1
|
Marafie SK, Al-Mulla F. An Overview of the Role of Furin in Type 2 Diabetes. Cells 2023; 12:2407. [PMID: 37830621 PMCID: PMC10571965 DOI: 10.3390/cells12192407] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
Post-translational modifications (PTMs) play important roles in regulating several human diseases, like cancer, neurodegenerative disorders, and metabolic disorders. Investigating PTMs' contribution to protein functions is critical for modern biology and medicine. Proprotein convertases (PCs) are irreversible post-translational modifiers that have been extensively studied and are considered as key targets for novel therapeutics. They cleave proteins at specific sites causing conformational changes affecting their functions. Furin is considered as a PC model in regulating growth factors and is involved in regulating many pro-proteins. The mammalian target of the rapamycin (mTOR) signaling pathway is another key player in regulating cellular processes and its dysregulation is linked to several diseases including type 2 diabetes (T2D). The role of furin in the context of diabetes has been rarely explored and is currently lacking. Moreover, furin variants have altered activity that could have implications on overall health. In this review, we aim to highlight the role of furin in T2D in relation to mTOR signaling. We will also address furin genetic variants and their potential effect on T2D and β-cell functions. Understanding the role of furin in prediabetes and dissecting it from other confounding factors like obesity is crucial for future therapeutic interventions in metabolic disorders.
Collapse
Affiliation(s)
- Sulaiman K. Marafie
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait
| | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait
| |
Collapse
|
2
|
Dobó J, Kocsis A, Dani R, Gál P. Proprotein Convertases and the Complement System. Front Immunol 2022; 13:958121. [PMID: 35874789 PMCID: PMC9296861 DOI: 10.3389/fimmu.2022.958121] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 11/27/2022] Open
Abstract
Proteins destined for secretion - after removal of the signal sequence - often undergo further proteolytic processing by proprotein convertases (PCs). Prohormones are typically processed in the regulated secretory pathway, while most plasma proteins travel though the constitutive pathway. The complement system is a major proteolytic cascade in the blood, serving as a first line of defense against microbes and also contributing to the immune homeostasis. Several complement components, namely C3, C4, C5 and factor I (FI), are multi-chain proteins that are apparently processed by PCs intracellularly. Cleavage occurs at consecutive basic residues and probably also involves the action of carboxypeptidases. The most likely candidate for the intracellular processing of complement proteins is furin, however, because of the overlapping specificities of basic amino acid residue-specific proprotein convertases, other PCs might be involved. To our surprise, we have recently discovered that processing of another complement protein, mannan-binding lectin-associated serine protease-3 (MASP-3) occurs in the blood by PCSK6 (PACE4). A similar mechanism had been described for the membrane protease corin, which is also activated extracellularly by PCSK6. In this review we intend to point out that the proper functioning of the complement system intimately depends on the action of proprotein convertases. In addition to the non-enzymatic components (C3, C4, C5), two constitutively active complement proteases are directly activated by PCs either intracellularly (FI), or extracellularly (MASP-3), moreover indirectly, through the constitutive activation of pro-factor D by MASP-3, the activity of the alternative pathway also depends on a PC present in the blood.
Collapse
Affiliation(s)
| | | | | | - Péter Gál
- *Correspondence: József Dobó, ; Péter Gál,
| |
Collapse
|
3
|
Yamasaki G, Sakurada M, Kitagawa K, Kondo T, Takahashi M, Ueno Y. Effect of FURIN SNP rs17514846 on coronary atherosclerosis in human cardiac specimens: An autopsy study of 106 cases. Leg Med (Tokyo) 2021; 55:102006. [PMID: 35008003 DOI: 10.1016/j.legalmed.2021.102006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/08/2021] [Accepted: 12/23/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Coronary artery disease (CAD), including coronary atherosclerosis (CAS), is one of the most common causes of death. The FURIN SNP rs17514846 is assumed to be a risk factor for CAD. We evaluated this relationship using autopsy specimens and autopsy data, such as the histopathological degree of CAS. MATERIALS AND METHODS A total of 106 samples were genotyped from obtained blood samples. Myocardial and coronary arterial FURIN levels were quantified by ELISA. The degree of CAS was classified histopathologically according to the Stary classification, and the localization of FURIN was examined by immunostaining. The obtained data were analyzed statistically. RESULTS FURIN expression was widely observed in the myocardium, vascular smooth muscle cells, endothelial cells, adipocytes, and macrophages. FURIN level in the myocardium of cases with the AA genotype at the FURIN SNP rs17514846 was higher than that in CC cases. Additionally, FURIN levels in both coronary arteries and myocardium were higher at the early stage of CAS than at the late stage microscopically. CONCLUSION Our study suggested that the A allele of rs17514846 is associated with higher FURIN level in the heart and that FURIN exhibits a higher level in the early stage of CAS. These findings deepen our understanding of the mechanism of CAS.
