metal and are coated with a permanent polymer film containing an anti-proliferative drug. Subsequent to stent deployment in a diseased coronary artery, the drug releases into the artery wall and helps prevent restenosis by inhibiting the proliferation of smooth muscle cells. Although this technology has proven to be remarkably successful, there are ongoing concerns that the presence of a polymer in the artery can lead to deleterious medical complications, such as late stent thrombosis. Polymer-free DES may help overcome such shortcomings. However, the absence of a rate-controlling polymer layer makes optimisation of the drug release profile a particular challenge. The use of microporous stent surfaces to modulate the drug release rate is an approach that has recently shown particularly promising clinical results. In this study, we develop a mathematical model to describe drug release from such stents. In particular, we develop a mathematical model to describe drug release from microporous surfaces. The model predicts a two-stage release profile, with a relatively rapid initial release of most of the drug, followed by a slower release of the remaining drug. In the model, the slow release phase is accounted for by an adsorption/desorption mechanism close to the stent surface. The theoretical predictions are compared with experimental release data obtained in our laboratory, and good agreement is found. The valuable insights provided by our model will serve as a useful guide for designing the enhanced polymer-free stents of the future.
Collapse
Affiliation(s)
- Tuoi T N Vo
- MACSI, Department of Mathematics and Statistics, University of Limerick, Limerick, Ireland
| | - Sarah Morgan
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G4 0NW, UK
| | | | - Sean McGinty
- Division of Biomedical Engineering, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Sean McKee
- Department of Mathematics and Statistics, University of Strathclyde, Glasgow G1 1XH, UK
| | - Martin Meere
- Department of Applied Mathematics, NUI Galway, Galway, Ireland
| |
Collapse
|
38
|
Saha R, Mandal PK. Modelling Time-dependent Release Kinetics in Stent-based Delivery. JOURNAL OF EXPLORATORY RESEARCH IN PHARMACOLOGY 2018; 3:61-70. [DOI: 10.14218/jerp.2018.00001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
39
|
Herrmann BW, Citardi MJ, Vogler G, Gardner L, Smith G, Javer AR, Burt HM, Jackson J, Kuhn FA. A Preliminary Report on the Effects of Paclitaxel-Impregnated Stents on Sheep Nasal Mucosa. ACTA ACUST UNITED AC 2018. [DOI: 10.1177/194589240401800209] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Introduction Traditional frontal sinus stents serve only as mechanical devices. It has been proposed that stents also may serve as drug-delivery systems for the topical application of drugs that minimize postoperative scarring. Paclitaxel (Taxol), which has recognized antiscarring effects, may be incorporated via a polymeric formulation into standard rubber stents. The impact of topically applied paclitaxel on the morphology of the nasal mucosa is unknown. Methods An adult sheep model was used for this study. A modified rubber T-tube stent (incorporating paclitaxel at varying dosages) was secured to each side of the septum in four animals (eight sides). An unmodified T-tube was placed on each side of one animal, a T-tube with the drug carrier (but no paclitaxel) was placed on each side of the second animal, and T-tubes with varying paclitaxel were placed on each side of the final two animals. After 4 weeks, animals were killed and the nasal mucosa was harvested. The nasal mucosa was sectioned and stained with hematoxylin and eosin. A pathologist then assessed the nasal mucosa for vascular congestion, glandular atrophy, chronic inflammation, mucosal metaplasia, and mucosal ulceration. Results No consistent histopathological differences were noted in the specimens. All specimens showed varying degrees of vascular congestion, glandular atrophy, chronic inflammation, and mucosal metaplasia; the paclitaxel-impregnated stents were not consistently associated with more severe mucosal injury. Finally, mucosal ulceration was noted to be very rare in all specimens. Conclusion This preliminary report describes the impact of paclitaxel-impregnated stents on sheep nasal mucosa, which tolerated these stents very well. Because paclitaxel minimizes scarring reactions at very low concentrations, paclitaxel-impregnated stents may prove useful in clinical situations in which frontal sinus stenting is deemed necessary. Additional investigations with animal models, as well as clinical trials, may be warranted.
