1
|
Wiedmann F, Schmidt C. Precision medicine in the management of cardiac arrhythmias. Herz 2025:10.1007/s00059-025-05298-x. [PMID: 40056164 DOI: 10.1007/s00059-025-05298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2025] [Indexed: 03/10/2025]
Abstract
Precision medicine in cardiac electrophysiology tailors diagnosis, treatment, and prevention by integrating genetic, environmental, and lifestyle factors. Unlike traditional, generalized strategies, precision medicine focuses on individual patient characteristics to enhance care. Significant progress has been made, especially in managing channelopathies, where genetic insights now already drive personalized therapies. Identifying specific mutations has clarified molecular mechanisms and enabled targeted interventions, improving outcomes in conditions such as long QT syndrome. The integration of big data from clinical records, omics datasets, and biosignals from devices such as cardiac implantable electronic devices (CIEDs) or wearables may be on the verge of revolutionizing the diagnosis of cardiac arrhythmias once again. Progress is also expected in the field of human-induced pluripotent stem cells (hiPSCs) and in silico modeling, which may overcome the limitations of traditional expression systems for the functional evaluation of patient-specific mutations. Genome-wide association studies (GWAS) and polygenic risk scores (PRS) provide deeper insights into complex arrhythmogenic disorders, aiding in risk stratification and targeted treatment strategies. Finally, emerging technologies such as CRISPR/Cas9 promise gene editing for inherited and acquired arrhythmias. In summary, precision medicine offers the potential for individualized treatment of cardiac arrhythmias.
Collapse
Affiliation(s)
- Felix Wiedmann
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Constanze Schmidt
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
2
|
Park NK, Park YG, Choi JH, Choi HK, Moon SH, Park SJ, Choi SW. Human induced pluripotent stem cell-cardiomyocytes for cardiotoxicity assessment: a comparative study of arrhythmiainducing drugs with multi-electrode array analysis. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2025; 29:257-269. [PMID: 39972675 PMCID: PMC11842287 DOI: 10.4196/kjpp.24.413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 02/21/2025]
Abstract
Reliable preclinical models for assessing drug-induced cardiotoxicity are essential to reduce the high rate of drug withdrawals during development. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have emerged as a promising platform for such assessments due to their expression of cardiacspecific ion channels and electrophysiological properties. In this study, we investigated the effects of eight arrhythmogenic drugs-E4031, nifedipine, mexiletine, JNJ303, flecainide, moxifloxacin, quinidine, and ranolazine-on hiPSC-CMs derived from both healthy individuals and a long QT syndrome (LQTS) patient using multielectrode array systems. The results demonstrated dose-dependent changes in field potential duration and arrhythmogenic risk, with LQTS-derived hiPSC-CMs showing increased sensitivity to hERG channel blockers such as E4031. Furthermore, the study highlights the potential of hiPSC-CMs to model disease-specific cardiac responses, providing insights into genetic predispositions and personalized drug responses. Despite challenges related to the immaturity of hiPSC-CMs, their ability to recapitulate human cardiac electrophysiology makes them a valuable tool for preclinical cardiotoxicity assessments. This study underscores the utility of integrating patientderived hiPSC-CMs with advanced analytical platforms, such as multi-electrode array systems, to evaluate drug-induced electrophysiological changes. These findings reinforce the role of hiPSC-CMs in drug development, facilitating safer and more efficient screening methods while supporting precision medicine applications.
Collapse
Affiliation(s)
| | - Yun-Gwi Park
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Ji-Hee Choi
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Hyung Kyu Choi
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Sung-Hwan Moon
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | | | - Seong Woo Choi
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Korea
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Korea
| |
Collapse
|
3
|
Li J, Li Y, Song G, Wang H, Zhang Q, Wang M, Zhao M, Wang B, Zhu H, Ranzhi L, Wang Q, Xiong Y. Revolutionizing cardiovascular research: Human organoids as a Beacon of hope for understanding and treating cardiovascular diseases. Mater Today Bio 2025; 30:101396. [PMID: 39802826 PMCID: PMC11719415 DOI: 10.1016/j.mtbio.2024.101396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Organoids, exhibiting the capability to undergo differentiation in specific in vitro growth environments, have garnered significant attention in recent years due to their capacity to recapitulate human organs with resemblant in vivo structures and physiological functions. This groundbreaking technology offers a unique opportunity to study human diseases and address the limitations of traditional animal models. Cardiovascular diseases (CVDs), a leading cause of mortality worldwide, have spurred an increasing number of researchers to explore the great potential of human cardiovascular organoids for cardiovascular research. This review initiates by elaborating on the development and manufacture of human cardiovascular organoids, including cardiac organoids and blood vessel organoids. Next, we provide a comprehensive overview of their applications in modeling various cardiovascular disorders. Furthermore, we shed light on the prospects of cardiovascular organoids in CVDs therapy, and unfold an in-depth discussion of the current challenges of human cardiovascular organoids in the development and application for understanding and treating CVDs.
Collapse
Affiliation(s)
- Jinli Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
- Department of Orthopaedics, Shenmu Hospital, The Affiliated Shenmu Hospital of Northwest University, Guangming Road, Shenmu, China
| | - Yang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Guangtao Song
- Department of Orthopaedics, Shenmu Hospital, The Affiliated Shenmu Hospital of Northwest University, Guangming Road, Shenmu, China
| | - Haiying Wang
- Department of Science and Education, Shenmu Hospital, The Affiliated Shenmu Hospital of Northwest University, Shenmu, China
| | - Qing Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Min Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Muxue Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Bei Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - HuiGuo Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Liu Ranzhi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Qiang Wang
- Department of Orthopaedics, Shenmu Hospital, The Affiliated Shenmu Hospital of Northwest University, Guangming Road, Shenmu, China
| | - Yuyan Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| |
Collapse
|
4
|
Mondéjar-Parreño G, Moreno-Manuel AI, Ruiz-Robles JM, Jalife J. Ion channel traffic jams: the significance of trafficking deficiency in long QT syndrome. Cell Discov 2025; 11:3. [PMID: 39788950 PMCID: PMC11717978 DOI: 10.1038/s41421-024-00738-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/10/2024] [Indexed: 01/12/2025] Open
Abstract
A well-balanced ion channel trafficking machinery is paramount for the normal electromechanical function of the heart. Ion channel variants and many drugs can alter the cardiac action potential and lead to arrhythmias by interfering with mechanisms like ion channel synthesis, trafficking, gating, permeation, and recycling. A case in point is the Long QT syndrome (LQTS), a highly arrhythmogenic disease characterized by an abnormally prolonged QT interval on ECG produced by variants and drugs that interfere with the action potential. Disruption of ion channel trafficking is one of the main sources of LQTS. We review some molecular pathways and mechanisms involved in cardiac ion channel trafficking. We highlight the importance of channelosomes and other macromolecular complexes in helping to maintain normal cardiac electrical function, and the defects that prolong the QT interval as a consequence of variants or the effect of drugs. We examine the concept of "interactome mapping" and illustrate by example the multiple protein-protein interactions an ion channel may undergo throughout its lifetime. We also comment on how mapping the interactomes of the different cardiac ion channels may help advance research into LQTS and other cardiac diseases. Finally, we discuss how using human induced pluripotent stem cell technology to model ion channel trafficking and its defects may help accelerate drug discovery toward preventing life-threatening arrhythmias. Advancements in understanding ion channel trafficking and channelosome complexities are needed to find novel therapeutic targets, predict drug interactions, and enhance the overall management and treatment of LQTS patients.
Collapse
Affiliation(s)
| | | | | | - José Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
- Departments of Medicine and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Sajjad MW, Muzamil F, Sabir M, Ashfaq UA. Regenerative Medicine and Nanotechnology Approaches against Cardiovascular Diseases: Recent Advances and Future Prospective. Curr Stem Cell Res Ther 2025; 20:50-71. [PMID: 38343052 DOI: 10.2174/011574888x263530230921074827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 01/31/2025]
Abstract
Regenerative medicine refers to medical research focusing on repairing, replacing, or regenerating damaged or diseased tissues or organs. Cardiovascular disease (CVDs) is a significant health issue globally and is the leading cause of death in many countries. According to the Centers for Disease Control and Prevention (CDC), one person dies every 34 seconds in the United States from cardiovascular diseases, and according to a World Health Organization (WHO) report, cardiovascular diseases are the leading cause of death globally, taking an estimated 17.9 million lives each year. Many conventional treatments are available using different drugs for cardiovascular diseases, but these treatments are inadequate. Stem cells and nanotechnology are promising research areas for regenerative medicine treating CVDs. Regenerative medicines are a revolutionary strategy for advancing and successfully treating various diseases, intending to control cardiovascular disorders. This review is a comprehensive study of different treatment methods for cardiovascular diseases using different types of biomaterials as regenerative medicines, the importance of different stem cells in therapeutics, the expanded role of nanotechnology in treatment, the administration of several types of stem cells, their tracking, imaging, and the final observation of clinical trials on many different levels as well as it aims to keep readers up to pace on emerging therapeutic applications of some specific organs and disorders that may improve from regenerative medicine shortly.
Collapse
Affiliation(s)
- Muhammad Waseem Sajjad
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Fatima Muzamil
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Maida Sabir
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
6
|
Razavi ZS, Farokhi S, Mahmoudvand G, Karimi-Rouzbahani A, Farasati-Far B, Tahmasebi-Ghorabi S, Pazoki-Toroudi H, Saadat-Fakhr M, Afkhami H. Stem cells and bio scaffolds for the treatment of cardiovascular diseases: new insights. Front Cell Dev Biol 2024; 12:1472103. [PMID: 39726717 PMCID: PMC11669526 DOI: 10.3389/fcell.2024.1472103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/01/2024] [Indexed: 12/28/2024] Open
Abstract
Mortality and morbidity from cardiovascular diseases are common worldwide. In order to improve survival and quality of life for this patient population, extensive efforts are being made to establish effective therapeutic modalities. New treatment options are needed, it seems. In addition to treating cardiovascular diseases, cell therapy is one of the most promising medical platforms. One of the most effective therapeutic approaches in this area is stem cell therapy. In stem cell biology, multipotent stem cells and pluripotent stem cells are divided into two types. There is evidence that stem cell therapy could be used as a therapeutic approach for cardiovascular diseases based on multiple lines of evidence. The effectiveness of stem cell therapies in humans has been studied in several clinical trials. In spite of the challenges associated with stem cell therapy, it appears that resolving them may lead to stem cells being used in cardiovascular disease patients. This may be an effective therapeutic approach. By mounting these stem cells on biological scaffolds, their effect can be enhanced.
Collapse
Affiliation(s)
- Zahra Sadat Razavi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Simin Farokhi
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Golnaz Mahmoudvand
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Arian Karimi-Rouzbahani
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Bahareh Farasati-Far
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Samaneh Tahmasebi-Ghorabi
- Master of Health Education, Research Expert, Clinical Research Development Unit, Emam Khomeini Hospital, Ilam University of Medical Sciences, Ilam, Iran
| | | | - Masoud Saadat-Fakhr
- Faculty of Medicine, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
7
|
Thamarai P, Karishma S, Kamalesh R, Shaji A, Saravanan A, Bibi S, Vickram AS, Chopra H, Saleem RA, Alsharif KF, Theyab A, Kamel M, Alamoudi MK, Kumer A, Chopra S, Abdel-Daim MM. Current advancements in nanotechnology for stem cells. Int J Surg 2024; 110:7456-7476. [PMID: 39236089 PMCID: PMC11634102 DOI: 10.1097/js9.0000000000002082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Stem cell therapy has emerged as a promising approach for regenerative medicine, offering potential treatments for a wide range of diseases and injuries. Although stem cell therapy has great promise, several obstacles have prevented its broad clinical adoption. The effectiveness of therapy has been inhibited by problems such as ineffective stem cell differentiation, low post-transplantation survival rates, and restricted control over stem cell behavior. Furthermore, the implementation of stem cell therapies is further complicated by the possibility of immunological rejection and cancer. Innovative strategies that provide precise control over stem cell characteristics and maximize their therapeutic potential are desperately needed to overcome these obstacles. Recent studies have shown that the effectiveness of stem cell treatments can be greatly increased by nanoscale advances. By establishing an ideal microenvironment and precisely offering growth factors, nanomaterials such as nanoparticles, nanocomposites, and quantum dots have been demonstrated to improve stem cell differentiation and proliferation. This article provides an overview of the recent trends and applications of nanoscale innovations in the context of stem cell therapy. The recent development of precision medicine has been facilitated by the incorporation of nanotechnology into stem cell therapy. The ability to manipulate stem cells at the nanoscale offers unprecedented control over their behavior and function, opening up exciting possibilities for personalized and highly effective therapeutic interventions. This review paper highlights the recent trends and applications of nanotechnology in advancing stem cell therapy, showcasing its potential to revolutionize regenerative medicine.