Collapse
Affiliation(s)
- Gentaro Yamasaki
- Division of Legal Medicine, Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Makoto Sakurada
- Forensic Science Laboratory, Hyogo Prefectural Police Headquarters, Kobe, Japan
| | - Koichi Kitagawa
- Department of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe, Japan
| | - Takeshi Kondo
- Division of Legal Medicine, Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Motonori Takahashi
- Division of Legal Medicine, Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuhiro Ueno
- Division of Legal Medicine, Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
4
|
Yang Y, Bai ZG, Yin J, Wu GC, Zhang ZT. Role of c-Src activity in the regulation of gastric cancer cell migration. Oncol Rep 2014; 32:45-9. [PMID: 24841138 PMCID: PMC4067425 DOI: 10.3892/or.2014.3188] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 04/04/2014] [Indexed: 01/29/2023] Open
Abstract
Gastric cancer is associated with increased migration and invasion. In the present study, we explored the role of c-Src in gastric cancer cell migration and invasion. BGC-823 gastric cancer cells were used to investigate migration following treatment of these cells with the c-Src inhibitors, PP2 and SU6656. Migration and invasion were analyzed by wound healing and Transwell assays. Western blot analysis was used to detect the expression of MT1-MMP and VEGF-C, while the activity of MMP2 and MMP9 was monitored with gelatin zymography assay. Immunoprecipitation was used to detect interactions among furin, pro-MT1-MMP and pro-VEGF-C. MT1-MMP and VEGF-C expression levels were inhibited by PP2 and SU6656 treatment, in accordance with decreased c-Src activity. Similarly, the zymography assay demonstrated that the activity of MMP2 and MMP9 was decreased following PP2 or SU6656 treatment. Blockade of c-Src also inhibited the invasive and migratory capacity of BGC-823 cells. Notably, c-Src interacted with furin in vivo, while interactions between furin and its substrates, pro-MT1-MMP and pro-VEGF-C, were decreased by c-Src inhibitors. In conclusion, the interaction among furin and pro-MT1-MMP or pro-VEGF-C or other tumor-associated precursor enzymes can be regulated by c-Src activity, thus reducing or changing the expression of these enzymes in order to reduce the development of gastric cancer, invasion and metastasis.
Collapse
Affiliation(s)
- Yun Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Xuanwu, Beijing 100050, P.R. China
| | - Zhi-Gang Bai
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Xuanwu, Beijing 100050, P.R. China
| | - Jie Yin
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Xuanwu, Beijing 100050, P.R. China
| | - Guo-Cong Wu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Xuanwu, Beijing 100050, P.R. China
| | - Zhong-Tao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Xuanwu, Beijing 100050, P.R. China
| |
Collapse
|
5
|
Liu X, Wang G, You Z, Qian P, Chen H, Dou Y, Wei Z, Chen Y, Mao C, Zhang J. Inhibition of hypoxia-induced proliferation of pulmonary arterial smooth muscle cells by a mTOR siRNA-loaded cyclodextrin nanovector. Biomaterials 2014; 35:4401-16. [PMID: 24582377 DOI: 10.1016/j.biomaterials.2014.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 02/06/2014] [Indexed: 01/05/2023]
Abstract
The proliferation of pulmonary arterial smooth muscle cells (PASMCs) is a key pathophysiological component of vascular remodeling in pulmonary arterial hypertension (PAH), an intractable disease, for which pharmacotherapy is limited and only slight improvement in survival outcomes have achieved over the past few decades. RNA interference provides a highly promising strategy to the treatment of this chronic lung disease, while efficient delivery of small interfering RNA (siRNA) remains a key challenge for the development of clinically acceptable siRNA therapeutics. With the aim to construct useful nanomedicines, the mammalian target of rapamycin (mTOR) siRNA was loaded into hybrid nanoparticles based on low molecular weight (Mw) polyethylenimine (PEI) and a pH-responsive cyclodextrin material (Ac-aCD) or poly(lactic-co-glycolic acid) (PLGA). This hybrid nanoplatform gave rise to desirable siRNA loading, and the payload release could be modulated by the hydrolysis characteristics of carrier materials. Fluorescence observation and flow cytometry quantification suggested that both Ac-aCD and PLGA nanovectors (NVs) may enter PASMCs under either normoxia or hypoxia conditions as well as in the presence of serum, with uptake and transfection efficiency significantly higher than those of cationic vectors such as PEI with Mw of 25 kDa (PEI25k) and Lipofectamine 2000 (Lipo 2k). Hybrid Ac-aCD or PLGA NV containing siRNA remarkably inhibited proliferation and activated apoptosis of hypoxic PASMCs, largely resulting from effective suppression of mTOR signaling as evidenced by significantly lowered expression of mTOR mRNA and phosphorylated protein. Moreover, these hybrid nanomedicines were more effective than commonly used cationic vectors like PEI25k and Lipo 2k, with respect to cell growth inhibition, apoptosis activation, and expression attenuation of mTOR mRNA and protein. Therefore, mTOR siRNA nanomedicines based on hybrid Ac-aCD or PLGA NV may be promising therapeutics for diseases related to hypoxic abnormal growth of PASMCs.