Collapse
Affiliation(s)
- Brian W. Herrmann
- Department of Otolaryngology, Washington University, School of Medicine, St. Louis, Missouri
| | - Martin J. Citardi
- Department of Otolaryngology, Cleveland Clinic Foundation, Cleveland, Ohio
| | - George Vogler
- Departments of Comparative Medicine Missouri, Divisions of Columbia, Canada
| | - Laura Gardner
- Departments of Pathology, Saint Louis University, School of Medicine, St. Louis, Missouri
| | - Greg Smith
- Departments of Surgery, and Missouri, Divisions of Columbia, Canada
| | - Amin R. Javer
- Divisions of Otolaryngology Surgery and University of British Columbia, British Columbia, Canada
| | - Helen M. Burt
- Divisions of Pharmaceutical Sciences, University of British Columbia, British Columbia, Canada
| | - John Jackson
- Divisions of Pharmaceutical Sciences, University of British Columbia, British Columbia, Canada
| | | |
Collapse
|
40
|
Effect of Interstitial Fluid Flow on Drug-Coated Balloon Delivery in a Patient-Specific Arterial Vessel with Heterogeneous Tissue Composition: A Simulation Study. Cardiovasc Eng Technol 2018; 9:251-267. [PMID: 29508375 DOI: 10.1007/s13239-018-0345-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 02/23/2018] [Indexed: 11/27/2022]
Abstract
Angioplasty with drug-coated balloons (DCBs) using excipients as drug carriers is emerging as a potentially viable strategy demonstrating clinical efficacy and proposing additional compliance for the treatment of obstructive vascular diseases. An attempt is made to develop an improved computational model where attention has been paid to the effect of interstitial flow, that is, plasma convection and internalization of bound drug. The present model is capable of capturing the phenomena of the transport of free drug and its retention, and also the internalization of drug in the process of endocytosis to atherosclerotic vessel of heterogeneous tissue composition comprising of healthy tissue, as well as regions of fibrous cap, fibro-fatty, calcified and necrotic core lesions. Image processing based on an unsupervised clustering technique is used for color-based segmentation of a patient-specific longitudinal image of atherosclerotic vessel obtained from intravascular ultrasound derived virtual histology. As the residence time of drug in a stent-based delivery within the arterial tissue is strongly influenced by convective forces, effect of interstitial fluid flow in case of DCB delivery can not be ruled out, and has been investigated by modeling it through unsteady Navier-Stokes equations. Transport of free drug is modeled by considering unsteady advection-reaction-diffusion process, while the bound drug, assuming completely immobilized in the tissue, by unsteady reaction process. The model also takes into account the internalization of drug through the process of endocytosis which gets degraded by the lysosomes and finally recycled into the extracellular fluid. All the governing equations representing the flow of interstitial fluid, the transport of free drug, the metabolization of free drug into bound phase and the process of internalization along with the physiologically realistic boundary and initial conditions are solved numerically using marker and cell method satisfying necessary stability criteria. Simulated results obtained predict that faster drug transfer promotes rapid saturation of binding sites despite perivascular wash out and the concentrations of all drug forms are modulated by the presence of interstitial flow. Such premier attempt of its kind would certainly be of great help in the optimization of therapeutic efficacy of drug.
Collapse
|
41
|
Zhu JJ, Zangari G. Guided Heterogeneous Nucleation of Sodium Chloride at Self-Assembled Monolayer-Modified Nanoporous Gold Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2420-2424. [PMID: 29376390 DOI: 10.1021/acs.langmuir.7b03274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Drug delivery devices are generally inefficient when releasing the active compound at the targeted position. In this work, we investigate nanoporous gold (np-Au) as the drug eluting device, and we use the precipitation of NaCl as a model of drug sedimentation to evaluate the patterns of solute distribution. Hydrophilic and hydrophobic modifications of np-Au result in different, but both inhomogeneous, release patterns, with most of the precipitate forming outside the device. In contrast, the fabrication of a hydrophobic-hydrophilic-layered architecture allows full penetration through the bicontinuous np-Au network, resulting in a homogeneous release pattern. Similar architectures could be used to enhance the efficacy of drug delivery.