Collapse
Affiliation(s)
- Packiyam Thamarai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, India
| | - Suresh Karishma
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, India
| | - Raja Kamalesh
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, India
| | - Alan Shaji
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, India
| | - Anbalagan Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, India
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | | | - Hitesh Chopra
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Rimah A. Saleem
- Biochemistry and Molecular Medicine College of Medicine Alfaisal University, Riyadh
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif
| | - Abdulrahman Theyab
- Department of Laboratory & Blood Bank, Security Forces Hospital, Mecca
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Cairo, Egypt
| | - Mariam K. Alamoudi
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ajoy Kumer
- Laboratory of Computational Research for Drug Design and Material Science, Department of Chemistry, College of Arts and Sciences, IUBAT – International University of Business Agriculture and Technology, Uttara Model Town, Dhaka, Bangladesh
| | - Shivani Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
8
|
Luo Y, Liang H. Developmental-status-aware transcriptional decomposition establishes a cell state panorama of human cancers. Genome Med 2024; 16:124. [PMID: 39468667 PMCID: PMC11514945 DOI: 10.1186/s13073-024-01393-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/03/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Cancer cells evolve under unique functional adaptations that unlock transcriptional programs embedded in adult stem and progenitor-like cells for progression, metastasis, and therapeutic resistance. However, it remains challenging to quantify the stemness-aware cell state of a tumor based on its gene expression profile. METHODS We develop a developmental-status-aware transcriptional decomposition strategy using single-cell RNA-sequencing-derived tissue-specific fetal and adult cell signatures as anchors. We apply our method to various biological contexts, including developing human organs, adult human tissues, experimentally induced differentiation cultures, and bulk human tumors, to benchmark its performance and to reveal novel biology of entangled developmental signaling in oncogenic processes. RESULTS Our strategy successfully captures complex dynamics in developmental tissue bulks, reveals remarkable cellular heterogeneity in adult tissues, and resolves the ambiguity of cell identities in in vitro transformations. Applying it to large patient cohorts of bulk RNA-seq, we identify clinically relevant cell-of-origin patterns and observe that decomposed fetal cell signals significantly increase in tumors versus normal tissues and metastases versus primary tumors. Across cancer types, the inferred fetal-state strength outperforms published stemness indices in predicting patient survival and confers substantially improved predictive power for therapeutic responses. CONCLUSIONS Our study not only provides a general approach to quantifying developmental-status-aware cell states of bulk samples but also constructs an information-rich, biologically interpretable, cell-state panorama of human cancers, enabling diverse translational applications.
Collapse
Affiliation(s)
- Yikai Luo
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Han Liang
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Institute for Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
9
|
Zhang X, Burattini M, Duru J, Chala N, Wyssen N, Cofiño-Fabres C, Rivera-Arbeláez JM, Passier R, Poulikakos D, Ferrari A, Tringides C, Vörös J, Luciani GB, Miragoli M, Zambelli T. Multimodal Mapping of Electrical and Mechanical Latency of Human-Induced Pluripotent Stem Cell-Derived Cardiomyocyte Layers. ACS NANO 2024; 18:24060-24075. [PMID: 39172696 DOI: 10.1021/acsnano.4c03896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The synchronization of the electrical and mechanical coupling assures the physiological pump function of the heart, but life-threatening pathologies may jeopardize this equilibrium. Recently, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have emerged as a model for personalized investigation because they can recapitulate human diseased traits, such as compromised electrical capacity or mechanical circuit disruption. This research avails the model of hiPSC-CMs and showcases innovative techniques to study the electrical and mechanical properties as well as their modulation due to inherited cardiomyopathies. In this work, hiPSC-CMs carrying either Brugada syndrome (BRU) or dilated cardiomyopathy (DCM), were organized in a bilayer configuration to first validate the experimental methods and second mimic the physiological environment. High-density CMOS-based microelectrode arrays (HD-MEA) have been employed to study the electrical activity. Furthermore, mechanical function was investigated via quantitative video-based evaluation, upon stimulation with a β-adrenergic agonist. This study introduces two experimental methods. First, high-throughput mechanical measurements in the hiPSC-CM layers (xy-inspection) are obtained using both a recently developed optical tracker (OPT) and confocal reference-free traction force microscopy (cTFM) aimed to quantify cardiac kinematics. Second, atomic force microscopy (AFM) with FluidFM probes, combined with the xy-inspection methods, supplemented a three-dimensional understanding of cell-cell mechanical coupling (xyz-inspection). This particular combination represents a multi-technique approach to detecting electrical and mechanical latency among the cell layers, examining differences and possible implications following inherited cardiomyopathies. It can not only detect disease characteristics in the proposed in vitro model but also quantitatively assess its response to drugs, thereby demonstrating its feasibility as a scalable tool for clinical and pharmacological studies.
Collapse
Affiliation(s)
- Xinyu Zhang
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich,Switzerland
| | - Margherita Burattini
- Laboratory of Experimental and Applied Medical Technologies, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Department of Maternity, Surgery and Dentistry, University of Verona, 37134 Verona, Italy
| | - Jens Duru
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich,Switzerland
| | - Nafsika Chala
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zurich,Switzerland
| | - Nino Wyssen
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich,Switzerland
| | - Carla Cofiño-Fabres
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7500 AE Enschede, The Netherland
| | - José Manuel Rivera-Arbeláez
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7500 AE Enschede, The Netherland
| | - Robert Passier
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7500 AE Enschede, The Netherland
| | - Dimos Poulikakos
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zurich,Switzerland
| | - Aldo Ferrari
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zurich,Switzerland
- Experimental Continuum Mechanics, EMPA, Swiss Federal Laboratories for Material Science and Technologies, 8600 Dübendorf, Switzerland
| | - Christina Tringides
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich,Switzerland
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich,Switzerland
| | | | - Michele Miragoli
- Laboratory of Experimental and Applied Medical Technologies, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Humanitas Research Hospital ─ IRCCS, 20089 Rozzano, Italy
| | - Tomaso Zambelli
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich,Switzerland
| |
Collapse
|
10
|
Hyams NA, Kerr CM, Arhontoulis DC, Ruddy JM, Mei Y. Improving human cardiac organoid design using transcriptomics. Sci Rep 2024; 14:20147. [PMID: 39209865 PMCID: PMC11362591 DOI: 10.1038/s41598-024-61554-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/07/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide. To this end, human cardiac organoids (hCOs) have been developed for improved organotypic CVD modeling over conventional in vivo animal models. Utilizing human cells, hCOs hold great promise to bridge key gaps in CVD research pertaining to human-specific conditions. hCOs are multicellular 3D models which resemble heart structure and function. Varying hCOs fabrication techniques leads to functional and phenotypic differences. To investigate heterogeneity across hCO platforms, we performed a transcriptomic analysis utilizing bulk RNA-sequencing from four previously published unique hCO studies. We further compared selected hCOs to 2D and 3D hiPSC-derived cardiomyocytes (hiPSC-CMs), as well as fetal and adult human myocardium bulk RNA-sequencing samples. Upon investigation utilizing Principal Component Analysis, K-means clustering analysis of key genes, and further downstream analyses such as Gene Set Enrichment (GSEA), Gene Set Variation (GSVA), and GO term enrichment, we found that hCO fabrication method influences maturity and cellular heterogeneity across models. Thus, we propose that adjustment of fabrication method will result in an hCO with a defined maturity and transcriptomic profile to facilitate its specified applications, in turn maximizing its modeling potential.
Collapse
Affiliation(s)
- Nathaniel A Hyams
- Bioengineering Department, Clemson University, Clemson, SC, 29631, USA
| | - Charles M Kerr
- Molecular and Cellular Biology and Pathobiology Program, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Dimitrios C Arhontoulis
- Molecular and Cellular Biology and Pathobiology Program, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Jean Marie Ruddy
- Division of Vascular Surgery, Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Ying Mei
- Bioengineering Department, Clemson University, Clemson, SC, 29631, USA.
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
11
|
Clancy CE, Santana LF. Advances in induced pluripotent stem cell-derived cardiac myocytes: technological breakthroughs, key discoveries and new applications. J Physiol 2024; 602:3871-3892. [PMID: 39032073 PMCID: PMC11326976 DOI: 10.1113/jp282562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/02/2024] [Indexed: 07/22/2024] Open
Abstract
A transformation is underway in precision and patient-specific medicine. Rapid progress has been enabled by multiple new technologies including induced pluripotent stem cell-derived cardiac myocytes (iPSC-CMs). Here, we delve into these advancements and their future promise, focusing on the efficiency of reprogramming techniques, the fidelity of differentiation into the cardiac lineage, the functional characterization of the resulting cardiac myocytes, and the many applications of in silico models to understand general and patient-specific mechanisms controlling excitation-contraction coupling in health and disease. Furthermore, we explore the current and potential applications of iPSC-CMs in both research and clinical settings, underscoring the far-reaching implications of this rapidly evolving field.
Collapse
Affiliation(s)
- Colleen E Clancy
- Department of Physiology & Membrane Biology, School of Medicine, University of California Davis, Davis, CA, USA
- Center for Precision Medicine and Data Sciences, University of California Davis, School of Medicine, Sacramento, CA, USA
| | - L Fernando Santana
- Department of Physiology & Membrane Biology, School of Medicine, University of California Davis, Davis, CA, USA
- Center for Precision Medicine and Data Sciences, University of California Davis, School of Medicine, Sacramento, CA, USA
| |
Collapse
|
12
|
Chao T, Ge Y, Sun J, Wang C. Research landscape of genetics in dilated cardiomyopathy: insight from a bibliometric analysis. Front Cardiovasc Med 2024; 11:1362551. [PMID: 39070560 PMCID: PMC11272475 DOI: 10.3389/fcvm.2024.1362551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Background Dilated cardiomyopathy (DCM) is a heterogeneous myocardial disorder with diverse genetic or acquired origins. Notable advances have been achieved in discovering and understanding the genetics of DCM. This study aimed to depict the distribution of the main research forces, hotspots, and frontiers in the genetics of DCM, thus shaping future research directions. Methods Based on the documents published in the Web of Science Core Collection database from 2013 to 2022, co-authorship of authors, institutions, and countries/regions, co-citation of references, and co-occurrence of keywords were conducted respectively to present the distribution of the leading research forces, research hotspots, and emerging trends in the genetics of DCM. Results 4,141 documents were included, and the annual publications have steadily increased. Seidman, Christine E, Meder, Benjamin, Sinagra, Gianfranco were the most productive authors, German Centre for Cardiovascular Research was the most productive institution, and the USA, China, and Germany were the most prolific countries. The co-occurrence of keywords has generated 8 clusters, including DCM, lamin a/c, heart failure, sudden cardiac death, hypertrophic cardiomyopathy, cardiac hypertrophy, arrhythmogenic cardiomyopathy, and next-generation sequencing. Frequent keywords with average publication time after 2019 mainly included arrhythmogenic cardiomyopathy, whole-exome sequencing, RBM 20, phenotype, risk stratification, precision medicine, genotype, and machine learning. Conclusion The research landscape of genetics in DCM is continuously evolving. Deciphering the genetic profiles by next-generation sequencing and illustrating pathogenic mechanisms of gene variants, establishing innovative treatments for heart failure and improved risk stratification for SCD, uncovering the genetic overlaps between DCM and other inherited cardiomyopathies, as well as identifying genotype-phenotype correlations are the main research hotspots and frontiers in this field.