Collapse
Affiliation(s)
- Xueping Liu
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Guansong Wang
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Zaichun You
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Pin Qian
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Huaping Chen
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Yin Dou
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Zhenghua Wei
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Yan Chen
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Chengde Mao
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
6
|
Urban D, Lorenz J, Meyborg H, Ghosh S, Kintscher U, Kaufmann J, Fleck E, Kappert K, Stawowy P. Proprotein convertase furin enhances survival and migration of vascular smooth muscle cells via processing of pro-nerve growth factor. J Biochem 2012; 153:197-207. [PMID: 23172302 DOI: 10.1093/jb/mvs137] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Maturation of nerve growth factor (NGF) in neuronal cells requires endoproteolytic processing of the precursor protein proNGF to β-NGF by the proprotein convertase furin. Pro- and β-NGF elicit opposite biological functions by differential neurotrophin-receptor binding, leading to apoptosis via sortilin or survival via neurotrophic tyrosine kinase receptor type-1 (TrkA), respectively. The present study was done to investigate the impact of furin-dependent proNGF processing on vascular smooth muscle cell (VSMC) function. We found that β-NGF mRNA and protein expression was upregulated in platelet-derived growth factor-BB/transforming growth factor-β1-stimulated, proliferating rat aortic VSMCs. Although β-NGF itself did not affect VSMC proliferation, it promoted VSMC motility in an autocrine fashion via TrkA/Akt-dependent integrin inside-out signalling. The β-NGF-induced migration of VSMCs required proNGF processing by furin, which was co-regulated with NGF. Furin-inhibition increased proNGF and reduced β-NGF secretion, leading to apoptosis rather than migration. In line with our in vitro demonstration, we found co- and upregulation of NGF, its convertase furin and its high-affinity receptor TrkA in the neointima of balloon-injured rodent arteries. These results indicate that furin determines the balance between proNGF and β-NGF in proliferating VSMCs, thus impacting on VSMC survival and migration and is also important in neointima formation.
Collapse
Affiliation(s)
- Daniel Urban
- Department of Medicine/Cardiology, Deutsches Herzzentrum Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Chrétien M. My road to Damascus: how I converted to the prohormone theory and the proprotein convertases. Biochem Cell Biol 2012. [PMID: 23194189 DOI: 10.1139/o2012-031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
My desire as a young endocrinologist to improve my clinical skills through a better knowledge of hormone chemistry led me to serendipitous discoveries and unexpected horizons. The first discovery, published in 1967, revealed that peptide hormones are derived from endoproteolytic cleavages of larger precursor polypeptides. It was the foundation of the prohormone theory. Initially thought to apply to a few hormones, the theory rapidly extended to many proteins, including neuropeptides, neurotrophins, growth and transcription factors, receptors, extracellular matrix proteins, bacterial toxins, and viral glycoproteins. Its endoproteolytic activation mechanism has become a fundamental cellular process, affecting many biological functions. It implied the existence of specific endoproteolytic enzymes. These proprotein convertases were discovered in 1990. They have been shown to play a wide range of important roles in health and disease. They have opened up novel therapeutic avenues. Inactivation of PCSK9 to reduce plasma cholesterol is currently the most promising. To make this good thing even better, I recently discovered in a French Canadian family a potent PCSK9 (Gln152His) mutation that significantly lowers plasma cholesterol and should confer cardiovascular longevity. The discovery helped me to complete the loop: "From the bedside to the bench and back to the bedside."
Collapse
Affiliation(s)
- Michel Chrétien
- Institut de recherches cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada.
| |
Collapse
|
8
|
Perez J, Torres RA, Rocic P, Cismowski MJ, Weber DS, Darley-Usmar VM, Lucchesi PA. PYK2 signaling is required for PDGF-dependent vascular smooth muscle cell proliferation. Am J Physiol Cell Physiol 2011; 301:C242-51. [PMID: 21451101 DOI: 10.1152/ajpcell.00315.2010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Aberrant vascular smooth muscle cell (VSMC) growth is associated with many vascular diseases including atherosclerosis, hypertension, and restenosis. Platelet-derived growth factor-BB (PDGF) induces VSMC proliferation through control of cell cycle progression and protein and DNA synthesis. Multiple signaling cascades control VSMC growth, including members of the mitogen-activated protein kinase (MAPK) family as well as phosphatidylinositol 3-kinase (PI3K) and its downstream effector AKT/protein kinase B (PKB). Little is known about how these signals are integrated by mitogens and whether there are common receptor-proximal signaling control points that synchronize the execution of physiological growth functions. The nonreceptor proline-rich tyrosine kinase 2 (PYK2) is activated by a variety of growth factors and G protein receptor agonists in VSMC and lies upstream of both PI3K and MAPK cascades. The present study investigated the role of PYK2 in PDGF signaling in cultured rat aortic VSMC. PYK2 downregulation attenuated PDGF-dependent protein and DNA synthesis, which correlated with inhibition of AKT and extracellular signal-regulated kinases 1 and 2 (ERK1/2) but not p38 MAPK activation. Inhibition of PDGF-dependent protein kinase B (AKT) and ERK1/2 signaling by inhibitors of upstream kinases PI3K and MEK, respectively, as well as downregulation of PYK2 resulted in modulation of the G(1)/S phase of the cell cycle through inhibition of retinoblastoma protein (Rb) phosphorylation and cyclin D(1) expression, as well as p27(Kip) upregulation. Cell division kinase 2 (cdc2) phosphorylation at G(2)/M was also contingent on PDGF-dependent PI3K-AKT and ERK1/2 signaling. These data suggest that PYK2 is an important upstream mediator in PDGF-dependent signaling cascades that regulate VSMC proliferation.