Collapse
Affiliation(s)
- Joseph J Zhu
- Department of Mechanical and Aerospace Engineering and ‡Department of Materials Science and Engineering, University of Virginia , Charlottesville, Virginia 22903, United States
| | - Giovanni Zangari
- Department of Mechanical and Aerospace Engineering and ‡Department of Materials Science and Engineering, University of Virginia , Charlottesville, Virginia 22903, United States
| |
Collapse
|
42
|
Mandal AP, Mandal PK. Distribution and retention of drug through an idealised atherosclerotic plaque eluted from a half-embedded stent. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s40435-017-0372-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Chooi KY, Comerford A, Sherwin SJ, Weinberg PD. Intimal and medial contributions to the hydraulic resistance of the arterial wall at different pressures: a combined computational and experimental study. J R Soc Interface 2017; 13:rsif.2016.0234. [PMID: 27307514 PMCID: PMC4938088 DOI: 10.1098/rsif.2016.0234] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/18/2016] [Indexed: 11/12/2022] Open
Abstract
The hydraulic resistances of the intima and media determine water flux and the advection of macromolecules into and across the arterial wall. Despite several experimental and computational studies, these transport processes and their dependence on transmural pressure remain incompletely understood. Here, we use a combination of experimental and computational methods to ascertain how the hydraulic permeability of the rat abdominal aorta depends on these two layers and how it is affected by structural rearrangement of the media under pressure. Ex vivo experiments determined the conductance of the whole wall, the thickness of the media and the geometry of medial smooth muscle cells (SMCs) and extracellular matrix (ECM). Numerical methods were used to compute water flux through the media. Intimal values were obtained by subtraction. A mechanism was identified that modulates pressure-induced changes in medial transport properties: compaction of the ECM leading to spatial reorganization of SMCs. This is summarized in an empirical constitutive law for permeability and volumetric strain. It led to the physiologically interesting observation that, as a consequence of the changes in medial microstructure, the relative contributions of the intima and media to the hydraulic resistance of the wall depend on the applied pressure; medial resistance dominated at pressures above approximately 93 mmHg in this vessel.
Collapse
Affiliation(s)
- K Y Chooi
- Department of Bioengineering, Imperial College London, London, UK
| | - A Comerford
- Department of Aeronautics, Imperial College London, London, UK
| | - S J Sherwin
- Department of Aeronautics, Imperial College London, London, UK
| | - P D Weinberg
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
44
|
Abstract
PURPOSE OF THE REVIEW Percutaneous transluminal angioplasty is an established form of therapy for femoropopliteal artery disease. Currently, percutaneous transluminal angioplasty (PTA) is carried out using standard balloon with or without deployment of a stent but is associated with a high rate of restenosis and stent-related complications. Treatment options for restenosis, especially in-stent restenosis, are limited. Drug-coated balloons promise to reduce the rates of restenosis by effective delivery of antiproliferative agent (paclitaxel) directly to vessel wall without the need for a permanent implant. In this review, we look at the technology and rationale behind drug-coated balloons and examine the evidence available so far. RECENT FINDINGS Recently, several studies tested the effectiveness of paclitaxel-coated balloon angioplasty compared to that of standard PTA in both de novo lesions and in-stent restenosis of femoropopliteal artery. Paclitaxel-coated balloon use resulted in reduced rates of restenosis and favourable clinical outcomes in both these lesion groups. However, in complex lesions, there is still lack of data to support the use of these balloons. Paclitaxel-coated balloon is a safe and effective therapeutic option in patients with both de novo lesions and in-stent restenosis involving femoropopliteal artery. In light of the new evidence, it is time to consider incorporation of this effective therapeutic option into clinical practice. However, further research is needed for the use of paclitaxel-coated balloons in complex femoropopliteal lesions like calcified lesions especially as adjuncts to cutting balloons and debulking strategies.
Collapse
|
45
|
Minimally invasive probes for programmed microfluidic delivery of molecules in vivo. Curr Opin Pharmacol 2017; 36:78-85. [PMID: 28892801 DOI: 10.1016/j.coph.2017.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 08/19/2017] [Accepted: 08/21/2017] [Indexed: 01/06/2023]
Abstract
Site-specific drug delivery carries many advantages of systemic administration, but is rarely used in the clinic. One limiting factor is the relative invasiveness of the technology to locally deliver compounds. Recent advances in materials science and electrical engineering allow for the development of ultraminiaturized microfluidic channels based on soft materials to create flexible probes capable of deep tissue targeting. A diverse set of mechanics, including micro-pumps and functional materials, used to deliver the drugs can be paired with wireless electronics for self-contained and programmable operation. These first iterations of minimally invasive fluid delivery devices foreshadow important advances needed for clinical translation.