Collapse
Affiliation(s)
- Tiantian Chao
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yaru Ge
- Community Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jinghui Sun
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chenglong Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Guerrelli D, Pressman J, Salameh S, Posnack N. hiPSC-CM electrophysiology: impact of temporal changes and study parameters on experimental reproducibility. Am J Physiol Heart Circ Physiol 2024; 327:H12-H27. [PMID: 38727253 PMCID: PMC11390151 DOI: 10.1152/ajpheart.00631.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/21/2024]
Abstract
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are frequently used for preclinical cardiotoxicity testing and remain an important tool for confirming model-based predictions of drug effects in accordance with the comprehensive in vitro proarrhythmia assay (CiPA). Despite the considerable benefits hiPSC-CMs provide, concerns surrounding experimental reproducibility have emerged. We investigated the effects of temporal changes and experimental parameters on hiPSC-CM electrophysiology. iCell cardiomyocytes2 were cultured and biosignals were acquired using a microelectrode array (MEA) system (2-14 days). Continuous recordings revealed a 22.6% increase in the beating rate and 7.7% decrease in the field potential duration (FPD) during a 20-min equilibration period. Location-specific differences across a multiwell plate were also observed, with iCell cardiomyocytes2 in the outer rows beating 8.8 beats/min faster than the inner rows. Cardiac endpoints were also impacted by cell culture duration; from 2 to 14 days, the beating rate decreased (-12.7 beats/min), FPD lengthened (+257 ms), and spike amplitude increased (+3.3 mV). Cell culture duration (4-10 days) also impacted cardiomyocyte drug responsiveness (E-4031, nifedipine, isoproterenol). qRT-PCR results suggest that daily variations in cardiac metrics may be linked to the continued maturation of hiPSC-CMs in culture (2-30 days). Daily experiments were also repeated using a second cell line (Cor.4U). Collectively, our study highlights multiple sources of variability to consider and address when performing hiPSC-CM MEA studies. To improve reproducibility and data interpretation, MEA-based studies should establish a standardized protocol and report key experimental conditions (e.g., cell line, culture time, equilibration time, electrical stimulation settings, and raw data values).NEW & NOTEWORTHY We demonstrate that iCell cardiomyocytes2 electrophysiology measurements are impacted by deviations in experimental techniques including electrical stimulation protocols, equilibration time, well-to-well variability, and length of hiPSC-CM culture. Furthermore, our results indicate that hiPSC-CM drug responsiveness changes within the first 2 wk following defrost.
Collapse
Affiliation(s)
- Devon Guerrelli
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, United States
- Department of Biomedical Engineering, The George Washington University School of Engineering and Applied Science, Washington, District of Columbia, United States
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia, United States
| | - Jenna Pressman
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, United States
- Department of Biomedical Engineering, The George Washington University School of Engineering and Applied Science, Washington, District of Columbia, United States
| | - Shatha Salameh
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, United States
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia, United States
| | - Nikki Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, United States
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia, United States
- Department of Pediatrics, Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, United States
| |
Collapse
|
14
|
Lv W, Babu A, Morley MP, Musunuru K, Guerraty MA. Resource of Gene Expression Data From a Multiethnic Population Cohort of Induced Pluripotent Stem Cell-Derived Cardiomyocytes. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004218. [PMID: 38372139 PMCID: PMC11021142 DOI: 10.1161/circgen.123.004218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Affiliation(s)
- Wenjian Lv
- Department of Medicine, Division of Cardiovascular Medicine, Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Apoorva Babu
- Department of Medicine, Division of Cardiovascular Medicine, Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Michael P Morley
- Department of Medicine, Division of Cardiovascular Medicine, Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Kiran Musunuru
- Department of Medicine, Division of Cardiovascular Medicine, Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Marie A Guerraty
- Department of Medicine, Division of Cardiovascular Medicine, Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| |
Collapse
|
15
|
Simmons DW, Malayath G, Schuftan DR, Guo J, Oguntuyo K, Ramahdita G, Sun Y, Jordan SD, Munsell MK, Kandalaft B, Pear M, Rentschler SL, Huebsch N. Engineered tissue geometry and Plakophilin-2 regulate electrophysiology of human iPSC-derived cardiomyocytes. APL Bioeng 2024; 8:016118. [PMID: 38476404 PMCID: PMC10932571 DOI: 10.1063/5.0160677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
Engineered heart tissues have been created to study cardiac biology and disease in a setting that more closely mimics in vivo heart muscle than 2D monolayer culture. Previously published studies suggest that geometrically anisotropic micro-environments are crucial for inducing "in vivo like" physiology from immature cardiomyocytes. We hypothesized that the degree of cardiomyocyte alignment and prestress within engineered tissues is regulated by tissue geometry and, subsequently, drives electrophysiological development. Thus, we studied the effects of tissue geometry on electrophysiology of micro-heart muscle arrays (μHM) engineered from human induced pluripotent stem cells (iPSCs). Elongated tissue geometries elicited cardiomyocyte shape and electrophysiology changes led to adaptations that yielded increased calcium intake during each contraction cycle. Strikingly, pharmacologic studies revealed that a threshold of prestress and/or cellular alignment is required for sodium channel function, whereas L-type calcium and rapidly rectifying potassium channels were largely insensitive to these changes. Concurrently, tissue elongation upregulated sodium channel (NaV1.5) and gap junction (Connexin 43, Cx43) protein expression. Based on these observations, we leveraged elongated μHM to study the impact of loss-of-function mutation in Plakophilin 2 (PKP2), a desmosome protein implicated in arrhythmogenic disease. Within μHM, PKP2 knockout cardiomyocytes had cellular morphology similar to what was observed in isogenic controls. However, PKP2-/- tissues exhibited lower conduction velocity and no functional sodium current. PKP2 knockout μHM exhibited geometrically linked upregulation of sodium channel but not Cx43, suggesting that post-translational mechanisms, including a lack of ion channel-gap junction communication, may underlie the lower conduction velocity observed in tissues harboring this genetic defect. Altogether, these observations demonstrate that simple, scalable micro-tissue systems can provide the physiologic stresses necessary to induce electrical remodeling of iPS-CM to enable studies on the electrophysiologic consequences of disease-associated genomic variants.
Collapse
Affiliation(s)
- Daniel W. Simmons
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Ganesh Malayath
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - David R. Schuftan
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Jingxuan Guo
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Kasoorelope Oguntuyo
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Ghiska Ramahdita
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Yuwen Sun
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Samuel D. Jordan
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Mary K. Munsell
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Brennan Kandalaft
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Missy Pear
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Stacey L. Rentschler
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Nathaniel Huebsch
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| |
Collapse
|
16
|
Gill JK, Rehsia SK, Verma E, Sareen N, Dhingra S. Stem cell therapy for cardiac regeneration: past, present, and future. Can J Physiol Pharmacol 2024; 102:161-179. [PMID: 38226807 DOI: 10.1139/cjpp-2023-0202] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Cardiac disorders remain the leading cause of mortality worldwide. Current clinical strategies, including drug therapy, surgical interventions, and organ transplantation offer limited benefits to patients without regenerating the damaged myocardium. Over the past decade, stem cell therapy has generated a keen interest owing to its unique self-renewal and immune privileged characteristics. Furthermore, the ability of stem cells to differentiate into specialized cell types, has made them a popular therapeutic tool against various diseases. This comprehensive review provides an overview of therapeutic potential of different types of stem cells in reference to cardiovascular diseases. Furthermore, it sheds light on the advantages and limitations associated with each cell type. An in-depth analysis of the challenges associated with stem cell research and the hurdles for its clinical translation and their possible solutions have also been elaborated upon. It examines the controversies surrounding embryonic stem cells and the emergence of alternative approaches, such as the use of induced pluripotent stem cells for cardiac therapeutic applications. Overall, this review serves as a valuable resource for researchers, clinicians, and policymakers involved in the field of regenerative medicine, guiding the development of safe and effective stem cell-based therapies to revolutionize patient care.
Collapse
Affiliation(s)
- Jaideep Kaur Gill
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg MB, R2H2A6, Canada
| | - Sargun Kaur Rehsia
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg MB, R2H2A6, Canada
| | - Elika Verma
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg MB, R2H2A6, Canada
| | - Niketa Sareen
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg MB, R2H2A6, Canada
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg MB, R2H2A6, Canada
| |
Collapse
|
17
|
Tang X, Liu H, Rao R, Huang Y, Dong M, Xu M, Feng S, Shi X, Wang L, Wang Z, Zhou B. Modeling drug-induced mitochondrial toxicity with human primary cardiomyocytes. SCIENCE CHINA. LIFE SCIENCES 2024; 67:301-319. [PMID: 37864082 DOI: 10.1007/s11427-023-2369-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/16/2023] [Indexed: 10/22/2023]
Abstract
Mitochondrial toxicity induced by therapeutic drugs is a major contributor for cardiotoxicity, posing a serious threat to pharmaceutical industries and patients' lives. However, mitochondrial toxicity testing is not incorporated into routine cardiac safety screening procedures. To accurately model native human cardiomyocytes, we comprehensively evaluated mitochondrial responses of adult human primary cardiomyocytes (hPCMs) to a nucleoside analog, remdesivir (RDV). Comparison of their response to human pluripotent stem cell-derived cardiomyocytes revealed that the latter utilized a mitophagy-based mitochondrial recovery response that was absent in hPCMs. Accordingly, action potential duration was elongated in hPCMs, reflecting clinical incidences of RDV-induced QT prolongation. In a screen for mitochondrial protectants, we identified mitochondrial ROS as a primary mediator of RDV-induced cardiotoxicity. Our study demonstrates the utility of hPCMs in the detection of clinically relevant cardiac toxicities, and offers a framework for hPCM-based high-throughput screening of cardioprotective agents.
Collapse
Affiliation(s)
- Xiaoli Tang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Hong Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Rongjia Rao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Yafei Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Mengqi Dong
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Miaomiao Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Shanshan Feng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Xun Shi
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Li Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, 518020, China
| | - Zengwu Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
- Department of Epidemiology, Cardiovascular Institute and Fuwai Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100037, China
| | - Bingying Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China.
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, 518020, China.
| |
Collapse
|
18
|
Chowdhury MA, Zhang JJ, Rizk R, Chen WCW. Stem cell therapy for heart failure in the clinics: new perspectives in the era of precision medicine and artificial intelligence. Front Physiol 2024; 14:1344885. [PMID: 38264333 PMCID: PMC10803627 DOI: 10.3389/fphys.2023.1344885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 12/26/2023] [Indexed: 01/25/2024] Open
Abstract
Stem/progenitor cells have been widely evaluated as a promising therapeutic option for heart failure (HF). Numerous clinical trials with stem/progenitor cell-based therapy (SCT) for HF have demonstrated encouraging results, but not without limitations or discrepancies. Recent technological advancements in multiomics, bioinformatics, precision medicine, artificial intelligence (AI), and machine learning (ML) provide new approaches and insights for stem cell research and therapeutic development. Integration of these new technologies into stem/progenitor cell therapy for HF may help address: 1) the technical challenges to obtain reliable and high-quality therapeutic precursor cells, 2) the discrepancies between preclinical and clinical studies, and 3) the personalized selection of optimal therapeutic cell types/populations for individual patients in the context of precision medicine. This review summarizes the current status of SCT for HF in clinics and provides new perspectives on the development of computation-aided SCT in the era of precision medicine and AI/ML.
Collapse
Affiliation(s)
- Mohammed A. Chowdhury
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
- Department of Public Health and Health Sciences, Health Sciences Ph.D. Program, School of Health Sciences, University of South Dakota, Vermillion, SD, United States
- Department of Cardiology, North Central Heart, Avera Heart Hospital, Sioux Falls, SD, United States
| | - Jing J. Zhang
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Rodrigue Rizk
- Department of Computer Science, University of South Dakota, Vermillion, SD, United States
| | - William C. W. Chen
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| |
Collapse
|
19
|
Li X, Zhang C, Liu C, Ma Y, Shi Y, Ye Y, Ma X, Liu Y, Luo X, Lin F, Wang J, Tao J, Lun J, Cai H, Hu Z. Principle and design of clinical efficacy observation of extracorporeal cardiac shock wave therapy for patients with myocardial ischemia-reperfusion injury: A prospective randomized controlled trial protocol. PLoS One 2023; 18:e0294060. [PMID: 38064454 PMCID: PMC10707494 DOI: 10.1371/journal.pone.0294060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/22/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Acute ST-segment elevation myocardial infarction (STEMI) remains a serious life threatening event with a poor prognosis due to myocardial ischemia/reperfusion injury despite coronary revascularization. Extracorporeal cardiac shock wave (ECSW) is a safe, effective and non-invasive new method for the treatment of cardiovascular diseases. The current results show that extracorporeal cardiac shock wave provides a new treatment option for patients with severe and advanced coronary heart disease. However, there are relatively few clinical studies on the application of in vitro cardiac shock waves in patients with myocardial ischemia-reperfusion injury. We hypothesized that extracorporeal cardiac shock therapy would also be effective in reducing clinical endpoints in patients with STEMI reperfusion. OBJECTIVE This study is order to provide a new therapeutic method for patients with myocardial ischemia-reperfusion injury and reveal the possible mechanism of ECSW for ischemia-reperfusion injury. METHODS AND MATERIALS CEECSWIIRI is a single-center, prospective randomized controlled trial that plans to enroll 102 eligible patients with acute ST-segment elevation myocardial infarction reperfusion. Eligible patients with STEMI reperfusion will be randomly divided into external cardiac shock therapy (ECSW) trial group and blank control group. The blank control group will receive optimal drug therapy, and the experimental group will receive optimal drug therapy combined with ECSW. The shock wave treatment plan will be 3-month therapy, specifically 1 week of treatment per month, 3 weeks of rest, 3 times of ECSW in each treatment week, respectively on the first day, the third day and the fifth day of the treatment week, lasting for 3 months and follow-up for 2 years. The primary endpoint will be to assess the 2-year improvement in all-cause death, re-hospitalization due to cardiovascular disease, major unintentional cerebrovascular events, including cardiogenic death, myocardial infarction, heart failure, arrhythmia, emergency coronary revascularization, and stroke in patients with STEMI reperfusion. Secondary endpoints will include improvements in angina pectoris, quality of life, cardiac structure and function, coronary microcirculation, and endothelial progenitor cell-derived miR-140-3p in relation to survival outcomes. TRIAL REGISTRATION NUMBER ClinicalTrial.gov.org PRS:NCT05624203; Date of registration: November 12, 2022.