Collapse
Affiliation(s)
- Jessica Perez
- Department of Cell Biology, University of Alabama at Birmingham, Alabama, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Zhao Y, Biswas SK, McNulty PH, Kozak M, Jun JY, Segar L. PDGF-induced vascular smooth muscle cell proliferation is associated with dysregulation of insulin receptor substrates. Am J Physiol Cell Physiol 2011; 300:C1375-85. [PMID: 21325637 DOI: 10.1152/ajpcell.00670.2008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In vascular smooth muscle cells (VSMCs), platelet-derived growth factor (PDGF) plays a major role in inducing phenotypic switching from contractile to proliferative state. Importantly, VSMC phenotypic switching is also determined by the phosphorylation state/expression levels of insulin receptor substrate (IRS), an intermediary signaling component that is shared by insulin and IGF-I. To date, the roles of PDGF-induced key proliferative signaling components including Akt, p70S6kinase, and ERK1/2 on the serine phosphorylation/expression of IRS-1 and IRS-2 isoforms remain unclear in VSMCs. We hypothesize that PDGF-induced VSMC proliferation is associated with dysregulation of insulin receptor substrates. Using human aortic VSMCs, we demonstrate that prolonged PDGF treatment led to sustained increases in the phosphorylation of protein kinases such as Akt, p70S6kinase, and ERK1/2, which mediate VSMC proliferation. In addition, PDGF enhanced IRS-1/IRS-2 serine phosphorylation and downregulated IRS-2 expression in a time- and concentration-dependent manner. Notably, phosphoinositide 3-kinase (PI 3-kinase) inhibitor (PI-103) and mammalian target of rapamycin inhibitor (rapamycin), which abolished PDGF-induced Akt and p70S6kinase phosphorylation, respectively, blocked PDGF-induced IRS-1 serine phosphorylation and IRS-2 downregulation. In contrast, MEK1/ERK inhibitor (U0126) failed to block PDGF-induced IRS-1 serine phosphorylation and IRS-2 downregulation. PDGF-induced IRS-2 downregulation was prevented by lactacystin, an inhibitor of proteasomal degradation. Functionally, PDGF-mediated IRS-1/IRS-2 dysregulation resulted in the attenuation of insulin-induced IRS-1/IRS-2-associated PI 3-kinase activity. Pharmacological inhibition of PDGF receptor tyrosine kinase with imatinib prevented IRS-1/IRS-2 dysregulation and restored insulin receptor signaling. In conclusion, strategies to inhibit PDGF receptors would not only inhibit neointimal growth but may provide new therapeutic options to prevent dysregulated insulin receptor signaling in VSMCs in nondiabetic and diabetic states.
Collapse
Affiliation(s)
- Yan Zhao
- Departments of Medicine and Pharmacology, Heart & Vascular Institute, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
10
|
Stawowy P, Kappert K. The molecular biology of furin-like proprotein convertases in vascular remodelling. Methods Mol Biol 2011; 768:191-206. [PMID: 21805243 DOI: 10.1007/978-1-61779-204-5_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Vascular smooth muscle cell (VSMC) proliferation and migration represent key features in atherosclerosis and restenosis. The proprotein convertases (PCs) furin and PC5 are highly expressed in human atheroma and are putatively involved in vascular lesion formation via the activation of precursor proteins, essential for cell proliferation and migration. In vitro assays have identified these PCs to govern cell functions via endoproteolytic cleavage of key substrates, including pro-integrins and pro-matrix metalloproteinases. In vivo gene expression studies of furin/PC5 and their substrates demonstrate their coordinated regulation in animal models of vascular remodelling and in human atherosclerotic lesions. Here we describe in vitro and in vivo models to investigate the function of furin/PC5 in VSMCs and in vascular lesion formation. In conjunction with the development of novel PC inhibitors, this should facilitate the development of new strategies targeting PCs in cardiovascular disease.
Collapse
Affiliation(s)
- Philipp Stawowy
- Department of Medicine/Cardiology, Deutsches Herzzentrum Berlin, D-13353, Berlin, Germany.
| | | |
Collapse
|
11
|
In vitro assay for protease activity of proprotein convertase subtilisin kexins (PCSKs): an overall review of existing and new methodologies. Methods Mol Biol 2011; 768:127-53. [PMID: 21805240 DOI: 10.1007/978-1-61779-204-5_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mammalian proprotein convertase subtilisin kexins (PCSKs) previously called proprotein or prohormone convertases (PCs) are a family of Ca(+2)-dependent endoproteases in the subtilisin family. These proteolytic enzymes exert their many crucial physiological and biological functions in vivo via their ability to cleave larger inactive precursor proteins into their biologically active mature forms. This event takes place in a highly efficient and selective manner. Such actions of PCSKs either alone or in combination to cleave specific protein bonds are the hallmark events that not only define the normal functions and metabolism of the body but also may lead to a variety of diseases or disorders with associated conditions. These include among others, diabetes, obesity, cancer, cardiovascular diseases, reproduction abnormalities as well as viral bacterial infections. These conditions were the direct consequences of an enhanced level of enzymatic activity of one or more PCSKs except only PCSK9, whose protease activity in relation to its physiological substrate has yet to be characterized. Owing to this finding, a large number of research studies have been exclusively devoted to develop rapid, efficient and reliable in vitro methods for examining the protease activity of these enzymes. Several assays have been developed to monitor PCSK activity and these are widely used in chemical, biochemical, cellular and animal studies. This review will cover various methodologies and protocols that are currently available in the literature for PCSK activity assays. These include liquid phase methods using fluorogenic, chromogenic and intramolecularly quenched fluorescent substrates as well as a newly developed novel solid phase fluorescence method. This review will also highlight the usefulness of these methodologies and finally a comparative analysis has been made to examine their merits and demerits with some key examples.