Collapse
|
46
|
Tzafriri AR, Garcia-Polite F, Zani B, Stanley J, Muraj B, Knutson J, Kohler R, Markham P, Nikanorov A, Edelman ER. Calcified plaque modification alters local drug delivery in the treatment of peripheral atherosclerosis. J Control Release 2017; 264:203-210. [PMID: 28867375 DOI: 10.1016/j.jconrel.2017.08.037] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/07/2017] [Accepted: 08/29/2017] [Indexed: 12/01/2022]
Abstract
BACKGROUND Calcific atherosclerosis is a major challenge to intraluminal drug delivery in peripheral artery disease (PAD). OBJECTIVES We evaluated the effects of orbital atherectomy on intraluminal paclitaxel delivery to human peripheral arteries with substantial calcified plaque. METHODS Diagnostic angiography and 3-D rotational imaging of five fresh human lower limbs revealed calcification in all main arteries. The proximal or distal segment of each artery was treated using an orbital atherectomy system (OAS) under simulated blood flow and fluoroscopy. Explanted arterial segments underwent either histomorphometric assessment of effect or tracking of 14C-labeled or fluorescent-labeled paclitaxel. Radiolabeled drug quantified bulk delivery and fluorescent label established penetration of drug over finer spatial domain in serial microscopic sections. Results were interpreted using a mathematical model of binding-diffusion mediated arterial drug distribution. RESULTS Lesion composition affected paclitaxel absorption and distribution in cadaveric human peripheral arteries. Pretreatment imaging calcium scores in control femoropopliteal arterial segments correlated with a log-linear decline in the bulk absorption rate-constant of 14C-labeled, declining 5.5-fold per calcified quadrant (p=0.05, n=7). Compared to controls, OAS-treated femoropopliteal segments exhibited 180μm thinner intima (p<0.001), 45% less plaque calcification, and 2 log orders higher paclitaxel bulk absorption rate-constants. Correspondingly, fluorescent paclitaxel penetrated deeper in OAS-treated femoropopliteal segments compared to controls, due to a 70% increase in diffusivity (p<0.001). CONCLUSIONS These data illustrate that calcified plaque limited intravascular drug delivery, and controlled OAS treatment of calcific plaques resulted in greater drug permeability and improved adjunct drug delivery to diseased arteries.
Collapse
Affiliation(s)
- Abraham R Tzafriri
- CBSET Inc., 500 Shire Way, Lexington, MA, USA; IMES, MIT, 77 Massachusetts Avenue, Cambridge, MA, USA.
| | - Fernando Garcia-Polite
- CBSET Inc., 500 Shire Way, Lexington, MA, USA; IMES, MIT, 77 Massachusetts Avenue, Cambridge, MA, USA
| | - Brett Zani
- CBSET Inc., 500 Shire Way, Lexington, MA, USA
| | | | - Benny Muraj
- CBSET Inc., 500 Shire Way, Lexington, MA, USA
| | - Jennifer Knutson
- CBSET Inc., 500 Shire Way, Lexington, MA, USA; Cardiovascular Systems, Inc., 1225 Old Hwy 8NW, Saint Paul, MN, USA
| | - Robert Kohler
- Cardiovascular Systems, Inc., 1225 Old Hwy 8NW, Saint Paul, MN, USA
| | | | | | - Elazer R Edelman
- IMES, MIT, 77 Massachusetts Avenue, Cambridge, MA, USA; Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
47
|
Effect of strut distribution on neointimal coverage of everolimus-eluting bioresorbable scaffolds: an optical coherence tomography study. J Thromb Thrombolysis 2017; 44:161-168. [PMID: 28597206 DOI: 10.1007/s11239-017-1511-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The thick struts of bioresorbable vascular scaffolds (BRS) are associated with changes in wall shear stress and contribute to neointimal proliferation. We aimed to evaluate the relationship between the BRS strut distribution and the neointimal proliferation. 