Collapse
Affiliation(s)
- Xianbin Li
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Chaoyue Zhang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Changzhi Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yiming Ma
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yunke Shi
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yujia Ye
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xuejuan Ma
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yixi Liu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiang Luo
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Fanru Lin
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jincheng Wang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jifa Tao
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jinping Lun
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hongyan Cai
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhao Hu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
20
|
Sun B, Rouzbehani OM, Kramer RJ, Ghosh R, Perelli RM, Atkins S, Fatahian AN, Davis K, Szulik MW, Goodman MA, Hathaway MA, Chi E, Word TA, Tunuguntla H, Denfield SW, Wehrens XHT, Whitehead KJ, Abdelnasser HY, Warren JS, Wu M, Franklin S, Boudina S, Landstrom AP. Nonsense Variant PRDM16-Q187X Causes Impaired Myocardial Development and TGF-β Signaling Resulting in Noncompaction Cardiomyopathy in Humans and Mice. Circ Heart Fail 2023; 16:e010351. [PMID: 38113297 PMCID: PMC10752244 DOI: 10.1161/circheartfailure.122.010351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 09/29/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND PRDM16 plays a role in myocardial development through TGF-β (transforming growth factor-beta) signaling. Recent evidence suggests that loss of PRDM16 expression is associated with cardiomyopathy development in mice, although its role in human cardiomyopathy development is unclear. This study aims to determine the impact of PRDM16 loss-of-function variants on cardiomyopathy in humans. METHODS Individuals with PRDM16 variants were identified and consented. Induced pluripotent stem cell-derived cardiomyocytes were generated from a proband hosting a Q187X nonsense variant as an in vitro model and underwent proliferative and transcriptional analyses. CRISPR (clustered regularly interspaced short palindromic repeats)-mediated knock-in mouse model hosting the Prdm16Q187X allele was generated and subjected to ECG, histological, and transcriptional analysis. RESULTS We report 2 probands with loss-of-function PRDM16 variants and pediatric left ventricular noncompaction cardiomyopathy. One proband hosts a PRDM16-Q187X variant with left ventricular noncompaction cardiomyopathy and demonstrated infant-onset heart failure, which was selected for further study. Induced pluripotent stem cell-derived cardiomyocytes prepared from the PRDM16-Q187X proband demonstrated a statistically significant impairment in myocyte proliferation and increased apoptosis associated with transcriptional dysregulation of genes implicated in cardiac maturation, including TGF-β-associated transcripts. Homozygous Prdm16Q187X/Q187X mice demonstrated an underdeveloped compact myocardium and were embryonically lethal. Heterozygous Prdm16Q187X/WT mice demonstrated significantly smaller ventricular dimensions, heightened fibrosis, and age-dependent loss of TGF-β expression. Mechanistic studies were undertaken in H9c2 cardiomyoblasts to show that PRDM16 binds TGFB3 promoter and represses its transcription. CONCLUSIONS Novel loss-of-function PRDM16 variant impairs myocardial development resulting in noncompaction cardiomyopathy in humans and mice associated with altered TGF-β signaling.
Collapse
Affiliation(s)
- Bo Sun
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Omid M.T. Rouzbehani
- Department of Nutrition and Integrative Physiology, Program in Molecular Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Ryan J. Kramer
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Rajeshwary Ghosh
- Department of Nutrition and Integrative Physiology, Program in Molecular Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Robin M. Perelli
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Sage Atkins
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Amir Nima Fatahian
- Department of Nutrition and Integrative Physiology, Program in Molecular Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Kathryn Davis
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Marta W. Szulik
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Michael A. Goodman
- Department of Nutrition and Integrative Physiology, Program in Molecular Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Marissa A. Hathaway
- Department of Nutrition and Integrative Physiology, Program in Molecular Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Ellenor Chi
- Department of Nutrition and Integrative Physiology, Program in Molecular Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Tarah A. Word
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, Texas, United States
| | - Hari Tunuguntla
- Departments of Medicine and Pediatrics, Section of Cardiology, Baylor College of Medicine, Houston, Texas, United States
| | - Susan W. Denfield
- Departments of Medicine and Pediatrics, Section of Cardiology, Baylor College of Medicine, Houston, Texas, United States
| | - Xander H. T. Wehrens
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, Texas, United States
- Departments of Medicine and Pediatrics, Section of Cardiology, Baylor College of Medicine, Houston, Texas, United States
- Departments of Neuroscience, Cardiovascular Research Institute, and Center for Space Medicine, Baylor College of Medicine, Houston, Texas, United States
| | - Kevin J. Whitehead
- Division Cardiovascular Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Hala Y. Abdelnasser
- Department of Pharmacological and Pharmaceutical Sciences, The University of Houston College of Pharmacy, Houston, Texas, United States
| | - Junco S. Warren
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
- Division of Cardiovascular Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Mingfu Wu
- Department of Pharmacological and Pharmaceutical Sciences, The University of Houston College of Pharmacy, Houston, Texas, United States
| | - Sarah Franklin
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Sihem Boudina
- Department of Nutrition and Integrative Physiology, Program in Molecular Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Andrew P. Landstrom
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, United States
| |
Collapse
|
21
|
Adegunsoye A, Gonzales NM, Gilad Y. Induced Pluripotent Stem Cells in Disease Biology and the Evidence for Their In Vitro Utility. Annu Rev Genet 2023; 57:341-360. [PMID: 37708421 DOI: 10.1146/annurev-genet-022123-090319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Many human phenotypes are impossible to recapitulate in model organisms or immortalized human cell lines. Induced pluripotent stem cells (iPSCs) offer a way to study disease mechanisms in a variety of differentiated cell types while circumventing ethical and practical issues associated with finite tissue sources and postmortem states. Here, we discuss the broad utility of iPSCs in genetic medicine and describe how they are being used to study musculoskeletal, pulmonary, neurologic, and cardiac phenotypes. We summarize the particular challenges presented by each organ system and describe how iPSC models are being used to address them. Finally, we discuss emerging iPSC-derived organoid models and the potential value that they can bring to studies of human disease.
Collapse
Affiliation(s)
- Ayodeji Adegunsoye
- Genetics, Genomics, and Systems Biology, Section of Pulmonary and Critical Care, and the Department of Medicine, University of Chicago, Chicago, Illinois, USA;
| | - Natalia M Gonzales
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, USA; ,
| | - Yoav Gilad
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, USA; ,
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
22
|
Guerrelli D, Pressman J, Posnack N. hiPSC-CM Electrophysiology: Impact of Temporal Changes and Study Parameters on Experimental Reproducibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560475. [PMID: 37873094 PMCID: PMC10592927 DOI: 10.1101/2023.10.02.560475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are frequently used for preclinical cardiotoxicity testing and remain an important tool for confirming model-based predictions of drug effects in accordance with the Comprehensive in Vitro Proarrhythmia Assay (CiPA) initiative. Despite the considerable benefits hiPSC-CMs provide, concerns surrounding experimental reproducibility have emerged. Our study aimed to investigate the effects of temporal changes and experimental parameters on hiPSC-CM electrophysiology. hiPSC-CMs (iCell cardiomyocyte 2 ) were cultured for 14 days and biosignals were acquired using a microelectrode array (MEA) system. Continuous recordings revealed a 22.6% increase in the beating rate and 7.7% decrease in the field potential duration (FPD) during a 20-minute equilibration period. Location specific differences across a multiwell plate were also observed, with hiPSC-CMs in the outer rows beating 8.8 beats per minute (BPM) faster than the inner rows. Cardiac endpoints were also impacted by cell culture duration; from 2-14 days the beating rate decreased (-12.7 BPM), FPD lengthened (+257 ms), and spike amplitude increased (+3.3 mV). Cell culture duration (4-10 days) also impacted hiPSC-CM drug responsiveness (E-4031, nifedipine, isoproterenol). Our study highlights multiple sources of variability that should be considered and addressed when performing hiPSC-CM MEA studies. To improve reproducibility and data interpretation, MEA-based studies should establish a standardized protocol and report key experimental conditions (e.g., culture time, equilibration time, electrical stimulation settings, report raw data values). New & Noteworthy We demonstrate that hiPSC-CM electrophysiology measurements are significantly impacted by slight deviations in experimental techniques including electrical stimulation protocols, equilibration time, well-to-well variability, and length of hiPSC-CM culture. Furthermore, our results indicate that hiPSC-CM drug responsiveness changes within the first two weeks following defrost.
Collapse
|
23
|
Thakar RG, Fenton KN. Bioethical implications of organ-on-a-chip on modernizing drug development. Artif Organs 2023; 47:1553-1558. [PMID: 37578206 PMCID: PMC10615722 DOI: 10.1111/aor.14620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Organ-on-chips are three-dimensional microdevices that emulate the structure, functionality, and behavior of specific tissues or organs using human cells. Combining organoids with microfabricated fluidic channels and microelectronics, these systems offer a promising platform for studying disease mechanisms, drug responses, and tissue performance. By replicating the in vivo microenvironment, these devices can recreate complex cell interactions in controlled conditions and facilitate research in various fields, including drug toxicity and efficacy studies, biochemical analysis, and disease pathogenesis. Integrating human induced pluripotent stem cells further enhances their applicability, thereby enabling patient-specific disease modeling for precision medicine. Although challenges like economy-of-scale, multichip integration, and regulatory compliance exist, advances in this modular technology show promise for lowering drug development costs, improving reproducibility, and reducing the reliance on animal testing. The ethical landscape surrounding organ-on-chip usage presents both benefits and concerns. While these chips offer an alternative to animal testing and potential cost savings, they raise ethical considerations related to community engagement, informed consent, and the need for standardized guidelines. Ensuring public acceptance and involvement in decision-making is vital to address misinformation and mistrust. Furthermore, personalized medicine models using patient-derived cells demand careful consideration of potential ethical dilemmas, such as modeling physiological functions of fetuses or brains and determining the extent of protection for these models. To achieve the full potential of organ-on-a-chip models, collaboration between scientists, ethicists, and regulators is essential to fulfil the promise of transforming drug development, advancing personalized medicine, and contributing to a more ethical and efficient biomedical research landscape.
Collapse
Affiliation(s)
- Rahul G. Thakar
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kathleen N. Fenton
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
- Department of Bioethics, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
24
|
Rahul K, Singh SK, Kumar S, Tewarson V, Hakim MZ, Kaushik K, Kumar S, Kumar B. A New Era of Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated Protein 9 Gene Editing Technology in Cardiovascular Diseases: Opportunities, Challenges, and Perspectives. Heart Views 2023; 24:201-207. [PMID: 38188709 PMCID: PMC10766161 DOI: 10.4103/heartviews.heartviews_49_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/11/2023] [Indexed: 01/09/2024] Open
Abstract
Cardiovascular diseases (CVDs) remain major causes of global mortality in the world. Genetic approaches have succeeded in the discovery of the molecular basis of an increasing number of cardiac diseases. Genome-editing strategies are one of the most effective methods for assisting therapeutic approaches. Potential therapeutic methods of correcting disease-causing mutations or of knocking out specific genes as approaches for the prevention of CVDs have gained substantial attention using genome-editing techniques. Recently, the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system has become the most widely used genome-editing technology in molecular biology due to its benefits such as simple design, high efficiency, good repeatability, short cycle, and cost-effectiveness. In the present review, we discuss the possibilities of applying the CRISPR/Cas9 genome-editing tool in the CVDs.