Collapse
|
12
|
Jarvinen MK, Chinnaswamy K, Sturtevant A, Hatley N, Sucic JF. Effects of age and retinal degeneration on the expression of proprotein convertases in the visual cortex. Brain Res 2010; 1317:1-12. [PMID: 20034475 DOI: 10.1016/j.brainres.2009.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 12/07/2009] [Accepted: 12/13/2009] [Indexed: 10/20/2022]
Abstract
Proprotein convertases (PCs) comprise a large family of subtilisin-like, eukaryotic, serine endoproteases that process substrates important in the development, homeostasis, and pathology of the nervous system. Despite important interactions with these substrates, including neurotrophins, PC expression throughout normal postnatal development and disease progression in the brain remains unknown. The primary objective of this study was to determine whether the expression profiles of widely expressed and tissue-specific PCs varied during normal brain development or neurological disorders. We examined the expression of mRNAs for seven PCs in the visual cortex of normal and visually impaired mice at 10 postnatal developmental time points between Week 1 and Week 35. Widely expressed PCs (furin, PACE4, PC5, and PC7) all exhibited a similar expression profile. High mRNA levels were seen at Week 1 with levels generally lower over the next 5-6 weeks. In visually impaired mice, widely expressed PCs again all exhibited a similar expression profile, but it was dramatically different than observed in normal mice. The temporal expression of tissue-specific PCs varied in wild-type mice. Interestingly, this variability was sharply reduced in visually impaired mice. Overall, these data suggest a timetable of altered PC expression that corresponds closely with the formation of functional visual maps in the visual cortex. The implications of these findings are discussed in the context of neurotrophin processing and synaptogenesis in the developing visual cortex.
Collapse
Affiliation(s)
- Michael K Jarvinen
- Psychology Department, University of Michigan-Flint, Flint, MI 48502, USA
| | | | | | | | | |
Collapse
|
13
|
Seidah NG, Prat A. The proprotein convertases are potential targets in the treatment of dyslipidemia. J Mol Med (Berl) 2007; 85:685-96. [PMID: 17351764 DOI: 10.1007/s00109-007-0172-7] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Revised: 01/22/2007] [Accepted: 02/09/2007] [Indexed: 10/23/2022]
Abstract
The family of the secretory proprotein convertases (PCs) comprises seven basic amino acid (aa)-specific subtilisin-like serine proteinases known as PC1/3, PC2, furin, PC4, PC5/6, PACE4 and PC7, and two other PCs, SKI-1 (subtilisin-kexin isozyme-1)/S1P (site-1 protease) and PCSK9 (proprotein convertase subtilisin kexin 9) that cleave at nonbasic residues. Except for the testicular PC4, all the other convertases are expressed in brain and peripheral organs and play a critical role in various functions including the production of diverse neuropeptides as well as growth factors and receptors, the regulation of cellular adhesion/migration, cholesterol and fatty acid homeostasis, and growth/differentiation of progenitor cells. Some of these convertases process proteins that are implicated in pathologies, including cancer malignancies, tissue regeneration, and viral infections. The implication of some of these convertases in sterol/lipid metabolism has only recently been appreciated. SKI-1/S1P activates the synthesis of cholesterol and fatty acids as well as the LDL receptor (LDLR), whereas PCSK9 inactivates the LDLR. Moreover, furin, PC5 and/or, PACE4 inactivates endothelial and lipoprotein lipases. Humans and mice exhibiting either a gain or loss of function of PCSK9 through specific point mutations or knockouts develop hypercholesterolemia and hypocholesterolemia phenotypes, respectively. A PCSK9 inhibitor in combination with statins offers a most promising therapeutic target to treat cardiovascular disorders including dyslipidemias. Specific inhibitors/modulators of the other PCs should find novel therapeutic applications in the control of PC-regulated pathologies.
Collapse
Affiliation(s)
- Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, 110 Pine Ave West, Montreal, Quebec, H2W 1R7, Canada.
| | | |
Collapse
|
14
|
Discovery of the Proprotein Convertases and their Inhibitors. REGULATION OF CARCINOGENESIS, ANGIOGENESIS AND METASTASIS BY THE PROPROTEIN CONVERTASES (PCS) 2006. [PMCID: PMC7122317 DOI: 10.1007/1-4020-5132-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The members of the convertase family play a central role in the processing of various protein precursors ranging from hormones and growth factors to viral envelope proteins and bacterial toxins. The proteolysis of these precursors that occurs at basic residues is mediated by the proprotein convertases (PCs), namely: PC1, PC2, Furin, PACE4, PC4, PC5 and PC7. The proteolysis at non-basic residues is performed by subtilisin/kexin-like isozyme-1 (S1P/SKI-1) and the newly identified neural apoptosis-regulated convertase-1 (NARC-1/PCSK9). These proteases have key roles in many physiological processes and various pathologies including cancer, obesity, diabetes, neurodegenerative diseases and autosomal dominant hypercholesterolermia. Here we summarize the discovery of the proprotein convertases and their inhibitors, discuss their properties, roles, resemblance and differences
Collapse
|
15
|
St Germain C, Croissandeau G, Mayne J, Baltz JM, Chrétien M, Mbikay M. Expression and transient nuclear translocation of proprotein convertase 1 (PC1) during mouse preimplantation embryonic development. Mol Reprod Dev 2005; 72:483-93. [PMID: 16163737 DOI: 10.1002/mrd.20271] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Preimplantation embryos express a number of hormones, neuropeptides, and membrane receptors known to derive from proteolytic activation of their precursors by the seven-member family of subtilisin-like, calcium-dependent serine proteinases known as proprotein convertases (PCs). The goal of this study was to determine the pattern of PC expression in mouse preimplantation embryos. Transcripts for all PCs, except PC2, were detected by reverse transcription-polymerase chain reaction (RT-PCR) in unfertilized and fertilized eggs. Furin, PACE4, PC1, and PC7 transcripts remained present at subsequent stages of preimplantation embryonic development, whereas the levels of transcripts for PC4 and PC5 gradually disappeared after the 2-cell stage. Proprotein convertase 1 (PC1) expression was further examined at the protein level. Immunoblotting revealed the presence of the zymogen and mature forms of this enzyme in eggs and embryos. Immunofluorescence laser confocal microscopy showed PC1-specific staining throughout the cytoplasm of unfertilized eggs. After fertilization, surprisingly, the staining was concentrated in pronuclei. It relocated to the cytoplasm at postzygotic stages and was particularly strong at junctions between blastomeres. The nuclear translocation of PC1 in fertilized eggs is probably mediated by its prodomain. Indeed, when transduced in human colon carcinoma LoVo cells, a mutant proPC1 incapable of cleaving off its prodomain was shown to accumulate in the nucleus. Furthermore, when N-terminally fused to green fluorescent protein, this domain was able to direct the reporter protein to the nucleus of these cells. Collectively, these data establish that eggs and preimplantation embryos express various PCs necessary for proteolytic activation of precursors of hormones and growth factors. They also raise the possibility of a nuclear function for PC1 during zygote formation.