50 lesions underwent optical coherence tomography, 12 months after BRS implantation. Scaffold area and neointimal thickness were evaluated in each cross-sectional area (CSA). Scaffold eccentricity was defined as follows: (maximum diameter - minimum diameter) × 100/maximum diameter. CSAs of BRS were divided into four quadrants. The maximal neointimal thickness (Maximal-NIT), Minimal-NIT and the number of struts in each quadrant were measured. The number of struts were classified as 1, 2, 3 and ≥ 4. Furthermore, the mean-NIT acquired in each quadrant was divided by the average-NIT of all struts in the same CSA, which was defined as the unevenness score. In addition, Maximal-NIT minus Minimal-NIT was divided by the average-NIT of all struts in the same CSA, which was defined as heterogenicity of neointimal proliferation. There was a significant difference in the association between the number of struts and not only the unevenness score (no. of strut = 1 (N = 440), unevenness score 1.04 ± 0.34; 2 (N = 696), 0.98 ± 0.27; 3 (N = 994), 0.96 ± 0.23; ≥4 (N = 1202), 1.04 ± 0.22, P < 0.01) but also Maximal-NIT and Minimal-NIT. Furthermore, a significant correlation was observed between scaffold eccentricity in each CSA and the heterogeneity of neointimal proliferation in the same CSA (N = 892, R = 0.38, p = 0.01). Crowding of struts is associated with increased neointimal proliferation after BRS implantation. The scaffold eccentricity causes heterogeneity of neointimal proliferation.
Collapse
|
48
|
Mandal AP, Mandal PK. Computational Modelling of Three-phase Stent-based Delivery. JOURNAL OF EXPLORATORY RESEARCH IN PHARMACOLOGY 2017; 2:31-40. [DOI: 10.14218/jerp.2017.00001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
49
|
Suwannasom P, Sotomi Y, Asano T, Koon JNC, Tateishi H, Zeng Y, Tenekecioglu E, Wykrzykowska J, Foin N, de Winter R, Ormiston J, Serruys P, Onuma Y. Change in lumen eccentricity and asymmetry after treatment with Absorb bioresorbable vascular scaffolds in the ABSORB cohort B trial: a five-year serial optical coherence tomography imaging study. EUROINTERVENTION 2017; 12:e2244-e2252. [DOI: 10.4244/eij-d-16-00740] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Furdella KJ, Witte RS, Vande Geest JP. Tracking delivery of a drug surrogate in the porcine heart using photoacoustic imaging and spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:41016. [PMID: 28192566 DOI: 10.1117/1.jbo.22.4.041016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/20/2017] [Indexed: 06/06/2023]
Abstract
Although the drug-eluting stent (DES) has dramatically reduced the rate of coronary restenosis, it still occurs in up to 20% of patients with a DES. Monitoring drug delivery could be one way to decrease restenosis rates. We demonstrate real-time photoacoustic imaging and spectroscopy (PAIS) using a wavelength-tunable visible laser and clinical ultrasound scanner to track cardiac drug delivery. The photoacoustic signal was initially calibrated using porcine myocardial samples soaked with a known concentration of a drug surrogate (DiI). Next, an in situ coronary artery was perfused with DiI for 20 min and imaged to monitor dye transport in the tissue. Finally, a partially DiI-coated stent was inserted into the porcine brachiocephalic trunk for imaging. The photoacoustic signal was proportional to the DiI concentration between 2.4 and 120 ?? ? g / ml , and the dye was detected over 1.5 mm from the targeted coronary vessel. Photoacoustic imaging was also able to differentiate the DiI-coated portion of the stent from the uncoated region. These results suggest that PAIS can track drug delivery to cardiac tissue and detect drugs loaded onto a stent with sub-mm precision. Future work using PAIS may help improve DES design and reduce the probability of restenosis.
Collapse
Affiliation(s)
- Kenneth J Furdella
- University of Pittsburgh, Department of Bioengineering, Pittsburgh, Pennsylvania, United States
| | - Russell S Witte
- University of Arizona, Department of Medical Imaging, Tucson, Arizona, United States
| | - Jonathan P Vande Geest
- University of Pittsburgh, Department of Bioengineering, Pittsburgh, Pennsylvania, United States
| |
Collapse
|