Collapse
Affiliation(s)
- Kumar Rahul
- Department of Cardiovascular and Thoracic Surgery, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Sushil Kumar Singh
- Department of Cardiovascular and Thoracic Surgery, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Sarvesh Kumar
- Department of Cardiovascular and Thoracic Surgery, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Vivek Tewarson
- Department of Cardiovascular and Thoracic Surgery, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Mohammad Zeeshan Hakim
- Department of Cardiovascular and Thoracic Surgery, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Karan Kaushik
- Department of Cardiac Anaesthesiology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Satish Kumar
- Department of Internal Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Bhupendra Kumar
- Department of Cardiovascular and Thoracic Surgery, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
25
|
Bourque K, Jones-Tabah J, Pétrin D, Martin RD, Tanny JC, Hébert TE. Comparing the signaling and transcriptome profiling landscapes of human iPSC-derived and primary rat neonatal cardiomyocytes. Sci Rep 2023; 13:12248. [PMID: 37507481 PMCID: PMC10382583 DOI: 10.1038/s41598-023-39525-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023] Open
Abstract
The inaccessibility of human cardiomyocytes significantly hindered years of cardiovascular research efforts. To overcome these limitations, non-human cell sources were used as proxies to study heart function and associated diseases. Rodent models became increasingly acceptable surrogates to model the human heart either in vivo or through in vitro cultures. More recently, due to concerns regarding animal to human translation, including cross-species differences, the use of human iPSC-derived cardiomyocytes presented a renewed opportunity. Here, we conducted a comparative study, assessing cellular signaling through cardiac G protein-coupled receptors (GPCRs) in rat neonatal cardiomyocytes (RNCMs) and human induced pluripotent stem cell-derived cardiomyocytes. Genetically encoded biosensors were used to explore GPCR-mediated nuclear protein kinase A (PKA) and extracellular signal-regulated kinase 1/ 2 (ERK1/2) activities in both cardiomyocyte populations. To increase data granularity, a single-cell analytical approach was conducted. Using automated high content microscopy, our analyses of nuclear PKA and ERK1/2 signaling revealed distinct response clusters in rat and human cardiomyocytes. In line with this, bulk RNA-seq revealed key differences in the expression patterns of GPCRs, G proteins and downstream effector expression levels. Our study demonstrates that human stem cell-derived models of the cardiomyocyte offer distinct advantages for understanding cellular signaling in the heart.
Collapse
Affiliation(s)
- Kyla Bourque
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Jace Jones-Tabah
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Darlaine Pétrin
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Ryan D Martin
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Jason C Tanny
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
26
|
Shevade K, Peddada S, Mader K, Przybyla L. Functional genomics in stem cell models: considerations and applications. Front Cell Dev Biol 2023; 11:1236553. [PMID: 37554308 PMCID: PMC10404852 DOI: 10.3389/fcell.2023.1236553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/13/2023] [Indexed: 08/10/2023] Open
Abstract
Protocols to differentiate human pluripotent stem cells have advanced in terms of cell type specificity and tissue-level complexity over the past 2 decades, which has facilitated human disease modeling in the most relevant cell types. The ability to generate induced PSCs (iPSCs) from patients further enables the study of disease mutations in an appropriate cellular context to reveal the mechanisms that underlie disease etiology and progression. As iPSC-derived disease models have improved in robustness and scale, they have also been adopted more widely for use in drug screens to discover new therapies and therapeutic targets. Advancement in genome editing technologies, in particular the discovery of CRISPR-Cas9, has further allowed for rapid development of iPSCs containing disease-causing mutations. CRISPR-Cas9 technologies have now evolved beyond creating single gene edits, aided by the fusion of inhibitory (CRISPRi) or activation (CRISPRa) domains to a catalytically dead Cas9 protein, enabling inhibition or activation of endogenous gene loci. These tools have been used in CRISPR knockout, CRISPRi, or CRISPRa screens to identify genetic modifiers that synergize or antagonize with disease mutations in a systematic and unbiased manner, resulting in identification of disease mechanisms and discovery of new therapeutic targets to accelerate drug discovery research. However, many technical challenges remain when applying large-scale functional genomics approaches to differentiated PSC populations. Here we review current technologies in the field of iPSC disease modeling and CRISPR-based functional genomics screens and practical considerations for implementation across a range of modalities, applications, and disease areas, as well as explore CRISPR screens that have been performed in iPSC models to-date and the insights and therapies these screens have produced.
Collapse
Affiliation(s)
- Kaivalya Shevade
- Laboratory for Genomics Research, San Francisco, CA, United States
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, United States
| | - Sailaja Peddada
- Laboratory for Genomics Research, San Francisco, CA, United States
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, United States
| | - Karl Mader
- Laboratory for Genomics Research, San Francisco, CA, United States
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, United States
| | - Laralynne Przybyla
- Laboratory for Genomics Research, San Francisco, CA, United States
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
27
|
Escribá R, Larrañaga-Moreira JM, Richaud-Patin Y, Pourchet L, Lazis I, Jiménez-Delgado S, Morillas-García A, Ortiz-Genga M, Ochoa JP, Carreras D, Pérez GJ, de la Pompa JL, Brugada R, Monserrat L, Barriales-Villa R, Raya A. iPSC-Based Modeling of Variable Clinical Presentation in Hypertrophic Cardiomyopathy. Circ Res 2023; 133:108-119. [PMID: 37317833 DOI: 10.1161/circresaha.122.321951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 06/01/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease and a frequent cause of heart failure and sudden cardiac death. Our understanding of the genetic bases and pathogenic mechanisms underlying HCM has improved significantly in the recent past, but the combined effect of various pathogenic gene variants and the influence of genetic modifiers in disease manifestation are very poorly understood. Here, we set out to investigate genotype-phenotype relationships in 2 siblings with an extensive family history of HCM, both carrying a pathogenic truncating variant in the MYBPC3 gene (p.Lys600Asnfs*2), but who exhibited highly divergent clinical manifestations. METHODS We used a combination of induced pluripotent stem cell (iPSC)-based disease modeling and CRISPR (clustered regularly interspersed short palindromic repeats)/Cas9 (CRISPR-associated protein 9)-mediated genome editing to generate patient-specific cardiomyocytes (iPSC-CMs) and isogenic controls lacking the pathogenic MYBPC3 variant. RESULTS Mutant iPSC-CMs developed impaired mitochondrial bioenergetics, which was dependent on the presence of the mutation. Moreover, we could detect altered excitation-contraction coupling in iPSC-CMs from the severely affected individual. The pathogenic MYBPC3 variant was found to be necessary, but not sufficient, to induce iPSC-CM hyperexcitability, suggesting the presence of additional genetic modifiers. Whole-exome sequencing of the mutant carriers identified a variant of unknown significance in the MYH7 gene (p.Ile1927Phe) uniquely present in the individual with severe HCM. We finally assessed the pathogenicity of this variant of unknown significance by functionally evaluating iPSC-CMs after editing the variant. CONCLUSIONS Our results indicate that the p.Ile1927Phe variant of unknown significance in MYH7 can be considered as a modifier of HCM expressivity when found in combination with truncating variants in MYBPC3. Overall, our studies show that iPSC-based modeling of clinically discordant subjects provides a unique platform to functionally assess the effect of genetic modifiers.
Collapse
Affiliation(s)
- Rubén Escribá
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
- Program for Clinical Translation of Regenerative Medicine in Catalonia - P-[CMRC], L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain (R.E., Y.R.-P., L.P., A.R.)
| | - José M Larrañaga-Moreira
- Unidad de Cardiopatías Familiares, Servicio de Cardiología, Complexo Hospitalario Universitario de A Coruña, Servizo Galego de Saúde (SERGAS) (J.M.L.-M., R.B.-V.)
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña, A Coruña, Spain (J.M.L.-M., M.O.-G., J.P.O., R.B.-V.)
| | - Yvonne Richaud-Patin
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
- Program for Clinical Translation of Regenerative Medicine in Catalonia - P-[CMRC], L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain (R.E., Y.R.-P., L.P., A.R.)
| | - Léa Pourchet
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
- Program for Clinical Translation of Regenerative Medicine in Catalonia - P-[CMRC], L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain (R.E., Y.R.-P., L.P., A.R.)
| | - Ioannis Lazis
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
- Program for Clinical Translation of Regenerative Medicine in Catalonia - P-[CMRC], L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
| | - Senda Jiménez-Delgado
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
- Program for Clinical Translation of Regenerative Medicine in Catalonia - P-[CMRC], L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
| | - Alba Morillas-García
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
- Program for Clinical Translation of Regenerative Medicine in Catalonia - P-[CMRC], L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
| | - Martín Ortiz-Genga
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña, A Coruña, Spain (J.M.L.-M., M.O.-G., J.P.O., R.B.-V.)
| | - Juan Pablo Ochoa
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña, A Coruña, Spain (J.M.L.-M., M.O.-G., J.P.O., R.B.-V.)
- Health in Code S.L., Scientific Department, A Coruña, Spain (J.P.O., L.M.)
| | - David Carreras
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, Spain (D.C., G.J.P., R.B.)
- Department of Medical Sciences, Universitat de Girona, Spain (D.C., G.J.P., R.B.)
| | - Guillermo Javier Pérez
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, Spain (D.C., G.J.P., R.B.)
- Department of Medical Sciences, Universitat de Girona, Spain (D.C., G.J.P., R.B.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain (G.J.P., J.L.d.l.P., R.B., R.B.-V.)
| | - José Luis de la Pompa
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain (G.J.P., J.L.d.l.P., R.B., R.B.-V.)
- Intercellular Signalling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (J.L.d.l.P.)
| | - Ramón Brugada
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, Spain (D.C., G.J.P., R.B.)
- Department of Medical Sciences, Universitat de Girona, Spain (D.C., G.J.P., R.B.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain (G.J.P., J.L.d.l.P., R.B., R.B.-V.)
- Hospital Josep Trueta, Girona, Spain (R.B.)
| | - Lorenzo Monserrat
- Health in Code S.L., Scientific Department, A Coruña, Spain (J.P.O., L.M.)
| | - Roberto Barriales-Villa
- Unidad de Cardiopatías Familiares, Servicio de Cardiología, Complexo Hospitalario Universitario de A Coruña, Servizo Galego de Saúde (SERGAS) (J.M.L.-M., R.B.-V.)
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña, A Coruña, Spain (J.M.L.-M., M.O.-G., J.P.O., R.B.-V.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain (G.J.P., J.L.d.l.P., R.B., R.B.-V.)
| | - Angel Raya
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
- Program for Clinical Translation of Regenerative Medicine in Catalonia - P-[CMRC], L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain (R.E., Y.R.-P., L.P., A.R.)
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (A.R.)
| |
Collapse
|
28
|
Perez-Bermejo JA, Judge LM, Jensen CL, Wu K, Watry HL, Truong A, Ho JJ, Carter M, Runyon WV, Kaake RM, Pulido EH, Mandegar MA, Swaney DL, So PL, Krogan NJ, Conklin BR. Functional analysis of a common BAG3 allele associated with protection from heart failure. NATURE CARDIOVASCULAR RESEARCH 2023; 2:615-628. [PMID: 39195919 DOI: 10.1038/s44161-023-00288-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 05/18/2023] [Indexed: 08/29/2024]
Abstract
Multiple genetic association studies have correlated a common allelic block linked to the BAG3 gene with a decreased incidence of heart failure, but the molecular mechanism remains elusive. In this study, we used induced pluripotent stem cells to test if the only coding variant in this allele block, BAG3C151R, alters protein and cellular function in human cardiomyocytes. Quantitative protein interaction analysis identified changes in BAG3C151R protein partners specific to cardiomyocytes. Knockdown of genes encoding for BAG3-interacting factors in cardiomyocytes followed by myofibrillar analysis revealed that BAG3C151R associates more strongly with proteins involved in the maintenance of myofibrillar integrity. Finally, we demonstrate that cardiomyocytes expressing the BAG3C151R variant have improved response to proteotoxic stress in a dose-dependent manner. This study suggests that BAG3C151R could be responsible for the cardioprotective effect of the haplotype block, by increasing cardiomyocyte protection from stress. Preferential binding partners of BAG3C151R may reveal potential targets for cardioprotective therapies.