Collapse
Affiliation(s)
- Carly St Germain
- Diseases of Aging Program, Ottawa Health Research Institute, The Ottawa Hospital, University of Ottawa, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Stawowy P, Fleck E. Proprotein convertases furin and PC5: targeting atherosclerosis and restenosis at multiple levels. J Mol Med (Berl) 2005; 83:865-75. [PMID: 16244876 DOI: 10.1007/s00109-005-0723-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Accepted: 08/24/2005] [Indexed: 01/08/2023]
Abstract
Several growth factors, chemokines, adhesion molecules, and proteolytic enzymes important for cell-cell/cell-matrix interactions in atherosclerosis and restenosis are initially synthesized as inactive precursor proteins. Activation of proproteins to biologically active molecules is regulated by limited endoproteolytic cleavage at dibasic amino acid residues. This type of activation typically requires the presence of suitable proprotein convertases (PCs). The PC-isozymes furin and PC5 are expressed in human atherosclerotic lesions and have been found to be up-regulated, following vascular injury in animal models in vivo. In vitro, these PCs can regulate vascular smooth muscle cell and macrophage functions and signaling events, through activation of pro-alpha-integrins and/or pro-membrane-type matrix metalloproteinases. Integrins link the cytoskeleton with the extracellular matrix and mediate bidirectional signaling and mechanotransduction, whereas matrix metalloproteinases are the major matrix-degrading enzymes. Both activities are required for cell recruitment to the intima. Furthermore, cleavage of extracellular matrix molecules by matrix metalloproteinases potentially contributes to weakening of the fibrous cap, promoting plaque rupture. Based on these recent in vitro and in vivo data, furin and PC5 are potential contributors to the initiation, progression, and complications of atherosclerosis and restenosis. Targeting these PCs may provide future anti-atherosclerotic therapies.
Collapse
|
17
|
Stawowy P, Kallisch H, Borges Pereira Stawowy N, Stibenz D, Veinot JP, Gräfe M, Seidah NG, Chrétien M, Fleck E, Graf K. Immunohistochemical localization of subtilisin/kexin-like proprotein convertases in human atherosclerosis. Virchows Arch 2005; 446:351-9. [PMID: 15756593 DOI: 10.1007/s00428-004-1198-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Accepted: 12/06/2004] [Indexed: 11/28/2022]
Abstract
Integrins are heterodimeric alpha/beta receptors that link the cytoskeleton with the extracellular matrix, thereby regulating several cell functions important in atherosclerosis. In vitro, the subtilisin/kexin-like proprotein convertases (PCs), namely PC5 and furin, have been shown to be responsible for the endoproteolytic activation of the alpha(v) integrin subunit. Based on their cleavage activity, these PCs are potential targets in atherosclerosis. In the present study, we investigated the localization of furin and PC5 in different stages of human atherosclerosis. Immunohistochemical analysis of furin and PC5 revealed their presence in vascular smooth-muscle cells and endothelial cells in atherosclerotic and non-atherosclerotic lesions. However, in the more advanced lesions, furin and PC5 staining was significantly expressed in macrophages/foam cells. In vitro, THP-1 derived macrophages contained furin and PC5, and maturation of monocytes to macrophages was accompanied by enhanced alpha(v)beta3 cell-surface expression. Inhibition of furin/PC5 with the specific pharmacological furin-like PC-inhibitor dec-CMK inhibited alpha(v) endoproteolytic activation but did not abolish alpha(v)beta3 cell-surface expression. This indicates that furin/PC5 is required for alpha(v) endoproteolytic activation but not for alpha(v) routing and sorting to the cell surface. In conclusion, our study demonstrates that furin and PC5 are significantly expressed in mononuclear cells in advanced human atherosclerotic lesions, where they regulate alpha(v) endoproteolytic activation.