Collapse
Affiliation(s)
| | - Luke M Judge
- Gladstone Institutes, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | | | - Kenneth Wu
- Gladstone Institutes, San Francisco, CA, USA
| | | | | | - Jaclyn J Ho
- Tenaya Therapeutics, South San Francisco, CA, USA
| | | | | | - Robyn M Kaake
- Gladstone Institutes, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | | | | | - Danielle L Swaney
- Gladstone Institutes, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Po-Lin So
- Gladstone Institutes, San Francisco, CA, USA
| | - Nevan J Krogan
- Gladstone Institutes, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce R Conklin
- Gladstone Institutes, San Francisco, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Innovative Genomics Institute, Berkeley, CA, USA.
| |
Collapse
|
29
|
Ahmad FS, Jin Y, Grassam-Rowe A, Zhou Y, Yuan M, Fan X, Zhou R, Mu-u-min R, O'Shea C, Ibrahim AM, Hyder W, Aguib Y, Yacoub M, Pavlovic D, Zhang Y, Tan X, Lei M, Terrar DA. Generation of cardiomyocytes from human-induced pluripotent stem cells resembling atrial cells with ability to respond to adrenoceptor agonists. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220312. [PMID: 37122218 PMCID: PMC10150206 DOI: 10.1098/rstb.2022.0312] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/07/2022] [Indexed: 05/02/2023] Open
Abstract
Atrial fibrillation (AF) is the most common chronic arrhythmia presenting a heavy disease burden. We report a new approach for generating cardiomyocytes (CMs) resembling atrial cells from human-induced pluripotent stem cells (hiPSCs) using a combination of Gremlin 2 and retinoic acid treatment. More than 40% of myocytes showed rod-shaped morphology, expression of CM proteins (including ryanodine receptor 2, α-actinin-2 and F-actin) and striated appearance, all of which were broadly similar to the characteristics of adult atrial myocytes (AMs). Isolated myocytes were electrically quiescent until stimulated to fire action potentials with an AM profile and an amplitude of approximately 100 mV, arising from a resting potential of approximately -70 mV. Single-cell RNA sequence analysis showed a high level of expression of several atrial-specific transcripts including NPPA, MYL7, HOXA3, SLN, KCNJ4, KCNJ5 and KCNA5. Amplitudes of calcium transients recorded from spontaneously beating cultures were increased by the stimulation of α-adrenoceptors (activated by phenylephrine and blocked by prazosin) or β-adrenoceptors (activated by isoproterenol and blocked by CGP20712A). Our new approach provides human AMs with mature characteristics from hiPSCs which will facilitate drug discovery by enabling the study of human atrial cell signalling pathways and AF. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Faizzan S. Ahmad
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
- Cure8bio, Inc, 395 Fulton Street, Westbury, NY 11590, USA
| | - Yongcheng Jin
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | | | - Yafei Zhou
- Key Laboratory of Medical Electrophysiology of the Ministry of Education and Institute of Cardiovascular Research, Southwest Medical University, Luzhou 6400, People's Republic of China
- Shaanxi Institute for Pediatric Diseases, Department of Cardiology, Xi'an Children's Hospital, Xi'an 710003, People's Republic of China
| | - Meng Yuan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Xuehui Fan
- Key Laboratory of Medical Electrophysiology of the Ministry of Education and Institute of Cardiovascular Research, Southwest Medical University, Luzhou 6400, People's Republic of China
| | - Rui Zhou
- Key Laboratory of Medical Electrophysiology of the Ministry of Education and Institute of Cardiovascular Research, Southwest Medical University, Luzhou 6400, People's Republic of China
| | - Razik Mu-u-min
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Christopher O'Shea
- Institute of Cardiovascular Sciences, College of Medicine and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ayman M. Ibrahim
- Aswan Heart Centre, Aswan 1242770, Egypt
- Department of Zoology, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | - Wajiha Hyder
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Yasmine Aguib
- Aswan Heart Centre, Aswan 1242770, Egypt
- National Heart and Lung Institute, Heart Science Centre, Imperial College London, Middlesex SW3 6LY, UK
| | - Magdi Yacoub
- Aswan Heart Centre, Aswan 1242770, Egypt
- National Heart and Lung Institute, Heart Science Centre, Imperial College London, Middlesex SW3 6LY, UK
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences, College of Medicine and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Yanmin Zhang
- Shaanxi Institute for Pediatric Diseases, Department of Cardiology, Xi'an Children's Hospital, Xi'an 710003, People's Republic of China
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology of the Ministry of Education and Institute of Cardiovascular Research, Southwest Medical University, Luzhou 6400, People's Republic of China
| | - Ming Lei
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Derek A. Terrar
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| |
Collapse
|
30
|
Xu Z, Yang J, Xin X, Liu C, Li L, Mei X, Li M. Merits and challenges of iPSC-derived organoids for clinical applications. Front Cell Dev Biol 2023; 11:1188905. [PMID: 37305682 PMCID: PMC10250752 DOI: 10.3389/fcell.2023.1188905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/18/2023] [Indexed: 06/13/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) have entered an unprecedented state of development since they were first generated. They have played a critical role in disease modeling, drug discovery, and cell replacement therapy, and have contributed to the evolution of disciplines such as cell biology, pathophysiology of diseases, and regenerative medicine. Organoids, the stem cell-derived 3D culture systems that mimic the structure and function of organs in vitro, have been widely used in developmental research, disease modeling, and drug screening. Recent advances in combining iPSCs with 3D organoids are facilitating further applications of iPSCs in disease research. Organoids derived from embryonic stem cells, iPSCs, and multi-tissue stem/progenitor cells can replicate the processes of developmental differentiation, homeostatic self-renewal, and regeneration due to tissue damage, offering the potential to unravel the regulatory mechanisms of development and regeneration, and elucidate the pathophysiological processes involved in disease mechanisms. Herein, we have summarized the latest research on the production scheme of organ-specific iPSC-derived organoids, the contribution of these organoids in the treatment of various organ-related diseases, in particular their contribution to COVID-19 treatment, and have discussed the unresolved challenges and shortcomings of these models.
Collapse
Affiliation(s)
- Ziran Xu
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
- Department of Clinical Laboratory, Lequn Branch, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jiaxu Yang
- Department of Neonatology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xianyi Xin
- Department of Pediatric Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chengrun Liu
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Xianglin Mei
- Department of pathology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Meiying Li
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| |
Collapse
|
31
|
Granata A. Functional genomics in stroke: current and future applications of iPSCs and gene editing to dissect the function of risk variants. BMC Cardiovasc Disord 2023; 23:223. [PMID: 37120540 PMCID: PMC10148993 DOI: 10.1186/s12872-023-03227-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 04/04/2023] [Indexed: 05/01/2023] Open
Abstract
Stroke is an important disease with unmet clinical need. To uncover novel paths for treatment, it is of critical importance to develop relevant laboratory models that may help to shed light on the pathophysiological mechanisms of stroke. Induced pluripotent stem cells (iPSCs) technology has enormous potential to advance our knowledge into stroke by creating novel human models for research and therapeutic testing. iPSCs models generated from patients with specific stroke types and specific genetic predisposition in combination with other state of art technologies including genome editing, multi-omics, 3D system, libraries screening, offer the opportunity to investigate disease-related pathways and identify potential novel therapeutic targets that can then be tested in these models. Thus, iPSCs offer an unprecedented opportunity to make rapid progress in the field of stroke and vascular dementia research leading to clinical translation. This review paper summarizes some of the key areas in which patient-derived iPSCs technology has been applied to disease modelling and discusses the ongoing challenges and the future directions for the application of this technology in the field of stroke research.
Collapse
Affiliation(s)
- Alessandra Granata
- Department of Clinical Neurosciences, Victor Phillip Dahdaleh Heart & Lung Research Institute, Papworth Road, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0BB, UK.
| |
Collapse
|
32
|
Cai D, Zheng Z, Jin X, Fu Y, Cen L, Ye J, Song Y, Lian J. The Advantages, Challenges, and Future of Human-Induced Pluripotent Stem Cell Lines in Type 2 Long QT Syndrome. J Cardiovasc Transl Res 2023; 16:209-220. [PMID: 35976484 DOI: 10.1007/s12265-022-10298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/23/2022] [Indexed: 02/05/2023]
Abstract
Type 2 long QT syndrome (LQT2) is the second most common subtype of long QT syndrome and is caused by mutations in KCHN2 encoding the rapidly activating delayed rectifier potassium channel vital for ventricular repolarization. Sudden cardiac death is a sentinel event of LQT2. Preclinical diagnosis by genetic testing is potentially life-saving.Traditional LQT2 models cannot wholly recapitulate genetic and phenotypic features; therefore, there is a demand for a reliable experimental model. Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) meet this challenge. This review introduces the advantages of the hiPSC-CM model over the traditional model and discusses how hiPSC-CM and gene editing are used to decipher mechanisms of LQT2, screen for cardiotoxicity, and identify therapeutic strategies, thus promoting the realization of precision medicine for LQT2 patients.
Collapse
Affiliation(s)
- Dihui Cai
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo University, Zhejiang Province, Ningbo, China
| | - Zequn Zheng
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo University, Zhejiang Province, Ningbo, China
- Department of Cardiovascular, First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xiaojun Jin
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo University, Zhejiang Province, Ningbo, China
| | - Yin Fu
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo University, Zhejiang Province, Ningbo, China
| | - Lichao Cen
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo University, Zhejiang Province, Ningbo, China
| | - Jiachun Ye
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo University, Zhejiang Province, Ningbo, China
| | - Yongfei Song
- Department of Cardiovascular, Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
| | - Jiangfang Lian
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo University, Zhejiang Province, Ningbo, China.
- Department of Cardiovascular, Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China.
| |
Collapse
|
33
|
Musunuru K. An Overview of Genome Editing in Cardiovascular and Metabolic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:3-16. [DOI: 10.1007/978-981-19-5642-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
34
|
Julian K, Garg N, Hibino N, Jain R. Stem Cells and Congenital Heart Disease: The Future Potential Clinical Therapy Beyond Current Treatment. Curr Cardiol Rev 2023; 19:e310522205424. [PMID: 35642109 PMCID: PMC10201894 DOI: 10.2174/1573403x18666220531093326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/22/2022] Open
Abstract
Congenital heart disease (CHD) is the most common congenital anomaly in newborns. Current treatment for cyanotic CHD largely relies on the surgical intervention; however, significant morbidity and mortality for patients with CHD remain. Recent research to explore new avenues of treating CHD includes the utility of stem cells within the field. Stem cells have since been used to both model and potentially treat CHD. Most clinical applications to date have focused on hypoplastic left heart syndrome. Here, we examine the current role of stem cells in CHD and discuss future applications within the field.
Collapse
Affiliation(s)
| | - Nikita Garg
- Department of Pediatrics, Southern Illinois University, Carbondale, Illinois, USA
| | - Narutoshi Hibino
- Department of Cardiothoracic Surgery, University of Chicago, Hershey, Pennsylvania, USA
| | - Rohit Jain
- Penn State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
35
|
Najafi-Ghalehlou N, Feizkhah A, Mobayen M, Pourmohammadi-Bejarpasi Z, Shekarchi S, Roushandeh AM, Roudkenar MH. Plumping up a Cushion of Human Biowaste in Regenerative Medicine: Novel Insights into a State-of-the-Art Reserve Arsenal. Stem Cell Rev Rep 2022; 18:2709-2739. [PMID: 35505177 PMCID: PMC9064122 DOI: 10.1007/s12015-022-10383-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 12/03/2022]
Abstract
Major breakthroughs and disruptive methods in disease treatment today owe their thanks to our inch by inch developing conception of the infinitive aspects of medicine since the very beginning, among which, the role of the regenerative medicine can on no account be denied, a branch of medicine dedicated to either repairing or replacing the injured or diseased cells, organs, and tissues. A novel means to accomplish such a quest is what is being called "medical biowaste", a large assortment of biological samples produced during a surgery session or as a result of physiological conditions and biological activities. The current paper accentuating several of a number of promising sources of biowaste together with their plausible applications in routine clinical practices and the confronting challenges aims at inspiring research on the existing gap between clinical and basic science to further extend our knowledge and understanding concerning the potential applications of medical biowaste.
Collapse
Affiliation(s)
- Nima Najafi-Ghalehlou
- Department of Medical Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Feizkhah
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammadreza Mobayen
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Zahra Pourmohammadi-Bejarpasi
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Shima Shekarchi
- Anatomical Sciences Department, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Amaneh Mohammadi Roushandeh
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| | - Mehryar Habibi Roudkenar
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
- Cardiovascular Diseases Research Center, Department of Cardiology, School of Medicine, Heshmat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
36
|
MacDonnell S, Megna J, Ruan Q, Zhu O, Halasz G, Jasewicz D, Powers K, E H, del Pilar Molina-Portela M, Jin X, Zhang D, Torello J, Feric NT, Graziano MP, Shekhar A, Dunn ME, Glass D, Morton L. Activin A directly impairs human cardiomyocyte contractile function indicating a potential role in heart failure development. Front Cardiovasc Med 2022; 9:1038114. [PMID: 36440002 PMCID: PMC9685658 DOI: 10.3389/fcvm.2022.1038114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/10/2022] [Indexed: 09/27/2023] Open
Abstract
Activin A has been linked to cardiac dysfunction in aging and disease, with elevated circulating levels found in patients with hypertension, atherosclerosis, and heart failure. Here, we investigated whether Activin A directly impairs cardiomyocyte (CM) contractile function and kinetics utilizing cell, tissue, and animal models. Hydrodynamic gene delivery-mediated overexpression of Activin A in wild-type mice was sufficient to impair cardiac function, and resulted in increased cardiac stress markers (N-terminal pro-atrial natriuretic peptide) and cardiac atrophy. In human-induced pluripotent stem cell-derived (hiPSC) CMs, Activin A caused increased phosphorylation of SMAD2/3 and significantly upregulated SERPINE1 and FSTL3 (markers of SMAD2/3 activation and activin signaling, respectively). Activin A signaling in hiPSC-CMs resulted in impaired contractility, prolonged relaxation kinetics, and spontaneous beating in a dose-dependent manner. To identify the cardiac cellular source of Activin A, inflammatory cytokines were applied to human cardiac fibroblasts. Interleukin -1β induced a strong upregulation of Activin A. Mechanistically, we observed that Activin A-treated hiPSC-CMs exhibited impaired diastolic calcium handling with reduced expression of calcium regulatory genes (SERCA2, RYR2, CACNB2). Importantly, when Activin A was inhibited with an anti-Activin A antibody, maladaptive calcium handling and CM contractile dysfunction were abrogated. Therefore, inflammatory cytokines may play a key role by acting on cardiac fibroblasts, causing local upregulation of Activin A that directly acts on CMs to impair contractility. These findings demonstrate that Activin A acts directly on CMs, which may contribute to the cardiac dysfunction seen in aging populations and in patients with heart failure.
Collapse
Affiliation(s)
| | - Jake Megna
- Regeneron Pharmaceuticals, Tarrytown, NY, United States
| | - Qin Ruan
- Regeneron Pharmaceuticals, Tarrytown, NY, United States
| | - Olivia Zhu
- Regeneron Pharmaceuticals, Tarrytown, NY, United States
| | - Gabor Halasz
- Regeneron Pharmaceuticals, Tarrytown, NY, United States
| | - Dan Jasewicz
- Regeneron Pharmaceuticals, Tarrytown, NY, United States
| | - Kristi Powers
- Regeneron Pharmaceuticals, Tarrytown, NY, United States
| | - Hock E
- Regeneron Pharmaceuticals, Tarrytown, NY, United States
| | | | - Ximei Jin
- Regeneron Pharmaceuticals, Tarrytown, NY, United States
| | - Dongqin Zhang
- Regeneron Pharmaceuticals, Tarrytown, NY, United States
| | | | - Nicole T. Feric
- TARA Biosystems Inc., Alexandria Center for Life Sciences, New York, NY, United States
| | - Michael P. Graziano
- TARA Biosystems Inc., Alexandria Center for Life Sciences, New York, NY, United States
| | | | | | - David Glass
- Regeneron Pharmaceuticals, Tarrytown, NY, United States
| | - Lori Morton
- Regeneron Pharmaceuticals, Tarrytown, NY, United States
| |
Collapse
|
37
|
Dash BC, Korutla L, Vallabhajosyula P, Hsia HC. Unlocking the Potential of Induced Pluripotent Stem Cells for Wound Healing: The Next Frontier of Regenerative Medicine. Adv Wound Care (New Rochelle) 2022; 11:622-638. [PMID: 34155919 DOI: 10.1089/wound.2021.0049] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Significance: Nonhealing wounds are a significant burden for the health care system all over the world. Existing treatment options are not enough to promote healing, highlighting the urgent need for improved therapies. In addition, the current advancements in tissue-engineered skin constructs and stem cell-based therapies are facing significant hurdles due to the absence of a renewable source of functional cells. Recent Advances: Induced pluripotent stem cell technology (iPSC) is emerging as a novel tool to develop the next generation of personalized medicine for the treatment of chronic wounds. The iPSC provides unlimited access to various skin cells to generate complex personalized three-dimensional skin constructs for disease modeling and autologous grafts. Furthermore, the iPSC-based therapies can target distinct wound healing phases and have shown accelerating wound closure by enhancing angiogenesis, cell migration, tissue regeneration, and modulating inflammation. Critical Issues: Since the last decade, iPSC has been revolutionizing the field of wound healing and skin tissue engineering. Despite the current progress, safety and heterogeneity among iPSC lines are still major hurdles in addition to the lack of large animal studies. These challenges need to be addressed before translating an iPSC-based therapy to the clinic. Future Directions: Future considerations should be given to performing large animal studies to check the safety and efficiency of iPSC-based therapy in a wound healing setup. Furthermore, strategies should be developed to overcome variation between hiPSC lines, develop an efficient manufacturing process for iPSC-derived products, and generate complex skin constructs with vasculature and skin appendages.
Collapse
Affiliation(s)
- Biraja C Dash
- Department of Surgery (Plastic), Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Laxminarayana Korutla
- Department of Surgery (Cardiac), Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Prashanth Vallabhajosyula
- Department of Surgery (Cardiac), Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Henry C Hsia
- Department of Surgery (Plastic), Yale School of Medicine, Yale University, New Haven, Connecticut, USA.,Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
38
|
Bidzimou MTK, Landstrom AP. From diagnostic testing to precision medicine: the evolving role of genomics in cardiac channelopathies and cardiomyopathies in children. Curr Opin Genet Dev 2022; 76:101978. [PMID: 36058060 PMCID: PMC9733798 DOI: 10.1016/j.gde.2022.101978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/04/2022] [Accepted: 08/01/2022] [Indexed: 12/13/2022]
Abstract
Pediatric sudden cardiac death (SCD) is the sudden unexpected death of a child or adolescent due to a presumed cardiac etiology. Heritable causes of pediatric SCD are predominantly cardiomyopathies and cardiac ion channelopathies. This review illustrates recent advances in determining the genetic cause of established and emerging channelopathies and cardiomyopathies, and how broader genomic sequencing is uncovering complex interactions between genetic architecture and disease manifestation. We discuss innovative models and experimental platforms for resolving the variant of uncertain significance as both the variants and genes associated with disease continue to evolve. Finally, we highlight the growing problem of incidentally identified variants in cardiovascular disease-causing genes and review innovative methods to determining whether these variants may ultimately result in penetrant disease. Overall, we seek to illustrate both the promise and inherent challenges in bridging the traditional role for genetics in diagnosing cardiomyopathies and channelopathies to one of true risk-predictive precision medicine.
Collapse
Affiliation(s)
- Minu-Tshyeto K Bidzimou
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States. https://twitter.com/@MBidzimou
| | - Andrew P Landstrom
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States; Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, NC, United States.
| |
Collapse
|
39
|
Saleem A, Abbas MK, Wang Y, Lan F. hPSC gene editing for cardiac disease therapy. Pflugers Arch 2022; 474:1123-1132. [PMID: 36163402 DOI: 10.1007/s00424-022-02751-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/09/2022] [Accepted: 09/18/2022] [Indexed: 11/26/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide. However, the lack of human cardiomyocytes with proper genetic backgrounds limits the study of disease mechanisms. Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have significantly advanced the study of these conditions. Moreover, hPSC-CMs made it easy to study CVDs using genome-editing techniques. This article discusses the applications of these techniques in hPSC for studying CVDs. Recently, several genome-editing systems have been used to modify hPSCs, including zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeat-associated protein 9 (CRISPR/Cas9). We focused on the recent advancement of genome editing in hPSCs, which dramatically improved the efficiency of the cell-based mechanism study and therapy for cardiac diseases.
Collapse
Affiliation(s)
- Amina Saleem
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Research Institute Building, Beijinj Anzhen Hospital, Capital Medical University, Room 319, 2 Anzhen Road, Chaoyang District, Beijing, Beijing, 100029, China
| | - Muhammad Khawar Abbas
- BHMS Department, University College of Conventional Medicine, Faculty of Medicine and Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Yongming Wang
- The State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- The Key Lab of Reproduction Regulation of NPFPC in SIPPR, Institute of Reproduction & Development in Obstetrics & Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Feng Lan
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Research Institute Building, Beijinj Anzhen Hospital, Capital Medical University, Room 319, 2 Anzhen Road, Chaoyang District, Beijing, Beijing, 100029, China.
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen Key Laboratory of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Key Laboratory of Pluripotent Stem Cells in Cardiac Repair and Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Beijing, 100029, China.
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central-China Branch of National Center for Cardiovascular Diseases, Zhengzhou, Beijing, 100037, China.
| |
Collapse
|
40
|
Leowattana W, Leowattana T, Leowattana P. Human-induced pluripotent stem cell-atrial-specific cardiomyocytes and atrial fibrillation. World J Clin Cases 2022; 10:9588-9601. [PMID: 36186184 PMCID: PMC9516943 DOI: 10.12998/wjcc.v10.i27.9588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/22/2022] [Accepted: 08/16/2022] [Indexed: 02/05/2023] Open
Abstract
Patient-specific human-induced pluripotent stem cell-derived atrial cardiomyocytes (hiPSC-aCMs) may be produced, genome-edited, and differentiated into multiple cell types for regenerative medicine, disease modeling, drug testing, toxicity screening, and three-dimensional tissue fabrication. There is presently no complete model of atrial fibrillation (AF) available for studying human pharmacological responses and evaluating the toxicity of potential medication candidates. It has been demonstrated that hiPSC-aCMs can replicate the electrophysiological disease phenotype and genotype of AF. The hiPSC-aCMs, however, are immature and do not reflect the maturity of aCMs in the native myocardium. Numerous laboratories utilize a variety of methodologies and procedures to improve and promote aCM maturation, including electrical stimulation, culture duration, biophysical signals, and changes in metabolic variables. This review covers the current methods being explored for use in the maturation of patient-specific hiPSC-aCMs and their application towards a personalized approach to the pharmacologic therapy of AF.
Collapse
Affiliation(s)
- Wattana Leowattana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Tawithep Leowattana
- Department of Medicine, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Pathomthep Leowattana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
41
|
Mehta C, Shah R, Yanamala N, Sengupta PP. Cardiovascular Imaging Databases: Building Machine Learning Algorithms for Regenerative Medicine. CURRENT STEM CELL REPORTS 2022. [DOI: 10.1007/s40778-022-00216-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Zhou B, Shi X, Tang X, Zhao Q, Wang L, Yao F, Hou Y, Wang X, Feng W, Wang L, Sun X, Wang L, Hu S. Functional isolation, culture and cryopreservation of adult human primary cardiomyocytes. Signal Transduct Target Ther 2022; 7:254. [PMID: 35882831 PMCID: PMC9325714 DOI: 10.1038/s41392-022-01044-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/11/2022] [Accepted: 05/26/2022] [Indexed: 12/27/2022] Open
Abstract
Cardiovascular diseases are the most common cause of death globally. Accurately modeling cardiac homeostasis, dysfunction, and drug response lies at the heart of cardiac research. Adult human primary cardiomyocytes (hPCMs) are a promising cellular model, but unstable isolation efficiency and quality, rapid cell death in culture, and unknown response to cryopreservation prevent them from becoming a reliable and flexible in vitro cardiac model. Combing the use of a reversible inhibitor of myosin II ATPase, (-)-blebbistatin (Bleb), and multiple optimization steps of the isolation procedure, we achieved a 2.74-fold increase in cell viability over traditional methods, accompanied by better cellular morphology, minimally perturbed gene expression, intact electrophysiology, and normal neurohormonal signaling. Further optimization of culture conditions established a method that was capable of maintaining optimal cell viability, morphology, and mitochondrial respiration for at least 7 days. Most importantly, we successfully cryopreserved hPCMs, which were structurally, molecularly, and functionally intact after undergoing the freeze-thaw cycle. hPCMs demonstrated greater sensitivity towards a set of cardiotoxic drugs, compared to human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Further dissection of cardiomyocyte drug response at both the population and single-cell transcriptomic level revealed that hPCM responses were more pronouncedly enriched in cardiac function, whereas hiPSC-CMs responses reflected cardiac development. Together, we established a full set of methodologies for the efficient isolation and prolonged maintenance of functional primary adult human cardiomyocytes in vitro, unlocking their potential as a cellular model for cardiovascular research, drug discovery, and safety pharmacology.
Collapse
Affiliation(s)
- Bingying Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, China
| | - Xun Shi
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoli Tang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Quanyi Zhao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, China
| | - Le Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Yao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongfeng Hou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,18 Jinma Industrial Park, Fangshan District, Beijing, China
| | - Xianqiang Wang
- Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Feng
- Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liqing Wang
- Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaogang Sun
- Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, China
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. .,Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, China. .,Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
43
|
Caudal A, Ren L, Tu C, Wu JC. Human Induced Pluripotent Stem Cells for Studying Mitochondrial Diseases in the Heart. FEBS Lett 2022; 596:1735-1745. [PMID: 35788991 DOI: 10.1002/1873-3468.14444] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/11/2022] [Accepted: 06/28/2022] [Indexed: 11/09/2022]
Abstract
Mitochondrial dysfunction is known to contribute to a range of diseases, and primary mitochondrial defects strongly impact high-energy organs such as the heart. Platforms for high-throughput and human-relevant assessment of mitochondrial diseases are currently lacking, hindering the development of targeted therapies. In the past decade, human induced pluripotent stem cells (iPSCs) have become a promising technology for drug discovery in basic and clinical research. In particular, human iPSC-derived cardiomyocytes (iPSC-CMs) offer a unique tool to study a wide range of mitochondrial functions and possess the potential to become a key translational asset for mitochondrial drug development. This review summarizes mitochondrial functions and recent therapeutic discoveries, advancements, and limitations of using iPSC-CMs to study mitochondrial diseases of the heart with an emphasis on cardiac applications.