Collapse
Affiliation(s)
- Philipp Stawowy
- Department of Medicine/Cardiology, Deutsches Herzzentrum Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Stawowy P, Kallisch H, Kilimnik A, Margeta C, Seidah NG, Chrétien M, Fleck E, Graf K. Proprotein convertases regulate insulin-like growth factor 1-induced membrane-type 1 matrix metalloproteinase in VSMCs via endoproteolytic activation of the insulin-like growth factor-1 receptor. Biochem Biophys Res Commun 2004; 321:531-8. [PMID: 15358140 DOI: 10.1016/j.bbrc.2004.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Indexed: 10/26/2022]
Abstract
The IGF-1 receptor (IGF-1R) and MT1-MMP are synthesized as larger precursor proproteins, which require endoproteolytic activation by the proprotein convertases (PCs) furin/PC5 to gain full biological activity. The aim of this study was to investigate the contribution of PCs to IGF-1R and/or MT1-MMP activation in vascular smooth muscle cells (VSMCs) as well as VSMC proliferation/migration, which are key elements in vascular remodeling. Furin and PC5 mRNAs and proteins were found in VSMCs. Inhibition of furin-like PCs with the specific pharmacological inhibitor dec-CMK inhibited IGF-1R endoproteolytic activation. Inhibition of IGF-1R maturation abrogated IGF-induced IGF-1R autophosphorylation, PI3-kinase and MAPK induction, as well as VSMC proliferation (p<0.05 vs. controls), whereas it had no effect of PDGF-stimulated signaling pathways or cell growth. Both, IGF-1 and PDGF-BB, induced MT1-MMP expression, but only IGF-1-mediated MT1-MMP induction was inhibited by dec-CMK. Induction of MMP-2 by IGF-1 was inhibited by the PI3-kinase inhibitor wortmannin, but not by the MEK-inhibitor PD98059. Dec-CMK inhibited VSMC chemotaxis comparable to the effects of the MMP-inhibitor GM6001 (both p<0.05 vs. controls), supporting that MMPs are involved. In conclusion, this study demonstrates that targeting furin-like PCs and thus inhibiting IGF-1R activation is a novel target to inhibit IGF-1-mediated signaling and cell functions, such as IGF-1-induced MT1-MMP/MMP-2 in VSMCs.
Collapse
MESH Headings
- Animals
- Becaplermin
- Cell Division
- Cell Movement
- Cells, Cultured
- Enzyme Activation
- Enzyme Inhibitors/pharmacology
- Furin/metabolism
- Insulin-Like Growth Factor I/metabolism
- Matrix Metalloproteinase 2/metabolism
- Matrix Metalloproteinases, Membrane-Associated
- Metalloendopeptidases/metabolism
- Mitogen-Activated Protein Kinases/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Platelet-Derived Growth Factor/metabolism
- Proprotein Convertase 5/metabolism
- Protein Precursors/metabolism
- Proto-Oncogene Proteins c-sis
- Rats
- Rats, Sprague-Dawley
- Receptor, IGF Type 1/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Philipp Stawowy
- Department of Medicine/Cardiology, Deutsches Herzzentrum Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Veinot JP, Prichett-Pejic W, Picard P, Parks W, Schwartz R, Seidah NG, Chretien M. Implications of proprotein Convertase 5 (PC5) in the arterial restenotic process in a porcine model. Cardiovasc Pathol 2004; 13:241-50. [PMID: 15358338 DOI: 10.1016/j.carpath.2004.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Revised: 04/16/2004] [Accepted: 05/10/2004] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION Convertases (PCs), especially PC5, have been detected in various layers of atherosclerotic and injured arteries. We postulate that PCs could be important enzymes in vascular disease thus studied PC5 expression in a porcine balloon and stent coronary arterial vascular injury model. METHODS Immunohistochemistry and in situ hybridization of slides of porcine arteries from paraffin blocks were studied 1, 7, 14 and 28 days post injury. RESULTS Immunohistochemistry studies show expression of PC5 in control artery endothelial cells, weak medial smooth muscle cell (SMC) staining and strong staining in the small nerves of the adventitia. At 7, 14 and 28 days postinjury, there is strong positive PC5 staining of the neointimal cells and the adventitial vasa vasora and myofibroblasts. Colocalization immunohistochemistry confirms the smooth muscle staining properties of the myofibroblast-like cells in both these locations. Single-label immunohistochemistry studies show the same cells to stain strongly positive with TGF-B, PDGF, matrix metalloproteinase-2 (MMP-2) and MMP-9. CONCLUSION PC5 may be involved in the process of arterial injury via its effect on growth factors (GFs) and mediators. These preliminary observations suggest that the convertases, especially PC5, represent a target for future study in the process of arterial injury.
Collapse
Affiliation(s)
- John P Veinot
- Department of Laboratory Medicine, Division of Anatomical Pathology, Ottawa Hospital, 1053 Carling Avenue, Ottawa, Ontario, Canada K1Y 4E9.