Collapse
Affiliation(s)
- Arianne Caudal
- Stanford Cardiovascular Institute.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford.,Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lu Ren
- Stanford Cardiovascular Institute.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford.,Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Chengyi Tu
- Stanford Cardiovascular Institute.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford.,Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford.,Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
44
|
Florentino RM, Li Q, Coard MC, Haep N, Motomura T, Diaz-Aragon R, Faccioli LAP, Amirneni S, Kocas-Kilicarslan ZN, Ostrowska A, Squires JE, Feranchak AP, Soto-Gutierrez A. Transmembrane channel activity in human hepatocytes and cholangiocytes derived from induced pluripotent stem cells. Hepatol Commun 2022; 6:1561-1573. [PMID: 35289126 PMCID: PMC9234678 DOI: 10.1002/hep4.1920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/06/2022] [Accepted: 01/22/2022] [Indexed: 11/10/2022] Open
Abstract
The initial creation of human-induced pluripotent stem cells (iPSCs) set the foundation for the future of regenerative medicine. Human iPSCs can be differentiated into a variety of cell types in order to study normal and pathological molecular mechanisms. Currently, there are well-defined protocols for the differentiation, characterization, and establishment of functionality in human iPSC-derived hepatocytes (iHep) and iPSC-derived cholangiocytes (iCho). Electrophysiological study on chloride ion efflux channel activity in iHep and iCho cells has not been previously reported. We generated iHep and iCho cells and characterized them based on hepatocyte-specific and cholangiocyte-specific markers. The relevant transmembrane channels were selected: cystic fibrosis transmembrane conductance regulator, leucine rich repeat-containing 8 subunit A, and transmembrane member 16 subunit A. To measure the activity in these channels, we used whole-cell patch-clamp techniques with a standard intracellular and extracellular solution. Our iHep and iCho cells demonstrated definitive activity in the selected transmembrane channels, and this approach may become an important tool for investigating human liver biology of cholestatic diseases.
Collapse
Affiliation(s)
- Rodrigo M Florentino
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA.,Pittsburgh Liver Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Qin Li
- Department of PediatricsUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Michael C Coard
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Nils Haep
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Takashi Motomura
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Ricardo Diaz-Aragon
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Lanuza A P Faccioli
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Sriram Amirneni
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | | | - Alina Ostrowska
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA.,Pittsburgh Liver Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - James E Squires
- Pittsburgh Liver Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA.,Division of Gastroenterology, Hepatology, and NutritionUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Andrew P Feranchak
- Pittsburgh Liver Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA.,Department of PediatricsUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Alejandro Soto-Gutierrez
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA.,Pittsburgh Liver Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA.,McGowan Institute for Regenerative MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
45
|
Roshanravan N, Tutunchi H, Najafipour F, Dastouri M, Ghaffari S, Jebeli A. A glance at the application of CRISPR/Cas9 gene-editing technology in cardiovascular diseases. J Cardiovasc Thorac Res 2022; 14:77-83. [PMID: 35935390 PMCID: PMC9339732 DOI: 10.34172/jcvtr.2022.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/21/2022] [Indexed: 11/09/2022] Open
Abstract
Cardiovascular diseases (CVDs) remain major causes of global mortality in the world. Genetic approaches have succeeded in discovery of the molecular basis of an increasing number of cardiac diseases. Genome editing strategies are one of the most effective methods for assisting therapeutic approaches. Potential therapeutic methods of correcting disease-causing mutations or of knocking out specific genes as approaches for the prevention of CVDs have gained substantial attention using genome editing techniques. Recently, the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system has become the most widely used genome-editing technology in molecular biology due to its benefits such as simple design, high efficiency, good repeatability, short-cycle, and costeffectiveness. In the present review, we discuss on the possibilities of applying the CRISPR/Cas9 genome editing tool in the CVDs.
Collapse
Affiliation(s)
- Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Helda Tutunchi
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzad Najafipour
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Dastouri
- Ankara University Biotechnology Institute and SISBIYOTEK Advanced Research Unit, Gumusdere Yerleskesi, Kecioren, Ankara, Turkey
| | - Samad Ghaffari
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Jebeli
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
46
|
Liu M, Yang F, Xu Y. Global Trends of Stem Cell Precision Medicine Research (2018–2022): A Bibliometric Analysis. Front Surg 2022; 9:888956. [PMID: 35813047 PMCID: PMC9260221 DOI: 10.3389/fsurg.2022.888956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundStem cells are a group of cells that can self-renew and have multiple differentiation capabilities. Shinya Yamanaka first discovered a method to convert somatic cells into pluripotent stem cells in 2006. Stem cell therapy can be summarized into three aspects (regenerative treatment, therapy targeted at stem cells, and establishment of disease models). Disease models are mainly established by induced pluripotent stem cells, and the research of stem cell precision medicine has been promising in recent years. Based on the construction of 3D, patient-specific disease models from pluripotent induced stem cells, proper research on disease development and treatment prognosis can be realized. Bibliometric analysis is an efficient way to quickly understand global trends and hotspots in this field.MethodsA literature search of stem cell precision medicine research from 2018 to 2022 was carried out using the Web of Science Core Collection.VOSviewer, R-bibliometrix, and CiteSpace software programs were employed to perform the bibliometric analysis.ResultsA total of 552 publications were retrieved from 2018 to 2022. Annual publication outputs trended upward and reached a peak of 172 in 2021. The United States contributed the most publications (160, 29.0%) to the field, followed by China (63, 11.4%) and Italy (60, 10.9%). International academic collaborations were active. CANCERS was considered the most productive journal with 18 documents. NATURE was the most co-cited journal with 1860 times citations. The most cited document was entitled “Induced Pluripotent Stem Cells for Cardiovascular Disease Modeling and Precision Medicine: A Scientific Statement From the American Heart Association” with 9 times local citations. “ precision medicine” (n = 89, 12.64%), “personalized medicine” (n = 72, 10.23%), “stem cells” (n = 43, 4.40%), and “induced pluripotent stem cells” (n = 41, 5.82%), “cancer stem cells” (n = 31, 4%), “organoids” (n = 26, 3.69%) were the top 6 frequent keywords.ConclusionThe present study performs a comprehensive investigation concerning stem cell precision medicine (2018–2022) for the first time. This research field is developing, and a deeper exploration of 3D patient-specific organoid disease models is worth more research in the future.
Collapse
|
47
|
Patient Derived Ex-Vivo Cancer Models in Drug Development, Personalized Medicine, and Radiotherapy. Cancers (Basel) 2022; 14:cancers14123006. [PMID: 35740672 PMCID: PMC9220792 DOI: 10.3390/cancers14123006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary This review article highlights gaps in the current system of drug development and personalized medicine for cancer therapy. The ex vivo model system using tissue biopsy from patients will advance the development of the predictive disease specific biomarker, drug screening and assessment of treatment response on a personalized basis. Although this ex vivo system demonstrated promises, there are challenges and limitations which need to be mitigated for further advancement and better applications. Abstract The field of cancer research is famous for its incremental steps in improving therapy. The consistent but slow rate of improvement is greatly due to its meticulous use of consistent cancer biology models. However, as we enter an era of increasingly personalized cancer care, including chemo and radiotherapy, our cancer models must be equally able to be applied to all individuals. Patient-derived organoid (PDO) and organ-in-chip (OIC) models based on the micro-physiological bioengineered platform have already been considered key components for preclinical and translational studies. Accounting for patient variability is one of the greatest challenges in the crossover from preclinical development to clinical trials and patient derived organoids may offer a steppingstone between the two. In this review, we highlight how incorporating PDO’s and OIC’s into the development of cancer therapy promises to increase the efficiency of our therapeutics.
Collapse
|
48
|
Abstract
An ensemble of in vitro cardiac tissue models has been developed over the past several decades to aid our understanding of complex cardiovascular disorders using a reductionist approach. These approaches often rely on recapitulating single or multiple clinically relevant end points in a dish indicative of the cardiac pathophysiology. The possibility to generate disease-relevant and patient-specific human induced pluripotent stem cells has further leveraged the utility of the cardiac models as screening tools at a large scale. To elucidate biological mechanisms in the cardiac models, it is critical to integrate physiological cues in form of biochemical, biophysical, and electromechanical stimuli to achieve desired tissue-like maturity for a robust phenotyping. Here, we review the latest advances in the directed stem cell differentiation approaches to derive a wide gamut of cardiovascular cell types, to allow customization in cardiac model systems, and to study diseased states in multiple cell types. We also highlight the recent progress in the development of several cardiovascular models, such as cardiac organoids, microtissues, engineered heart tissues, and microphysiological systems. We further expand our discussion on defining the context of use for the selection of currently available cardiac tissue models. Last, we discuss the limitations and challenges with the current state-of-the-art cardiac models and highlight future directions.
Collapse
Affiliation(s)
- Dilip Thomas
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.).,Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.)
| | - Suji Choi
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA (S.C., K.K.P.)
| | - Christina Alamana
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.).,Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.)
| | - Kevin Kit Parker
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA (S.C., K.K.P.).,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, Wyss Institute for Biologically Inspired Engineering, Boston, MA (K.K.P.)
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.).,Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.).,Greenstone Biosciences, Palo Alto, CA (J.C.W.)
| |
Collapse
|
49
|
Metabolic Determinants in Cardiomyocyte Function and Heart Regenerative Strategies. Metabolites 2022; 12:metabo12060500. [PMID: 35736435 PMCID: PMC9227827 DOI: 10.3390/metabo12060500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Heart disease is the leading cause of mortality in developed countries. The associated pathology is characterized by a loss of cardiomyocytes that leads, eventually, to heart failure. In this context, several cardiac regenerative strategies have been developed, but they still lack clinical effectiveness. The mammalian neonatal heart is capable of substantial regeneration following injury, but this capacity is lost at postnatal stages when cardiomyocytes become terminally differentiated and transit to the fetal metabolic switch. Cardiomyocytes are metabolically versatile cells capable of using an array of fuel sources, and the metabolism of cardiomyocytes suffers extended reprogramming after injury. Apart from energetic sources, metabolites are emerging regulators of epigenetic programs driving cell pluripotency and differentiation. Thus, understanding the metabolic determinants that regulate cardiomyocyte maturation and function is key for unlocking future metabolic interventions for cardiac regeneration. In this review, we will discuss the emerging role of metabolism and nutrient signaling in cardiomyocyte function and repair, as well as whether exploiting this axis could potentiate current cellular regenerative strategies for the mammalian heart.
Collapse
|
50
|
Song Y, Zheng Z, Lian J. Deciphering Common Long QT Syndrome Using CRISPR/Cas9 in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Front Cardiovasc Med 2022; 9:889519. [PMID: 35647048 PMCID: PMC9136094 DOI: 10.3389/fcvm.2022.889519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
From carrying potentially pathogenic genes to severe clinical phenotypes, the basic research in the inherited cardiac ion channel disease such as long QT syndrome (LQTS) has been a significant challenge in explaining gene-phenotype heterogeneity. These have opened up new pathways following the parallel development and successful application of stem cell and genome editing technologies. Stem cell-derived cardiomyocytes and subsequent genome editing have allowed researchers to introduce desired genes into cells in a dish to replicate the disease features of LQTS or replace causative genes to normalize the cellular phenotype. Importantly, this has made it possible to elucidate potential genetic modifiers contributing to clinical heterogeneity and hierarchically manage newly identified variants of uncertain significance (VUS) and more therapeutic options to be tested in vitro. In this paper, we focus on and summarize the recent advanced application of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) combined with clustered regularly interspaced short palindromic repeats/CRISPR-associated system 9 (CRISPR/Cas9) in the interpretation for the gene-phenotype relationship of the common LQTS and presence challenges, increasing our understanding of the effects of mutations and the physiopathological mechanisms in the field of cardiac arrhythmias.
Collapse
Affiliation(s)
- Yongfei Song
- Department of Cardiovascular, Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
- Yongfei Song
| | - Zequn Zheng
- Department of Cardiovascular, Medical College, Ningbo University, Ningbo, China
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo, China
| | - Jiangfang Lian
- Department of Cardiovascular, Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
- Department of Cardiovascular, Medical College, Ningbo University, Ningbo, China
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo, China
- *Correspondence: Jiangfang Lian
| |
Collapse
|