| | | | | | | | | | | | | |
Collapse
|
20
|
Zahradka P, Harding G, Litchie B, Thomas S, Werner JP, Wilson DP, Yurkova N. Activation of MMP-2 in response to vascular injury is mediated by phosphatidylinositol 3-kinase-dependent expression of MT1-MMP. Am J Physiol Heart Circ Physiol 2004; 287:H2861-70. [PMID: 15297252 DOI: 10.1152/ajpheart.00230.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Phosphatidylinositol 3-kinase (PI3K) is required for smooth muscle cell (SMC) proliferation. This study reports that inhibitors of PI3K also prevent SMC migration and block neointimal hyperplasia in an organ culture model of restenosis. Inhibition of neointimal formation by LY-294002 was concentration and time dependent, with 10 muM yielding the maximal effect. Continuous exposure for at least the first 4-7 days of culture was essential for significant inhibition. To assess the role of matrix metalloproteinases (MMPs) in this process, we monitored MMP secretion by injured vessels in culture. Treatment with LY-294002 selectively reduced active MMP-2 in media samples according to zymography and Western blot analysis without concomitant changes in latent MMP-2. Parallel results with wortmannin indicate that MMP-2 activation is PI3K dependent. Previous research has shown a role for both furin and membrane-type 1 (MT1)-MMP (MMP-14) in the activation of MMP-2. The furin inhibitor decanoyl-Arg-Val-Lys-Arg-chloromethylketone did not prevent MMP-2 activation after balloon angioplasty. In contrast, balloon angioplasty induced a significant increase in the levels of MT1-MMP, which was suppressed by LY-294002. No change in MT1-MMP mRNA was observed with LY-294002, because equivalent amounts of this mRNA were present in both injured and noninjured vessels. These results implicate PI3K-dependent regulation of MT1-MMP protein synthesis and subsequent activation of latent MMP-2 as critical events in neointimal hyperplasia after vascular injury.
Collapse
Affiliation(s)
- Peter Zahradka
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada R2H 2A6.
| | | | | | | | | | | | | |
Collapse
|
21
|
Stawowy P, Goetze S, Margeta C, Fleck E, Graf K. LPS regulate ERK1/2-dependent signaling in cardiac fibroblasts via PKC-mediated MKP-1 induction. Biochem Biophys Res Commun 2003; 303:74-80. [PMID: 12646169 DOI: 10.1016/s0006-291x(03)00301-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Activation of MAPK pathways by angiotensin II (Ang II) is important for cardiac fibroblast (CFB) proliferation and migration. Activity of MAP-kinases is closely controlled by a group of dual-specific MAP kinase phosphatases (MKPs). Lipopolysaccharides (LPS) and cytokines are elevated in patients with heart failure and may contribute to disease progression. In this study, we investigate the effect of LPS on Ang II-induced CFB function. Pretreatment of CFBs with LPS (1 microg/mL; 30 min) almost completely inhibited Ang II-induced DNA-synthesis and inhibited Ang II directed chemotaxis by more than 80%. Compared to controls, LPS pretreatment significantly reduced phosphorylation levels of ERK1/2- and p38 MAPK and induced MKP-1 levels. Silencing MKP-1 with antisense oligodesoxynucleotides reversed the antimitogenic effect of LPS on Ang II-induced CFB DNA-synthesis and migration. Induction of MKP-1 by LPS was inhibited by the protein kinase C (PKC)-inhibitor calphostin C, but not by the ERK1/2-pathway inhibitor PD98059, suggesting that PKC but not ERK1/2 is required for LPS-mediated MKP-1 induction in CFBs. Our data demonstrate that LPS have direct cellular effects in CFBs through an inhibition of Ang II-induced MAPK activity via PKC-mediated induction of MKP-1. This might be relevant with regard to the decreased MAPK activity and increased levels in MKPs reported during chronic heart failure in humans.
Collapse
Affiliation(s)
- Philipp Stawowy
- Department of Medicine/Cardiology, Deutsches Herzzentrum Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | | | | | | | | |
Collapse
|
22
|
Stawowy P, Graf K, Goetze S, Roser M, Chrétien M, Seidah NG, Fleck E, Marcinkiewicz M. Coordinated regulation and colocalization of alphav integrin and its activating enzyme proprotein convertase PC5 in vivo. Histochem Cell Biol 2003; 119:239-45. [PMID: 12649739 DOI: 10.1007/s00418-003-0506-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2003] [Indexed: 10/25/2022]
Abstract
Integrin alphav is involved in intracellular-extracellular signaling important for cytoskeleton alterations and control of cell movement. In vitro experiments indicate that the integrin alphav-subunit undergoes post-translational endoproteolytic cleavage. This type of activation requires the presence of suitable kexin/subtilisin-like proprotein convertases. In vitro experiments have demonstrated that, among several proprotein convertases, PC5A, and to a threefold lesser extent furin, can activate alphav integrin. The biological significance of these in vitro data would be further supported by a coexpression and coordinated regulation of the gene expression of alphav integrin and its activating enzyme PC5 in vivo. In the present study we investigated the regulation of alphav integrin and PC5 following balloon injury in vivo. Comparative immunocytochemistry revealed a coordinated regulation of alphav integrin and PC5 during vascular remodeling in rodents. Integrin alphav was found to be upregulated in PCNA-positive, proliferating vascular smooth muscle cells. Northern blots revealed no significant regulation of furin mRNA, whereas PC5A mRNA increased during vascular remodeling, suggesting that PC5 is the major convertase during neointima formation in vivo. Incubation of vascular smooth muscle cells with the Golgi-disturbing agent brefeldin A inhibited alphav integrin maturation, indicating that endoproteolytic cleavage occurs in the trans-Golgi network, were PC5 is localized. Thus, the present study further supports the concept that activation of alphav integrin occurs in the trans-Golgi network in vascular smooth muscle cells and involves PC5.
Collapse
Affiliation(s)
- Philipp Stawowy
- Department of Medicine/Cardiology, Deutsches Herzzentrum Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|